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Abstract This paper deals with the partial order techniques of Petri nets, based on

persistent sets and step graphs methods. To take advantage of the strengths of each

method, it proposes the persistent step sets as a parametric combination of the both

methods. The persistent step sets method allows to fix, for each marking, the set

of transitions S to be covered by the selected steps and then to control their maxi-

mal length and number. Depending on the parameter S, it computes covering-steps,

persistent sets, persistent-step sets or other kinds of combination of both methods.

Moreover, this persistent step selective search preserves, at least, deadlocks of Petri

nets.

Furthermore, this paper provides two practical computation procedures of the

persistent step sets based on the strong-persistent sets and the weak-persistent sets,

respectively. Finally, to achieve further reductions, it shows how to weaken the suffi-

cient conditions used in the literature to build persistent sets.
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1 Introduction

The state explosion problem is the main obstacle for the verification of concurrent

systems, as they are generally based on an interleaving semantics, where all possible

firing orders of concurrent actions are exhaustively explored. Different techniques for

fighting this problem have been proposed such as structural analysis, symmetries and

partial orders.

The structural analysis attempts to find a relationship between the behaviour of

the net and its structure, where the initial marking is considered as a parameter. The

net structure can be studied through its associated incidence matrix and the corre-

sponding net state equation leading mainly to the concept of place invariants [6]. It

can also be studied through topological properties of the interplay between conflict

and synchronisation of remarkable substructures of the net such siphons and traps. In

both cases, the aim of these studies is to highlight necessary and/or sufficient struc-

tural conditions to check general behavioural properties such as liveness [4,9], for

large subclasses of place/transition nets [1,2].

The second well-accepted technique to tackle combinatorial explosion in model-

checking consists in exploiting symmetries over states and the transition relation [8]

to build a quotient graph of equivalence classes of states, that may be exponentially

smaller than the full state graph, while preserving many behavioural properties of

interest.

The partial order techniques have been proven to be the most successful in prac-

tice. We distinguish two classes of partial order techniques: partial order reduction

techniques [7,10,11,13–15] and step graph techniques [18]. Partial order reduction

techniques, such as the ample sets [10,11], the stubborn sets [13–15] and the persis-

tent sets [7], deal with the state explosion problem by avoiding as much as possible

to explore firing sequences that are equivalent w.r.t. the properties of interest (dead-

lock freeness, deadlocks, reachability, liveness, or linear properties)1. The step graph

methods explore all the transitions of the state space but some of them are fired to-

gether in atomic steps. They aim to reduce the depth of the marking graph while the

purpose of the partial order reduction techniques is to reduce its breadth.

The common characteristics of all these methods is to reduce the state space to be

explored, by selecting the actions or sets of actions (steps) to be executed from each

state. The selection procedure of actions or steps relies on the notion of independent

actions. Two actions are said to be independent, if whenever they are enabled, they

can be fired in both orders and the firing of one of them does not inhibit the occurrence

of the other. Moreover, their firing in both orders leads to the same state. Both of these

conditions constitute the well known diamond property.

Each of the partial order reduction methods above provides sufficient conditions

that ensure, at least, preservation of deadlocks markings (i.e., markings with no en-

abled transitions). Thus, the set ST of the selected transitions or steps is only empty

for the deadlock markings. The other sufficient conditions are generally based on the

structure of the model, the property to be verified and the current marking. Their aim

1 Two firing sequences are equivalent w.r.t. some property, if they cannot be distinguished by the prop-

erty.
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is to ensure independency between transitions of ST and the others. Indeed, for the

ample sets method [10,11], there is no transition outside ST that is firable before

all transitions of ST and, at the same time, is dependent of at least a transition of

ST . For the stubborn sets method [13–15], ST contains at least an enabled transition

that cannot be disabled by the transitions outside ST and each of its transitions t is

independent of all transitions outside ST that are firable before t. The persistent sets

method [7] is a particular case of the stubborn sets method, where all transitions of

ST are enabled.

For the covering-steps graph method [18], the set of steps to be fired from each

marking must cover the set of enabled transitions. To achieve more reductions, in

[12], the authors have combined this technique with the persistent sets method. This

combination consists to firstly compute a persistent set for the current marking and

then look for firing steps within this persistent set. For these approaches, the transi-

tions within the same step are neither in weak-conflict2 nor in structural conflict with

the partially enabled transitions.

This paper deals with the persistent sets and the step graph methods. To take

advantage of the strengths of each method, it investigates their combination and pro-

poses persistent-step sets method. Persistent step sets method is a parametric combi-

nation of persistent sets with step graphs that allows to fix, for each marking, the set

of transitions S to be covered by the selected steps and then to control their maximal

length and number. Depending on the parameter S, it computes covering-steps [18],

persistent sets [7], persistent step sets [12] or other combinations of both methods.

Furthermore, this paper establishes weaker sufficient conditions to build persistent

sets.

The rest of the paper is organised as follows. Section 2 fixes some classical defini-

tions and notations used throughout the paper. Section 3 presents the strong-persistent

sets [12,7], the weak-persistent sets (a weaker version of the strong-persistent sets)

and the step graph methods, while pointing out their weaknesses. Section 4 pro-

vides a formal definition of persistent step sets and proves that they yield graphs

preserving deadlocks of Petri nets. Section 5 establishes two parametric computation

procedures of persistent step sets (Algorithm 1 and Algorithm 2) that are based on

strong-persistent sets and weak-persistent sets, respectively. Section 6 presents some

experimental results of Algorithm 1 and its comparison with the tool TINA3. Section

7 shows how to weaken the sufficient conditions used to build strong persistent sets,

while preserving deadlocks of Petri nets. It also reports some results of experimental

comparison of the algorithms proposed in this paper. Conclusions are presented in

Section 8.

2 Preliminaries

Let P be a nonempty set. A multi-set over P is a function M : P −→ N, N being the

set of natural numbers, defined also by the linear combination over P :
∑

p∈P

M(p)×p.

2 The (structural) weak-conflict relation is the transitive closure of the (structural) conflict relation.
3 http://projects.laas.fr/tina//home.php.
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We denote by PMS and 0 the set of all multi-sets over P and the empty multi-set,

respectively. Operations on multi-sets are defined as usual. Notice that any subset

X ⊆ P can be defined as a multi-set over P : X =
∑

p∈X

1× p.

For X ∈ 2T and Y ⊆ T , we define the operator ⊗ by:

X ⊗ Y = {x ∪ {y} | x ∈ X ∧ y ∈ Y } and ⊗Y = ∅ ⊗ Y = {{y} |y ∈ Y }.

An ordinary Petri net (PN in short) is a tuple PN = (P, T, pre, post) where:

– P and T are finite and nonempty sets of places and transitions with P ∩ T = ∅,

– pre and post are the backward and forward incidence functions over the set of

transitions T (pre, post : T −→ 2P ).

For t ∈ T, pre(t) and post(t) are the sets of input and output places of t, denoted

also by •t and t•, respectively. Similarly, the sets of input and output transitions of

a place p ∈ P are defined by •p = {t ∈ T | p ∈ t•} and p• = {t ∈ T | p ∈ •t},

respectively.

Two transitions t and t′ are in structural conflict, denoted by t ⊥ t′ iff pre(t) ∩
pre(t′) 6= ∅. We denote by CFS(t) = {t′ ∈ T |t ⊥ t′} = (•t)• the set of transitions

in structural conflict with t. They are in structural weak-conflict iff t ⊥∗ t′, where

⊥∗ is the transitive closure of ⊥. We denote by CFS∗(t) = {t′ ∈ T |t ⊥∗ t′} the

set of transitions in structural weak-conflict with t. Notice that t ∈ CFS(t) and

CFS(t) ⊆ CFS∗(t).
A marking of an ordinary Petri net indicates the distribution of tokens over its

places. It is defined as a multi-set over places. A marked PN is a pair N = (PN,M0),
where PN is an ordinary Petri net and M0 ∈ PMS is its initial marking. Starting from

its initial marking, PN evolves by firing enabled transitions. For the following, we fix

a marked PN N , a marking M ∈ PMS and a transition t ∈ T of N .

The transition t is enabled at M , denoted by M [t〉 iff all the required tokens for

firing t are present in M , i.e., M ≥ pre(t). The transition t is partially enabled in

M iff t is not enabled in M and, at least, one of its input places is marked. In case

t is enabled at M , its firing leads to the marking M ′ = M − pre(t) + post(t). The

notation M [t〉M ′ means that t is enabled at M and M ′ is the marking reached from

M by t. We denote by En(M) the set of transitions enabled at M , i.e., En(M) =
{t ∈ T | M ≥ pre(t)}. The marking M is a deadlock iff En(M) = ∅.

For any subset X ⊆ T of transitions. We denote by Ω(X) the sets of all finite and

infinite sequences of transitions over X including the empty sequence ǫ. A sequence

ω ∈ Ω(X) is elementary if the occurrence of each transition in the sequence does not

exceed 1. For any non-empty sequence of transitions ω = t1t2...tn ∈ Ω(T ) − {ǫ},

the usual notation M [t1t2...tn〉 means that there exist markings M1, ...,Mn such that

M1 = M andMi[ti〉Mi+1, for i ∈ [1, n−1] andMn[tn〉. The sequenceω is said to be

a firing sequence of M . The notation M [t1t2...tn〉M ′ gives, in addition, the marking

reached by the sequence. The marking M ′ is said to be reachable from M by ω. By

convention, we have M [ǫ〉M . We denote by
−→
M the set of markings reachable from

M , i.e.,
−→
M = {M ′ ∈ PMS |∃ω ∈ Ω(T ),M [ω〉M ′}.

A firing sequence ω of M is maximal if either it is infinite or it is finite and

ends with a deadlock marking. Two sequences of transitions ω and ω′ are equivalent,
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denoted by ω ≡ ω′ iff they are identical or each one can be obtained from the other by

a series of permutations of transitions. If ω ≡ ω′ then ∀M ′,M ′′ ∈ PMS , (M [ω〉M ′∧
M [ω′〉M ′′) ⇒ M ′ = M ′′. We denote by [ω] the set of transitions in ω. The firing

sequences of N are the firing sequences of its initial marking.

The different possible evolutions of N are represented in a marking graph MG

defined by the structure MG = (
−→
M0, [〉,M0). Let n be a natural number. The marked

PN N is n-bounded iff for every reachable marking of M0, the number of tokens in

each place does not exceed n. It is safe iff it is 1-bounded. It is bounded iff it is

k-bounded for some natural number k.

A firing step τ of N is a non-empty subset of transitions (τ ⊆ T ) fired si-

multaneously and atomically from a marking of N . From an interleaving seman-

tic point of view, it represents an abstraction of all firing orders of its transitions.

For instance, τ = {t1, t2, t3} represents the following six sequences: t1t2t3, t1t3t2,

t2t1t3 , t2t3t1, t3t1t2 and t3t2t1. The intermediate markings are abstracted to keep

only the markings before and after the firing step. Let M ∈ PMS be a marking and

τ ⊆ T a firing step of N . The firing step τ is enabled in M , denoted by M [τ〉 iff

M ≥
∑

t∈τ

pre(t), which means that there are enough tokens to fire concurrently all

the transitions within the step. If τ is enabled in M , its firing leads to the marking

M ′ = M +
∑

t∈τ

(post(t) − pre(t)). The notation M [τ〉M ′ means that τ is enabled at

M and M ′ is the marking reached from M by τ . We denote by EnS(M) the set of

all enabled steps in M , i.e., EnS(M) = {τ ⊆ T |M ≥
∑

t∈τ

pre(t)}. The firing step τ

is maximal in M iff it is maximal for the inclusion in EnS(M), i.e., M ≥
∑

t∈τ

pre(t)

and ∀t′ ∈ En(M)− τ,M 6≥ pre(t′) +
∑

t∈τ

pre(t).

A step graph of N is a structure SG = (MM,R,M0), where MM ⊆
−→
M0 is a

subset of reachable markings, M0 is the initial marking and R ⊆ MM × 2T ×MM

is the relation defined by (M, τ,M ′) ∈ R ⇒ M [τ〉M ′.

For the rest of paper, we fix an ordinary Petri net N = (P, T, pre, post,M0).

3 Persistent sets and step graphs

3.1 Strong-persistent sets

Let M be a marking. Informally, a persistent set of M is a subset µ of enabled tran-

sitions such that no transition of µ can be disabled, as long as no transition of µ is

fired [7,12]. A persistent graph is obtained by recursively firing from each marking a

persistent set. Persistent graphs preserve deadlocks of Petri nets [12].

However, this strong definition of persistent sets can be weakened while preserv-

ing deadlocks of Petri nets. The idea comes from the stubborn sets [15]. But unlike

the stubborn sets, all the transitions inside a persistent set are enabled. To distinguish

between the two definitions of persistent sets, the persistent sets of [7,12] are referred

as strong-persistent sets. The others are referred as weak-persistent sets.
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Definition 1 Let M be a marking and µ ⊆ En(M) a subset of enabled transitions.

Formally, the subset µ is a strong-persistent set of M , if all the following conditions

are satisfied:

– D0 : En(M) 6= ∅ ⇔ µ 6= ∅.

– D1 : ∀t ∈ µ, ∀ω ∈ Ω(T − µ),M [ω〉 ⇒ M [ωt〉.
– D2 : ∀t ∈ µ, ∀ω ∈ Ω(T − µ),M [ωt〉 ⇒ M [tω〉.

The subset µ is a weak-persistent set of M , if it satisfies all the following conditions:

– D0: En(M) 6= ∅ ⇔ µ 6= ∅.

– D1w: ∃t ∈ µ, ∀ω ∈ Ω(T − µ),M [ω〉 ⇒ M [ωt〉.
– D2: ∀t ∈ µ, ∀ω ∈ Ω(T − µ),M [ωt〉 ⇒ M [tω〉.

Intuitively, Condition D0 ensures that a strong/weak-persistent set of M is empty

only if M is a deadlock. Conditions D1w means that there is at least a transition

inside µ that is maintained enabled as long as no transition of µ is fired. Conditions

D1 states that all transitions of µ are maintained enabled as long as no transition of

µ is fired. Condition D2 means that if some sequence ω with no transition from µ is

firable before any transition t of µ, then it is also firable after t.

The transitions of µ that satisfy D1w are called the key-transitions of µ [15]. Note

that the strong-persistent sets contains only key-transitions. A strong/weak-persistent

selective search from M0
4 preserves all deadlock markings of Petri nets [16] (written,

abusively, the strong/weak-persistent sets preserve deadlocks).

In the following, we investigate the combination of the strong/weak-persistent

sets with the step graphs.

p1 p2 p3

p4 p5 p6 p7 p8 p9

t1 t2 t3 t4 t5 t6

• • •

Fig. 1 Model PN1

M0

M7

M8 M9

M10

M11
M14

M12 M13

{t1, t3, t5}

{t1, t3, t6}

{t1, t4, t5}

{t1, t4, t6}

{t2, t3, t5}

{t2, t3, t6}

{t2, t4, t5}

{t2, t4, t6}

Fig. 2 A step graph of PN1

3.2 Step graphs

The aim of the step graph methods is to represent by a single path a largest possible

set of equivalent maximal firing sequences of the model, by choosing appropriately,

from each marking, the transitions to be fired together in steps. All transitions of the

equivalent sequences are represented in the path but the concurrent ones are grouped

together in steps. Step graphs allow to reduce the path depths of the marking graph.

4 A strong/weak-persistent selective search of the Petri net is a procedure that recursively computes a

strong/weak-persistent set and the successor markings reachable by the transitions of this set, for the initial

marking and each new computed marking.
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M0M1 M2M3 M6

M4 M5

M7

M8

M9 M10 M11 M12

M13

M14

t1

t2

t3

t4 t3

t4

t5

t6

t5
t6 t5

t6

t5 t6

Fig. 3 A persistent set graph of PN1

M0M3

M4 M5

M6

M7

M8

M9

M10

M11

M12

M13

M14

{t1, t4}

{t2, t3}

{t2, t4}

{t5}

{t6}

{t5}

{t6}

{t5}

{t6}

{t5}{t6}

{t1, t3}

Fig. 4 A persistent step graph of PN1

However, in case there are several sets of transitions that are independent from

each other, the number of steps and their lengths may be very large. For example,

consider the model PN1 at Fig.1. Its marking graph consists of 27 nodes and 54 arcs.

Its initial marking M0 has 3 strong-persistent sets that are independent from each

other: {t1, t2}, {t3, t4} and {t5, t6}. A strong-persistent graph of PN1 is shown in

Fig.3. Note that there are different strong-persistent graphs but they have all the same

size (24 − 1 = 15 nodes and 15 − 1 = 14 arcs). Using the 3 independent strong-

persistent sets of M0, steps can be built by picking a transition from each strong-

persistent set. Its step graph is shown in Fig.2 and consists of 9 = 23+1 nodes, 8 = 23

arcs and 23 maximal steps. It is a covering-steps graph, as the set of steps selected

from each marking covers all its enabled transitions. But, the number of successors of

the initial marking exceeds the number of enabled transitions and is exponential with

the number of independent strong-persistent sets. Even if the covering-steps graph is

smaller than the persistent graph, the number of maximal steps and their lengths may

be very large, which limits the usefulness of the step graph method.

To take advantage of the strengths of each method, the persistent sets and step

graphs are combined in [12]. The idea is to compute a strong-persistent set and then

determine the transitions within this set to be fired together in steps. As an example,

for the strong-persistent set {t1, t2, t3, t4} of the initial marking M0, we can build 4
steps: {t1, t3}, {t1, t4}, {t2, t3} and {t2, t4}. The resulting reduced graph is reported

in Fig.4 and consists of 13 nodes and 12 arcs. This combination allows to control

the number and the length of the steps to be considered from each marking, while

yielding a graph that is larger than the step graph but smaller than the persistent

graph.

4 Persistent step sets

We first define the notion of persistent step sets. Then, we show that the resulting

graphs preserve deadlock markings of Petri nets.

Definition 2 Let M be a marking and µi ⊆ T , for some n > 0 and i ∈ [1, n], n
subsets of enabled transitions pairwise disjunct, i.e., µi ∩ µj = ∅ for i 6= j ∈ [1, n].
Let µ =

⋃

i∈[1,n]

µi and SS = (⊗µ1)⊗ ...⊗ µn.

The set SS is a strong-persistent step set if it satisfies all the following conditions:
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– DS0: En(M) 6= ∅ ⇔ µ 6= ∅.
– DS1: ∀i ∈ [1, n], ∀t ∈ µi, ∀ω ∈ Ω(T − µi),M [ω〉 ⇒ M [ωt〉.
– DS2: ∀i ∈ [1, n], ∀t ∈ µi, ∀ω ∈ Ω(T − µi),M [ωt〉 ⇒ M [tω〉.

Similarly, the set SS is a weak-persistent step set if it satisfies all the following con-

ditions:

– DS0: En(M) 6= ∅ ⇔ µ 6= ∅.
– DSw1: ∀i ∈ [1, n], ∃t ∈ µi, ∀ω ∈ Ω(T − µi),M [ω〉 ⇒ M [ωt〉.
– DS2: ∀i ∈ [1, n], ∀t ∈ µi, ∀ω ∈ Ω(T − µi),M [ωt〉 ⇒ M [tω〉.

In other words, SS is a sort of cartesian product of pairwise disjunct strong/weak-

persistent sets. Note that if SS = ⊗{t1, ..., tn} = {{t1}, ..., {tn}} is a strong/weak-

persistent step set then µ = {t1, ..., tn} is a strong/weak-persistent set.

Example 1 Consider the model PN1 at Fig.1.

– The set µ = {t1, t2, t3} is a weak-persistent set but not a strong-persistent set of

the initial marking M0 = p1 + p2 + p3, as it satisfies D0, D1w and D2 but it

does not satisfy D1. There are two key-transitions in µ: t1 and t2.

– The step set SS = (⊗{t1, t2}) ⊗ {t3} = {{t1, t3}, {t2, t3}} is not a persistent

step set of M0, as it does not satisfy ConditionDS1 for {t3}. Indeed, t4 ∈ Ω(T−
{t3}), we have M0[t4t1〉 and ¬M0[t4t1t3}〉.

Theorem 1 Strong/weak persistent step sets preserve deadlocks of the Petri net.

Proof As a strong-persistent set is a weak-persistent set, we provide the proof for weak-persistent sets.

It is obvious that all deadlocks reachable by the weak-persistent step selective search from M0 are also

reachable in the Petri net. Let M be a marking reached in a weak-persistent step selective search from

M0
5 and D a deadlock marking reachable from M in the Petri net. Let us show that D is also reached

by the weak-persistent step selective search from M0. The marking M is reachable in the Petri net. Let ω
be a firing sequence leading to the marking D from M in the Petri net. The proof is by induction on the

length of ω.

a) If ω = ǫ then M = D.

b) If ω = t and {t} ∈ SS then D is reached by the persistent step selective search.

c) If ω = t and {t} /∈ SS then, by DSw1, D is not a deadlock marking as there is, at least, a transition

from µ that is firable after t, which is in contradiction with the fact that D is a deadlock.

Suppose that Theorem 1 holds for any marking M ′ (reachable in the weak-persistent step set selective

search) and D is reachable from M ′ by a sequence ω′ such that |ω′| < |ω|.

– If there is no step of SS (scattered or not) in ω (i.e., ω is free from all transitions of some µi), then,

by DSw1, there is, at least, a missed transition of a step that is firable after ω. It means that D has, at

least, a successor, which is in contradiction with the fact that D is a deadlock.

– If there is, at least a step τ of SS, scattered or not, in ω, then, by DS2 the transitions of this step can

be shifted to the front to constitute a step firable from M , as the sets µi for i ∈ [1, n] are pairwise

disjunct. Firing this step from M leads to some marking M ′ that is reachable by the weak-persistent

step selective search. Moreover, D is reachable from M ′, in the Petri net, by some sequence ω′ s.t.

|ω′| < |ω|. Therefore, D is reachable by the weak-persistent step selective search from M0.

⊓⊔

5 A persistent step selective search from M0 is a procedure that recursively computes a persistent step

set and the successor markings reachable by these steps, for the initial marking and each new computed

marking.
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5 Parametric combination of persistent sets with step graphs

We propose, in the following, two parametric selection algorithms of persistent step

sets, based on strong-persistent sets and weak-persistent sets, respectively.

For a given markingM and a subset S of transitions enabled inM (S ⊆ En(M)),
the idea is to compute a persistent step set that covers, at least, the transitions of S.

Unlike, the approach proposed in [12], the set S is not necessarily a strong-persistent

set. As we will show, according to the parameter S, the provided persistent step set

is either a strong/weak-persistent set, a covering-step set or a set of steps that covers

partially the enabled transitions inM . We suppose available two proceduresSPS and

WPS that compute a strong-persistent set and a weak-persistent set, respectively, tor

a given marking M and a transition t enabled in M .

5.1 Computing strong-persistent step sets

A computation procedure of strong-persistent step sets is provided in Algorithm 1.

For a given marking M and a set of enabled transitions S ⊆ En(M), Algorithm 1

returns a set of steps firable from M . The parameter S allows to specify the set of

enabled transitions that must be, at least, covered by the set of steps.

The computed set of steps is a sort of product of some disjoint strong-persistent

sets. The first term of the product is R = SPS(t,M), where t is chosen randomly in

S′ (a copy of S). Afterwards, the transitions of R are deleted from S′ to ensure that

the next terms are disjoints from those computed so far. If the resulting set S′ is not

empty, then the same process is repeated to compute the next term of the product, and

so on. Theorem 2 establishes that the returned set of steps is a strong-persistent step

set.

Algorithm 1 Strong-persistent step set of a marking M covering the transitions of S

1: Input : A marking M and a subset S of enabled transitions such that S 6= ∅;

2: Output : A strong-persistent step set SS of M w.r.t. S;

3: SS := ∅; S′ := S;

4: while (S′ 6= ∅) do

5: Choose t ∈ S′;

6: R := SPS(t,M);
7: S′ := S′ − R;

8: SS := SS ⊗R;

9: end while

10: return SS;
11: [For X ∈ 2T and Y ⊆ T , X ⊗ Y = {x ∪ {y} | x ∈ X ∧ y ∈ Y } and ∅ ⊗ Y = {{y} |y ∈ Y }]

Example 2 Consider the initial marking M0 of the model PN1 at Fig.1.

– For S = {t1, t2, t3}, Algorithm 1 computes SS as follows. It starts by setting SS

and S′ to ∅ and {t1, t2, t3}, respectively. If t1 of S′ is the first transition selected

in the loop while, then R = SPS(t1,M0) = {t1, t2}, S′ = S′ − R = {t3}
and SS = ∅ ⊗ R = {{t1}, {t2}}. For the second iteration, t3 is selected then
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R = SPS(t3,M0) = {t3, t4}, S′ = S′ − R = ∅ and SS = SS ⊗ {t3, t4} =
{{t1, t3}, {t1, t4}, {t2, t3}, {t2, t4}}. Algorithm 1 returns SS.

– For M0 and S = En(M0), Algorithm 1 returns the set:

SS = ({{t1}, {t2}} ⊗ {{t3, t4}})⊗ {{t5, t6}}.

Indeed, initially, we have S′ = S = En(M0). The loop while will perform suc-

cessively the following updates of R, S′ and SS, for the case where the selected

transitions are successively t1, t3 and t5:

For t1: R = {t1, t2}, S′ = {t3, t4, t5, t6} and SS = {{t1}, {t2}}.

For t3: R = {t3, t4}, S′ = {t5, t6} and SS = SS ×R.

For t5: R = {t5, t6}, S′ = ∅ and then

Then, SS = ({{t1}, {t2}} ⊗ {t3, t4}) ⊗ {t5, t6}. Note that in this case, SS is a

covering-step set.

– For M0 and S′ = S = {t1, t2}, Algorithm 1 returns SS = {{t1}, {t2}}, as the

transitions of S are all key-transitions (i.e., SPS(t1,M0) = SPS(t2,M0) = S).

If t1 (or t2) is selected first then R = SPS(t1,M0) = {t1, t2}, S′ = S′−R = ∅
and SS = {{t1}, {t2}}.

Theorem 2 Algorithm 1 returns a set of steps that satisfies both DS1 and DS2 of

the strong-persistent step sets.

Proof Suppose that n (n > 0) iterations are needed to complete the loop while of Algorithm 1. During

the ith iteration (for i ∈ [1, n]), a transition t(i) is selected from S′(i) and R(i) = SPS(t(i),M). The

set R(i) is a strong-persistent set, which means that all its transitions are keys. Therefore, it holds that:

∀i ∈ [1, n],∀t(i) ∈ R(i),∀ω ∈ Ω(T −R(i)),M [ω〉 ⇒ M [ωt(i)〉 ∧M [t(i)ω〉.
Consequently, SS satisfies DS1 and DS2. ⊓⊔

5.2 Computing weak-persistent step sets

To achieve further reductions, Algorithm 2 computes, in SS, a product of some pair-

wise disjunct weak-persistent sets, instead of strong-persistent sets. Unlike disjunct

strong-persistent sets, the product of disjunct weak-persistent sets may contain some

non enabled steps. These steps are deleted from SS to keep only the enabled ones.

According to Theorem 3, SS is a weak-persistent step set.

Algorithm 2 Weak-persistent-step set of a marking M covering the transitions of S

1: Input : A marking M and a subset S of enabled transitions such that S 6= ∅;

2: Output : A weak-persistent step set SS of M w.r.t. S;

3: SS := ∅; S′ := S; R′ := ∅;

4: while (∃t ∈ S′ s.t. WPS(t,M) ∩ R′ = ∅) do

5: Choose t ∈ S′ s.t. WPS(t,M) ∩ R′ = ∅;

6: R := WPS(t,M);
7: S′ := S′ − R;

8: R′ := R′ ∪ R;

9: SS := SS ⊗R;

10: end while

11: return SS ∩ EnS(M);
12: [For X ∈ 2T and Y ⊆ T , X ⊗ Y = {x ∪ {y} | x ∈ X ∧ y ∈ Y } and ∅ ⊗ Y = {{y} |y ∈ Y }]
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Fig. 6 WCSG: Covering-steps graph of PN2 (us-

ing Algorithm 2)
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Fig. 7 SCSG: Covering-steps graph of PN2 (using the tool TINA)

Example 3 Consider the model PN2 at Fig.5 and its initial marking M0.

For S = {t0, t1, t2, t3}, Algorithm 2 first sets SS, S′ and R′ to ∅, {t0, t1, t2, t3}
and ∅, respectively. Then, if t0 of S′ is the first transition selected in the loop while

on S′, then R = WPS(t0,M0) = {t0, t1}, S′ = S′ − R = {t2, t3}, SS = ∅ ⊗
R = {{t0}, {t1}} and R′ = R′ ∪ {t0, t1}. For the second iteration, t3 is selected,

as: WPS(t2,M0) ∩ R′ = {t1} and WPS(t3,M0) ∩ R′ = ∅. Therefore, R =
WPS(t3,M0) = {t2, t3}, S′ = S′ −R = ∅ and

SS = SS ⊗ {t2, t3} = {{t0, t2}, {t0, t3}, {t1, t2}, {t1, t3}}.

Finally, Algorithm 2 returns SS ∩ EnS(M0), i.e., {{t0, t2}, {t0, t3}, {t1, t3}}. The

step {t1, t2} is eliminated as it is not enabled in M0.

Theorem 3 Algorithm 2 returns a set of steps that satisfies conditions DSw1 and

DS2 of the weak-persistent sets.

Proof SS is a product of some pairwise disjunct persistent sets.

Suppose that SS = R(1) ⊗ R(2)....⊗R(n) with (n > 0).
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Then, (i) ∀i ∈ [1, n],∃t(i) ∈ R(i),∀ω ∈ Ω(T − R(i)),M [ω〉 ⇒ M [ωt(i)〉 and

(ii) ∀i ∈ [1, n],∀t(i) ∈ R(i), ∀ω ∈ Ω(T −R(i)),M [ωt(i)〉 ⇒ M [t(i)ω〉. Condition (i) is satisfied for

the key-transitions of each weak-persistent set. The step consisting of key-transitions of weak-persistent set

is enabled in M . Eliminating the non enabled steps does not affect the validity of Condition (i). Condition

(ii) is satisfied too as the eliminated steps are not enabled in M . Consequently, SS ∩ EnS(M) satisfies

DSw1 and D2. ⊓⊔
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Fig. 8 Model PN3(k): A flexible manufacturing system (with deadlocks) taken from [3]

Example 4 For the model PN2 at Fig.5, the graphs depicted at Fig.6 and Fig.7 are

obtained using the step selection Algorithm 2 and the tool TINA, respectively for the

case where all the enabled transitions are covered from each marking. The graph at

Fig.6 is a covering-steps graph obtained by recursively applying Algorithm 2 to the

initial marking and each new computed marking. The step selective algorithms are

always invoked for a marking M and S = En(M).
Let us apply, Algorithm 1 to the initial marking M0 for S = En(M0). It starts

by SS = ∅, S′ = S = {t0, t1, t2, t3}. If t0 of S′ is the first transition selected in the

loop while on S′, then R is set to SPS(t0,M0) = {t0, t1, t2, t3} and S′ to ∅. Then,

Algorithm 1 returns SS = ∅ ⊗R = {{t0}, {t1}, {t2}, {t3}}.

Note that for M0 and S = En(M0), Algorithm 2 returns the covering-step set

SS = {{t0, t2}, {t0, t3}, {t1, t3}} (see Example 3).

In this section, two parametric algorithms are presented for computing strong/weak-

persistent step sets. They allow to specify, for each marking M , the subset S of en-

abled transitions to be covered by the set of steps. For S = En(M), all the enabled

transitions are covered by the provided steps, as for the covering-steps graphs. For

S = SPS(t,M), the realised combination corresponds to the one proposed in [12]

for building persistent step graphs. In case the parameter S is a singleton then Al-

gorithm 1 (resp. Algorithm 2) provides a set of singletons whose union is a strong
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(resp. weak) persistent set. Therefore, these algorithms allows to compute not only

persistent step sets but also strong/weak-persistent sets.

Another feature of these algorithms is the possibility to control the number of

steps by fixing the dimension of the cartesian product of the strong/weak-persistent

sets. Indeed, the loops while in algorithms 1 and 2 can be, in addition, constrained

by a given number of iterations or an appropriate number of steps. It is also possible

to restrict the Cartesian product of strong/weak-persistent sets to singletons, except

for one of them. More precisely, Line 9 of Algorithm 2 (Line 8 of Algorithm 1) is

replaced with: if(SS = ∅∨|R| = 1) then SS := SS⊗R. This modification allows to

limit the number of steps and, at the same time, the redundancy of transitions between

steps. These variants of algorithms 1 and 2 provide persistent step sets.

6 Experimental results

We have implemented and tested algorithms 1 and 2 on several ordinary Petri Nets

and models derived from Petri nets at Fig.5, Fig.8 and Fig.9.

The model ‖n PN2 is a simple parallel composition of n instances of the model

PN2 at Fig.5. The model ‖n PN3(k) is a parallel composition of n instances of

PN3(k) at Fig.8, where the place p2 of the ith instance of PN3(k) is merged with

the place p1 of the (i+1)th instance, for i ∈ [1, n−1]. Finally, the model ‖n PN4(k)
is a parallel composition of n instances of PN4(k) at Fig.9, where the place p31 of

the ith instance of PN4 is merged with the place p11 of the (i + 1)th instance,

for i ∈ [1, n − 1]. The last two models are Petri net representations of two flexible

manufacturing systems. The first one is either free from deadlocks or not, depending

on parameter k. The second one is free from deadlocks.

For these tests, the strong-persistent is computed using algorithms 3. This algo-

rithm is based on the stubborn sets method [16]. Given a marking M and an enabled

transition t, it starts by setting S to the singleton {t}. For each enabled transition t′

within S, it adds to S the transitions in structural conflict with t′. For each non en-

abled transition t′ within S, Algorithm 3 adds to S the input transitions of all the non

marked input places of t′. This step ensures that, at the end of the process, for each

non enabled transition t′ in S, there is in S at least an enabled transition that must

be fired before t′. This process is repeated until reaching a fixed point. Finally, the

non enabled transitions are eliminated to obtain a strong-persistent set that satisfies

conditions D0, D1 and D2 [16].

Table 1 is devoted to the comparison of the covering-steps and persistent set meth-

ods. It reports the sizes of the marking graph (MG), the covering-steps graphs (CSG,

SCSG), the persistent graphs (PG, SPG) and the persistent step graph (PSG) for the

three models described above. The CSG is the covering-steps graph provided by the

tool TINA. The SCSG is the covering-steps graph computed using algorithms 1 and

36, for the case where all the enabled transitions are covered from each marking (i.e.,

S = En(M)). The PG is the persistent graph provided by the tool TINA. The SPG

is the persistent graph computed using algorithms 1 and 3 for the case where S is a

6 Algorithm 3 is used for SPS(t,M).
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Algorithm 3 SPS(t,M) : A strong-persistent set of the marking M containing, at

least, the transition t
1: Input : A marking M and a transition t enabled in M ;

2: Output : A strong-persistent set S of M for t;
3: S = {t};

4: repeat

5: S′ := S;

6: for (t′ ∈ S) do

7: if (t′ /∈ En(M)) then

8: S := S ∪ {p ∈ •t′ | p ∈ •t′ ∧M(p) = 0};

9: else

10: S := S ∪ CFS(t′);
11: end if

12: end for

13: until (S = S′)

14: S := S ∩En(M);
15: return S;

singleton. The PSG combines the persistent sets with the step graph methods and is

provided by the tool TINA. The last column reports the number of deadlock mark-

ings. For all tested models, the SCSG and SPG provide better results than the CSG,

PG and PSG generated by the tool TINA. This improvement increases with the size

of the models. Furthermore, the persistent sets methods outperform the covering-

steps methods for the tested models. However, their combination outperforms the

both methods. To achieve further reductions, the next section presents an algorithm

for computing the weak-persistent sets to be used by Algorithm 2.

7 Towards weaker persistent sets

To our knowledge, in almost all partial order approaches, if an enabled transition

is selected then all the enabled transitions in weak-conflict are selected too. In the

following, we show how to weaken the selection procedure to handle, in a better way,

the weak-conflicts for a subclass of ordinary Petri nets. This subclass excludes all

impure ordinary Petri nets 7. It is known that each impure Petri net can be transformed

into a pure Petri net with the same behaviour, by adding appropriate dummy places

and transitions [5]. Another restriction is to keep only pure ordinary Petri nets such

that if a transition is enabled in some marking then, at most, one instance of each

transition contributes to this enabledness. A structural sufficient condition for this

property can be stated as: two or more input places (p1, p2, ...) of the same transition

t cannot be reached from two or more output transitions (t1, t2, ...) of the same place

p. If this property is not satisfied for some transition t and place p then all tokens that

reach p could be transferred to the same input place of t leading to a dead transition

or an unbounded place. Petri nets that do not satisfy this property are considered as

7 An impure Petri net is a Petri net with one or more self-loops (i.e., place in the net, which is both an

input and output place of the same transition).
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Table 1 Experimental results for Algorithm 1 vs TINA

MG CSG SCSG PG SPG PSG Dead

TINA Alg.1&3 TINA Alg.3 TINA

S = En(M) (Alg.1&3
|S| = 1)

‖4 PN2

Markings 160000 23138 1569 6905 226 6737 16

Edges 1024000 71801 2848 11048 285 10880

CPU (s) 2 0.5 0 0 0 0

‖5 PN2

Markings 265640 8833 48361 466 47681 32

Edges > 3000000 952997 16576 80488 589 79808

CPU (s) 3 0 0.3 0 0.3

‖6 PN2

Markings 50817 333417 946 330689 64

Edges > 3000000 > 3000000 97408 570792 1197 568064

CPU (s) 0.4 2.5 0 3.2

‖2 PN3(5)
Markings 403998 89714 50196 7853 54709 31

Edges > 3000000 2579317 635090 114242 13580 138382

CPU (s) 12.2 5.5 0.4 0 0.6

‖3 PN3(2)
Markings 368905 359824 119605 101486 25775 101482 9

Edges 2623520 2221255 672509 263007 50509 266696

CPU (s) 7 9.5 9.3 1 0.3 1.2

‖3 PN3(3)
Markings 1051463 115391 1068339 16

Edges > 3000000 > 3000000 > 3000000 2676615 220535 2868287

CPU (s) 13.2 3.2 18

‖1 PN4(5)
Markings 1251 1063 76 83 51 83 0

Edges 6526 3795 272 156 84 156

CPU (s) 0 0 0 0 0 0

‖2 PN4(5)
Markings 5109 3909 837 3909 0

Edges > 3000000 > 3000000 32836 8568 1512 8568

CPU (s) 0 0 0 0

‖3 PN4(5)
Markings 143959 10935 143959 0

Edges > 3000000 > 3000000 > 3000000 331668 20412 331668

CPU (s) 1.7 0.4 2.3

not well-handled8 in [17]. In this paper, we call the subclass of Petri nets that satisfy

this property as well-handled Petri nets.

Given a marking M and an enabled transition t in M , in Algorithm 3, t is first

selected and if an enabled transition t′ is selected then all the enabled transitions

in weak-conflict with t′ are selected too. We propose in Algorithm 4 to limit this

selection to transitions in conflict t′ that are not enabled in M or their firing may

disable t′ and enable it again later. Theorem 4 shows with this restrictive selection

the returned set S satisfies both conditions Dw1 and D2 of the weak-persistent sets.

To preserve all deadlocks of Petri nets, it suffices to ensure that Condition D0 is also

satisfied. Condition D0 is satisfied if Algorithm 4 is called for each non deadlock

marking reachable from the initial marking M0, by the persistent set selective search.

For example, for the model PN4 at Fig.9 and its initial marking M0, no matter

which transition is selected first, Algorithm 3 will select all the enabled transitions

in M0. For M0 and transition t11, Algorithm 4 will select the transitions t11 and

t21. Indeed, at Line 3, S is set to CFS(t11) = {t11, t21}. For t11, the loop for

will not add any transition to S, as all transitions of CFS(t11) are already in S

and enabled. For t21, the transition t24 is the only transition, outside S, in structural

conflict with t21. This transition is enabled in M0 and connected to t21 by a path but

8 A Petri net is well-handled iff, for any pair of nodes x and y such that one of the nodes is a place and

the other a transition and for any pair of elementary paths C1 and C2 leading from x to y, nodes(C1) ∩
nodes(C2) = {x, y} ⇒ C1 = C2, where nodes(C) is the set of nodes in the path C [17].
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its firing does not disable t21. Thus, it is not selected. Suppose that t21 is disabled

later by another occurrence of t24 and enabled again after some non-empty firing

sequence (as the model is a pure Petri net). The transitions that contribute to its new

enabledness constitute an elementary sequence ω (as the model is a well-handled

Petri net). Therefore, at most one instance of t24 contributes to the new enabledness

of t21. The sequence t24ω can be fired before other instances of t24 to prevent the

disabledness of t21. This results in an equivalent sequence that maintains t21 enabled

until its firing. This is the intuitive idea behind Algorithm 3. The resulting persistent

graph is shown in Fig.10. Note that firing t11 or t21 from M0 will disable neither t24
nor t31. These transitions are maintained enabled as long as the fired transitions are

enabled directly/indirectly by t11 or t21. Their firings are postponed indefinitely in

favour of t11, t21 and the transitions they will enable directly/indirectly.

Algorithm 4 WPS(t,M) : A weak-persistent set of the marking M where t is a

key-transition

1: Input : A marking M and a transition t enabled in M ;

2: Output : A weak-persistent set S of M for t;
3: S := CFS(t);
4: repeat

5: S′ := S;

6: for (t′ ∈ S) do

7: if (t′ /∈ En(M)) then

8: S := S ∪ {•p | p ∈ •t′ ∧M(p) = 0};

9: else

10: for (u ∈ CFS(t′)) do

11: if (u /∈ En(M)∨ (π(u, t′)∧∃p ∈ •t′ ∩•u,
∑

v∈p•∩En(M)

pre(v)(p) > M(p))) then

12: S := S ∪ {u};

13: end if

14: end for

15: end if

16: end for

17: until (S = S′)
18: S := S ∩En(M);
19: return S;
20: [π(u, t′) is true iff there is a path in the Petri net connecting u to t′.]

Theorem 4 Algorithm 4 returns a set that satisfies both conditions D1w and D2 of

the weak-persistent sets for the well-handled Petri nets.

Proof According to Line 3, the set S returned by Algorithm 4 contains CFS(t)∩En(M). Lines 7−8
inside the two loops (repeat and for) ensure that S includes all transitions of En(M) that could enable

directly or indirectly any transition of CFS(t)−En(M). Therefore, S satisfies conditions D1w and D2
of the weak-persistent sets for t. Indeed, the transitions outside S cannot enable any transition in conflict

with t as long as no transition from S is fired.

Let us show that S satisfies D2, i.e., ∀t′ ∈ S,∀ω ∈ Ω(T − S),M [ωt′〉 ⇒ M [t′ω〉.
1- If t′ is not disabled during the firing of ω then M [ωt′〉 ⇒ M [t′ω〉.
2- Otherwise, t′ is disabled by some transition u and enabled again later. Let ω1uω2t′ω3 ≡ ω be a

sequence equivalent to ω such that only the transitions which have a role in the disabledness or in the

enabledness of t′ are kept in ω1uω2. If u ∈ CFS(t′)− En(M) then Algorithm 4 ensures to keep in S
all the enabled transitions that could enable any transition in conflict with t′. It means that there is in ω1
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at least a transition from S, which is in contradiction with ω1 ∈ Ω(T − S). Consequently, all transitions

in ω in conflict with t′ are enabled in M . Let us now consider two cases:

2.1- If each transition of (CFS(t′) ∩ En(M)) − S appears at most one time in the sequence ω1u then

by Algorithm 4, u cannot disable t′. Indeed, Algorithm 4 ensures that firing one instance of each enabled

transition in conflict with t′ before t′ will not disable t′.
2.2- If there is in the sequence ω1u at least a transition v from CFS(t′) ∩ En(M) that appears two or

more times then the other instances of v in ω1 are not needed to enable again t′ but needed to empty some

input places of t′. Indeed, for the subclass of Petri nets considered in this section, at most one instance of

each transition is needed to be fired before the enabledness of a transition. In the worst case, at most one

instance of each transition in ω1u contributes with those of ω2 to enable t′. Thus these extra instances can

be shifted to be fired after t′. In the resulting sequence ω′

1uω2t′ω′

3, the sequence ω2 does not disable t′ if

t′ is not disabled by ω′

1u. This is the case because, each transition of CFS(t′)∩En(M) appears at most

one time in the sequence ω′

1u and by 2.1, firing all transitions of CFS(t′) ∩ En(M) will not disable t′.
Therefore, S satisfies D2.

To sum up S satisfies D1w and D2 for the well-handled Petri nets. ⊓⊔

The comparison results of algorithms 3, 4 and the persistent graph of the tool

TINA are reported in Table 2. As expected, for models with weak-conflicts, Algo-

rithm 4 outperforms the others. For the model ‖n PN4(5), the weak-persistent graph

generated by Algorithm 4 has the same very small size, independently of the number

of instances n of PN4(5). Thus, it is not exaggerated to say that the weak-persistent

sets methods are very promising to fight the state explosion and to address the veri-

fication of very large asynchronous concurrent systems, where the interplay between

concurrency and weak-conflict is expanded. Table 3 shows the comparison results of

the PSG of the tool TINA with the one provided using algorithms 2 and 4. The col-

umn VWPSG is a variant of the WPSG for the case where Line 9 of Algorithm 2

is replaced with: if(SS = ∅ ∨ |R| = 1) then SS := SS ⊗ R. The obtained results

show that the possibility to control the size and number of steps may be very useful

to achieve further reductions.
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Fig. 9 Model PN4(k): A flexible manufacturing system (free from deadlocks)

n this work, we have proposed a new parametric combination of the persistent

sets with step graphs, based on a better understanding of the intricacy of the rela-

tions between concurrency and conflict, revealing local persistency and leading to a

significant reduction.
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Table 2 Experimental results for persistent graphs

PG SPG WPG Dead

TINA Alg.3 Alg.4
(Alg.1&3 (Alg.2&4
|S| = 1) |S| = 1)

‖4 PN2

Markings 6905 226 136 16

Edges 11048 285 150

CPU (s) 0 0 0

‖5 PN2

Markings 48361 466 280 32

Edges 80488 589 310

CPU (s) 0.3 0 0

‖6 PN2

Markings 333417 946 568 64

Edges 570792 1197 630

CPU (s) 2.5 0 0

‖2 PN3(5)
Markings 50196 7853 1514 31

Edges 114242 13580 2353

CPU (s) 0.4 0 0

‖3 PN3(2)
Markings 101486 25775 23409 9

Edges 263007 50509 42423

CPU (s) 1 0.3 0.2

‖3 PN3(3)
Markings 1051463 115391 95356 16

Edges 2676615 220535 165027

CPU (s) 13.2 3.2 0.7

‖1 PN4(5)
Markings 83 51 10 0

Edges 156 84 14

CPU (s) 0 0 0

‖2 PN4(5)
Markings 3909 837 10 0

Edges 8568 1512 14

CPU (s) 0 0 0

‖3 PN4(5)
Markings 143959 10935 10 0

Edges 331668 20412 14

CPU (s) 1.7 0.4 0

M0

M1 M2

M3 M4 M6

M5

M8 M7

M9

t11

t21

t11

t21

t11

t21

t12

t22
t12

t13

t22

t13t23
t23

Fig. 10 A weak-persistent graph of PN4(5)

8 Conclusion

In this work, we have proposed a new parametric combination of the persistent sets

with step graphs, based on a better understanding of the intricacy of the relations

between concurrency and conflict, revealing local persistency and leading to a sig-

nificant reduction. We have also shown how to weaken the sufficient conditions used

to build persistent sets. The proposed approach takes into account, in a finer way,

the structure of the net, while preserving deadlocks of Petri Nets. Indeed, unlike

the method in [18], persistent steps may contain some transitions that are in weak-
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Table 3 Experimental results for persistent step graphs

PSG WPSG VWPSG Dead

TINA Alg. 2&4 Alg. 2&4
S = SPS(t, M) S = SPS(t, M)

with restriction

‖4 PN2

Markings 6737 121 136 16

Edges 10880 135 150

CPU (s) 0 0 0

‖5 PN2

Markings 47681 249 280 32

Edges 79808 279 310

CPU (s) 0.3 0 0

‖6 PN2

Markings 330689 505 568 64

Edges 568064 567 630

CPU (s) 3.2 0 0

‖2 PN3(5)
Markings 54709 8815 1448 31

Edges 138382 14599 2307

CPU (s) 0.6 0 0

‖3 PN3(2)
Markings 101482 26620 23201 9

Edges 266696 51336 44117

CPU (s) 1.2 0.3 0.2

‖3 PN3(3)
Markings 1068339 131966 98256 16

Edges 2868287 243487 177068

CPU (s) 18 7 4.4

‖1 PN4(5)
Markings 83 44 10 0

Edges 156 64 14

CPU (s) 0 0 0

‖2 PN4(5)
Markings 3909 1169 10 0

Edges 8568 1898 14

CPU (s) 0 0 0

‖3 PN4(5)
Markings 143959 28631 10 0

Edges 331668 51154 14

CPU (s) 2.3 0.6 0

Table 4 Reachable markings of the weak-persistent graph of PN4(5)

Marking M0 2r22 + 2r12 + 5p21 + 2r21 + 2r11 + 5p31 + 5p11

En(M0) {t11, t21, t24, t31}
Marking M1 2r22 + 2r12 + 1p12 + 5p21 + 2r21 + 1r11 + 5p31 + 4p11

En(M1) {t11, t21, t24, t12, t31}
Marking M2 1p22 + 2r22 + 2r12 + 4p21 + 2r21 + 1r11 + 5p31 + 5p11

En(M2) {t11, t21, t24, t22, t31}
Marking M3 2r22, 2r12, 2p12, 5p21, 2r21, 5p31, 3p11}
En(M3) {t24, t12, t31}
Marking M4 1p22 + 2r22 + 2r12 + 1p12 + 4p21 + 2r21 + 5p31 + 4p11

En(M4) {t24, t12, t22, t31}
Marking M5 2r22 + 1r12 + 1p12 + 1p13 + 5p21 + 2r21 + 1r11 + 5p31 + 3p11

En(M5) {t11, t21, t24, t12, t31, t13}
Marking M6 2p22 + 2r22 + 2r12 + 3p21 + 2r21 + 5p31 + 5p11

En(M6) {t24, t22, t31}
Marking M7 1p22 + 2r22 + 1r12 + 1p13 + 4p21 + 2r21 + 1r11 + 5p31 + 4p11

En(M7) {t11, t21, t24, t22, t31, t13}
Marking M8 2r22 + 1r12 + 1p23 + 1p12 + 4p21 + 2r21 + 1r11 + 5p31 + 4p11

En(M8) {t11, t21, t24, t12, t31, t23}
Marking M9 1p22 + 2r22 + 1r12 + 1p23 + 3p21 + 2r21 + 1r11 + 5p31 + 5p11

En(M9) {t11, t21, t24, t22, t31, t23}

conflict. Moreover, it allows choosing the transitions to be covered while controlling

the length and the number of steps to be selected from each marking. It can thus

compute persistent graphs, covering steps graphs and graphs generated from differ-

ent kinds of their combination.
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Finally, the performed tests show the effectiveness of the proposed approach in

terms of state space reduction, relatively to the covering-steps and strong-persistent

sets methods or their combination implemented in the tool TINA. They also suggest

that combining appropriately step graphs with any partial order technique is of very

great interest for model-checking.

References

1. Kamel Barkaoui, Jean-Michel Couvreur, and Kais Klai. On the equivalence between liveness and

deadlock-freeness in petri nets. In Applications and Theory of Petri Nets 2005, 26th International

Conference, ICATPN 2005, Miami, USA, June 20-25, 2005, Proceedings, pages 90–107, 2005.

2. Kamel Barkaoui and Jean-François Pradat-Peyre. On liveness and controlled siphons in petri nets. In

Application and Theory of Petri Nets 1996, 17th International Conference, Osaka, Japan, June 24-28,

1996, Proceedings, pages 57–72, 1996.

3. Yufeng Chen. Optimal Supervisory Control of Flexible Manufacturing Systems. Thesis. Le Cnam,

2015.

4. YuFeng Chen, ZhiWu Li, and Kamel Barkaoui. New Petri net structure and its application to optimal

supervisory control: Interval inhibitor arcs. IEEE Transactions on Systems, Man, and Cybernetics,

44(10):1384–1400, 2014.
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