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Abstract
State chart notations with ‘run to completion’ semantics are popular with engineers for designing controllers that react to
environment events with a sequence of state transitions but lack formal refinement and rigorous verification methods. State
chart models are typically used to design complex control systems that respond to environmental triggers with a sequential
process. The model is usually constructed at a concrete level and verified and validated using animation techniques relying
on human judgement. Event-B, on the other hand, is based on refinement from an initial abstraction and is designed to make
formal verification by automatic theorem provers feasible. Abstraction and formal verification provide greater assurance that
critical (e.g. safety or security) properties are not violated by the control system. In this paper, we introduce a notion of
refinement into a ‘run to completion’ state chart modelling notation and leverage Event-B’s tool support for theorem proving.
We describe the difficulties in translating ‘run to completion’ semantics into Event-B refinements and suggest a solution.
We illustrate our approach and show how models can be validated at different refinement levels using our scenario checker
animation tools. We show how critical invariant properties can be verified by proof despite the reactive nature of the system
and how behavioural aspects of the system can be verified by testing the expected reactions using a temporal logic, model
checking approach. To verify liveness, we outline a proof that the run to completion is deadlock-free and converges to complete
the run.
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1 Introduction

Reactive State charts are open systems capable of receiv-
ing potentially non-deterministic input. State charts provide
a graphical language, generalised from state machines,
that is popular with engineers. Variants appear in MAT-
LAB Simulink/Stateflow [13] and the ANSYS tools. It is
particularly attractive, to provide accessibility to abstrac-
tion/refinement via Rodin/Event-B which has an intuitive
metaphor in the State chart semantics [15–17]. The hope is
that engineers can better understand the origin of proof obli-
gations in refinements and achieve formal guarantees earlier
in their designs where it is most tractable. Our approach is
focused on a mapping to Event-B where safety properties
preservation is key. In our version of State chart semantics,
refinement means a subset of traces from an abstraction. This
has the beneficial effect of preserving safety properties from
abstraction to refinement and permits proofs to be discharged
at the highest tractable level of abstraction where they are the
easiest to discharge.
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This manuscript is structure as follows: Sect. 2 discusses
related work on refinement and what are the different types.
Section 3 provides background material. Section 4 discusses
the State chart concept of ‘run to completion’ and how it
can be specified in Event-B. Section 5 states the different
state chart refinement rules we use to construct models. Sec-
tion 6 introduces our example case study: a drone. Section 7
gives an outline of our translation from State Chart XML
(SCXML) to Event-B via UML-B. Section 8 describes the
use of UML-B animation and Scenario Checking tools to
validate translated SCXMLmodels. Section 9 illustrates our
approach to verifying safety invariant properties. Section 10
illustrates our approach to verifying control responses, and
Sect. 11 concludes.

2 Related work

Many incompatible definitions of refinement have been
posed by others [12,20] and that can lead to confusion.
Though these separate refinements have different goals, all
of which may be attractive to systems designers in different
ways, they will not always preserve safety properties. From
the Event-B vernacular, it might be better to relabel these
other approaches not as methods of model ‘refinement’, but
rather methods of model ‘elaboration’. Preservation of safety
properties across refinement requires only a few restric-
tions to the original [5] State charts (e.g. transitions cannot
cross containment boundaries arbitrarily), but still allows
for both parallel and hierarchical composition. With these
restrictions, composition becomes a refinement, but not all
refinements are compositions. Such a unification of compo-
sition and refinement can lead, not only to code reuse, but
reuse of proofs.

If an Event-B model B can be shown (via the construction
rules of theEvent-B language aswell as the proof obligations)
to refine another Event-B model A, then we know that every
behaviour of B is also a behaviour of A. This definition yields
a useful principle of preservation of safety—if we can show
that a bad thing never happens in A, then we can add detail
via refinements in B, knowing that the bad thingwill continue
to never happen in B. That is, Event-B refinements preserve
safety properties in the sense adopted by Lamport [10]. This
makes refinement a useful technique in developing safety-
critical systems: one can analyse a simpler abstract model
for critical safety properties and then add detail to the model
via refinements, secure in the knowledge that the safety prop-
ertieswill be preserved.While Event-B refinements have also
been shown to preserve some liveness properties under cer-
tain conditions [7], there are not yet efficient supporting tools
for the technique. Instead, we can express the property in lin-

ear temporal logic (LTL) and use the ProB1 model checker
to verify it, as we have shown in previous work [16]. In this
paper, we outline a proof of liveness properties that relies on
reasoning about deadlock-freeness and event convergence.

A method that is closely related to Event-B and also
supports reasoning about safety and liveness properties is
TLA+ [11]. TLA+ is supported by the TLA+ Toolbox [9].
On the one hand, temporal properties (both safety and live-
ness) are explicitly stated as properties of the TLA+ models
and reasoning about them often requires applying proof rules
related to properties of traces. On the other hand, Event-
B defines proof obligations based on the underlying trace
semantics [1,7,8], and hence, reasoning about implicit tem-
poral properties in Event-B simply involves discharging the
relevant proof obligations. Furthermore, at the time of writ-
ing, theTLA+Proof System (part of theTLA+Toolbox) does
not fully support the reasoning with many temporal opera-
tors. 2

3 Background

3.1 Event-B

Event-B [1,6] is a formal method for system design. It uses
refinement to introduce system details gradually into the for-
mal model. An Event-B model contains two parts: contexts
and machines. Contexts contain carrier sets, constants, and
axioms constraining the carrier sets and constants. Machines
contain variables v, invariants I(v) constraining the variables,
and events. An event consists of a guard denoting its enabled
condition and an action defining the value of variables after
the event is executed. In general, an event e has the form:
any twhereG(t, v) then S(t, v)end where t are the event
parameters, G(t, v) is the guard of the event, and S(t, v) is
the action of the event.

Machines can be refined by adding more details. Refine-
ment can be done by extending the machine to include
additional variables (superposition refinement) representing
new features of the system, or by replacing some (abstract)
variables by new (concrete) variables (data refinement).
Refinement in Event-B is reasoned on an event basis. A (con-
crete) event f refines an (abstract) event e if whenever f is
enabled, then e is also enabled (guard strengthening), and
the action of f is the same or equivalent to e (where equiva-
lence is given by some relationship defined in the invariants).
New events are said to refine ‘skip’ (an implicit abstract event
that did nothing) and therefore do not alter abstract vari-

1 ProB is an animator, constraint solver and model checker for the B-
Method. https://www3.hhu.de/stups/prob.
2 http://tla.msr-inria.inria.fr/tlaps/content/Documentation/
Unsupported_features.html (accessed June 2021).
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ables. More information about Event-B refinement can be
found in [1]. Event-B is supported by the Rodin Platform
(Rodin3) [2].

Proof obligations are generated to ensure the consistency
of Event-B models. An important proof obligation in Event-
B is invariant preservation to prove that safety properties
(encoded as invariants of the models) will not be violated for
any reachable states. In this paper, we also make use of other
proof obligations in Event-B such as (relative) deadlock-
freeness and (conditional) event convergence to construct
our proof of liveness properties under some fairness assump-
tions.

For the trace semantics corresponding toEvent-Bmachines
and the interpretation of LTL properties over traces, we refer
the readers to [7]. Here, we recall the notation for fair-
ness assumptions underlying event-based formalisms such as
Event-B [8,10]. Given an event e , a weak-fairness assump-
tionWF(e) states that if e is enabled continually, then it must
occur infinitely often. Similarly, a strong-fairness assumption
SF(e) states that if e is enabled infinitely often, then it must
occur infinitely often. Formally,

WF(a)⇔ (FGenabled(e)⇒GF [e]) , and
SF(a)⇔ (GFenabled(e)⇒GF [e]) ,

where G and F are the temporal operators denoting globally,
and finally, respectively, and enabled(e) denotes that event
e is enabled and [e] denotes an occurrence of event e .

3.2 UML-B State machines

UML-B [18] provides a diagrammaticmodelling notation for
Event-B in the form of state machines and class diagrams.
The diagrammatic models relate to an Event-B machine and
generate or contribute to parts of it. For example, a state
machine will automatically generate the Event-B data ele-
ments (sets, constants, axioms, variables, and invariants) to
implement the states. Transitions contribute further guards
and actions representing their state change, to the events that
they elaborate. Statemachines are typically refined by adding
nested state machines to states. Each state is encoded as a
Boolean variable, and the current state is indicated by one
of the Boolean variables being set to TRUE. An invariant
ensures that only one state is set to TRUE at a time. Events
change the values of state variables to move the TRUE value
according to the transitions in the state machine. While the
UML-B translation deals with the basic data formalisation
of state machines, it differs significantly from the seman-
tics discussed in this manuscript. UML-B adopts Event-B’s

3 An extensible toolkit which includes facilities for modelling, ver-
ifying the consistency of models using theorem proving and model
checking techniques, and validating models with simulation-based
approaches.

simple guarded action semantics and does not have a con-
cept of triggers and run to completion. Here, we make use of
UML-B’s state machine translation but provide a completely
different semantic by generating a behaviour into the under-
lying Event-B events that are linked to the generated UML-B
transitions.

3.3 SCXML

SCXMLis a modelling language based on Harel state charts
with facilities for adding data elements that are modified by
transition actions and used in conditions for their firing [21].
SCXMLfollows a ‘run to completion’ semantics, where trig-
ger events4 may be needed to enable transitions. Trigger
events are queued when they are raised, and then, one is
de-queued and consumed by firing all the transitions that it
enables, followed by firing the untriggered transitions that
become enabled due to the change of state caused by the
initial transition firing. This is repeated until no transitions
are enabled, and then, the next trigger is de-queued and con-
sumed. Note that the enabledness of transitions is calculated
batch-wise at each step, not after each and every transition.
Hence, the set of parallel transitions that are enabled by a trig-
ger is calculated and then only those are fired, irrespective
of whether firing one may disable or enable another. Sim-
ilarly, the set of parallel untriggered transitions to be fired
is calculated at each iteration before any is fired. There are
two kinds of triggers: internal triggers are raised by tran-
sitions, and external triggers are raised by the environment
(non-deterministically for the purpose of our analysis). An
external trigger may only be consumed when the internal
trigger queue has been emptied.

State charts, with ‘run to completion’ semantics, are con-
sidered to be a synchronous language in the sense that
the external triggering event waits for the behaviour that
it enables to complete before making any further progress.
In contrast, Event-B has an asynchronous semantics due to
the non-deterministic selection of events to fire. Of course,
synchronous behaviour can be explicitly modelled by the
addition of control variables that define the enabledness of
events (i.e. remove the non-determinism). This is how we
can define the translation suggested in this paper. UML-B
state machines constrain the firing of transitions to some
extent but, like Event-B, do not have an underlying fully
synchronous semantics. The advantage of an asynchronous
semantics is its flexibility. However, when we wish to model
processes that are essentially synchronous in nature, the need
to explicitly add the synchronous semantics to each model
becomes a burden, obscuring the particular problem being
modelled. Since many components (e.g. controllers) used

4 In SCXML, the triggers are called ‘events’; however, we refer to them
as ‘triggers’ to avoid confusion with Event-B.
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in a system are based on synchronous behaviour, we are
interested in adapting a modelling language with run-to-
completion semantics to support Event-B style refinement.
We chose SCXMLas our source language because it is
relatively simple compared to some run-to-completion mod-
elling languages yet has a well-defined action language and
simulation tool support.

1 while running:
2 while completion = false
3 if untriggered_enabled
4 execute(untriggered())
5 elseif IQ �=∅

6 execute(IQ.dequeue)
7 else
8 completion = true
9 endif

10 endwhile
11 ifEQ �=∅

12 execute(EQ.dequeue)
13 completion = false
14 endif
15 endwhile

Listing 1 Pseudocode for ’run to completion’

Listing 1 shows a pseudocode representation of the run-
to-completion semantics as defined within the latest W3C
recommendation document [21]. Here, IQ and EQ are the
triggers present in the internal and external queues, respec-
tively. We adopt the commonly used terminology where a
single transition is called a micro-step and a complete run
(between de-queueing external triggers) is referred to as a
macro-step.

SCXMLdoes not contain any notion of refinement. A sin-
glemodel contains all details to the finest level, hencemaking
it difficult to verify and validate that themodel behaves safely
and as intended. Our aim in this work is to support for-
mal refinement of SCXMLmodels so that verification can
be carried out at abstract levels before all details are present.
However, applying the refinement rules in the presence of
the run-to-completion semantics is not straightforward. For
example, if we apply Rule A (see Sect. 5) to a transition, it is
more easily disabled causing the run to complete earlier (i.e.
completion has a weaker guard), breaking Rule A.

4 Run to completion

The run-to-completion semantics is specified via an abstract
basis that is extended by the model [15,17]. Figure 1 shows a
state chart representation of how the basis enforces the run-
to-completion semantics on the model transitions.

The specification of this basis consists of an Event-B con-
text and machine that are the same for all input models and
are refined by the specific output of the translation. The basis
context, shown in Listing 2, introduces a set of all pos-
sible triggers, SCXML\_TRIGGER which is partitioned into
internal and external triggers (e.g. FutureInternalTrigger and
FutureExternalTrigger, respectively), some of which will be
introduced in future refinements. At each refinement, these
trigger sets are further partitioned to introducemore concrete
triggers, leaving a new abstract set to represent the remaining
triggers yet to be introduced.

The context also models sequences of triggers as a data
type to be used for the trigger queues. Our initial work mod-
elled queues abstractly as sets of triggers whichwas adequate
for most verification purposes but does not enforce fairness
on trigger consumption [15–17]. Hence, we were forced to
introduce fairness assumptions regarding trigger consump-
tion in order to verify liveness properties. In this paper, we
introduce sequences to properly model the trigger queues
which are an implementation of this fairness property. Note
that the queue also enables the same trigger to be raised twice
in the queuewhichwas not possible in a set. The constant Seq
returns the set of all possible sequences of a given subset of
triggers and is defined using lambda calculus. Constant func-
tions are also defined for the usual operations on sequences:
length of a given sequence, append a trigger to the end of a
sequence to give a new sequence, concatenate two sequences
to give a new sequence, return the trigger at the head of a
sequence, return the sequence that makes up the tail of a
sequence, and return the content (set of triggers) involved in
a sequence. The basis context also defines several theorem
properties about sequences that are needed to discharge proof
obligations. These are omitted from Listing 2 for brevity.

Each of the transitions in the basis (see Fig. 1) repre-
sents an abstract event of the basis machine (Listing 3) that
describes the generic behaviour of models under a run-to-
completion semantics. These events provide an abstraction
that defines the altering of trigger queues and completion
flag. Event-B refinement rules prohibit new events from
modifying abstract variables (i.e. new events refine ‘skip’).
Hence, since SCXMLtransitions need to modify the trigger
queues, etc., used to capture the SCXMLrun-to-completion
semantics, all events generated by translation of the spe-
cific SCXMLmodel must refine abstract events introduced
for this purpose in the basis. The basis machine also declares
variables that correspond to the currently de-queued trigger,
dt, the queue of internal triggers raised by actions within
the model, iQ, the queue of external triggers raised by the
environment, eQ, and a flag, uc, that signals when a run-to-
completion macro-step has been completed. (No untriggered
transitions are enabled.) Note that, for convenience, the cur-
rently de-queued trigger, dt, is modelled as a singleton set
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Fig. 1 Abstract representation of run-to-completion basis

which may be empty (i.e. consumed) or contain the single
trigger to be consumed.

The trigger queues and de-queued trigger are
initialised to empty and uc is set to FALSE so that any enabled
untriggered transitions are dealt with via the
futureUntriggeredTransitionSet event when the system first
starts (see Listing 1). This will subsequently enable com-
pletion and reset the uc flag to TRUE. The abstract event
futureRaiseExternalTrigger represents the raising of an
external trigger (not shown in Fig. 1). After completion, a
queued trigger can be prepared for consumption by mov-
ing it to the de-queued trigger, dt. Internal triggers have a
higher priority, since the external trigger queue is only de-
queued if the iQ is empty (see dequeueExternalTriggered
and dequeueInternalTriggered in Fig. 1). The abstract event
futureTriggeredTransitionSet represents a combination of
parallel transitions that may be simultaneously triggered by
the de-queued trigger, dt. When the actual example SCXM-
Lis translated, a separate refinement of this abstract eventwill
be generated for each subset of the set of parallel transitions
that could fire in parallel in order to cater for all possibili-
ties of enablement; however, as the model is refined, some
combinations may be eliminated as the guards are strength-
ened. This approach to generating an event for each possible
combination of each set of transitions that could fire in par-

allel is needed because of the batch enabling semantics of
the SCXML run to completion (see Sect. 3.3). The actions of
these transitions may also raise triggers of their own in the
internal trigger queue iQ.

Completion of triggered and untriggered transitions may
be non-deterministically premature to allow future refine-
ments to strengthen the guards of transitions (i.e. to disable
them resulting in an earlier completion). In the process
of refining a model, a designer takes advantage of this
non-determinism in the abstraction by adding nested sub-
states and explicit guards to transitions. When a refine-
ment level is reached where the designer wants to enforce
a requirement (i.e. prevent it being bypassed by a non-
deterministic completion), the model needs to be finalised
(see Sect. 7 for more on finalisation). The SCXMLtrans-
lation tool will then automatically strengthen the guards
of events noTriggeredTransitionsEnabled and
noUntriggeredTransitionsEnabled, to ensure that the run-
to-completion sequence is not interrupted by non-determini-
stic behaviour. To do this, we need to guard completion
so that it cannot happen, while any relevant transition is
still enabled. To finalise a triggered transition, the guard of
noTriggeredTransitionsEnabled is strengthened by adding
the conjunction of the negated guards of all transitions
that can fire in parallel with the transition being finalised.
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1 context
2 basis_c

// (generated for SCXML)
3 sets
4 SCXML_TRIGGER

// all possible triggers
5 constants
6 FutureInternalTrigger

// all possible internal triggers
7 FutureExternalTrigger

// all possible external triggers
8 Seq

// return all possible sequences of given set of triggers
9 length

// return the length of a sequence of triggers
10 append

// return the result of appending trigger to a sequence
11 concat

// return the concatenation of two sequences of triggers
12 head

// return the trigger at head of a sequence of triggers
13 tail

// return the sequence at tail of a sequence of triggers
14 content

// return the set of triggers in a sequence of triggers
15 InternalQueueType

// type of internal queues
16 ExternalQueueType

// type of external queues
17

18 axioms
19 partition(SCXML_TRIGGER, FutureInternalTrigger, FutureExternalTrigger)
20 Seq= (λ T . T⊆ SCXML_TRIGGER | {n, s .n∈ N∧ s∈ 0 ..n− 1→ T| s})
21 length= (λs . s∈ Seq(SCXML_TRIGGER) | card(s))
22 append= (λ s 	→ t . s∈ Seq(SCXML_TRIGGER)∧ t∈ SCXML_TRIGGER |
23 {i 	→v | i∈ 0 .. length(s)∧ (i< length(s)⇒ v= s(i))∧ (i= length(s)⇒ v= t) } )
24 concat= (λ s1 	→ s2 . s1∈ Seq(SCXML_TRIGGER)∧ s2∈ Seq(SCXML_TRIGGER)

|
25 {i 	→v | i∈ 0 .. length(s1)+ length(s2)− 1∧ (i< length(s1)⇒
26 v= s1(i))∧ (i≥ length(s1)⇒ v= s2(i− length(s1))) } )
27 head= (λs . s∈ Seq(SCXML_TRIGGER)∧ s �= ∅ | s(0))
28 tail= (λs. s∈Seq(SCXML_TRIGGER)∧ s �=∅ | {i	→v | i∈0..length(s)−2∧ v=s(i+

1)} )
29 content= (λs . s∈ Seq(SCXML_TRIGGER) | ran(s))
30 InternalQueueType= Seq(FutureInternalTrigger)
31 ExternalQueueType= Seq(FutureExternalTrigger)
32 end
33

Listing 2 Abstract basis context

Similarly, to finalise an untriggered transition, the guard
of noUntriggeredTransitionsEnabled is strengthened by
adding the conjunction of the negated guards of all untrig-
gered transitions that can fire in parallel. It may seem
that finalisation could cause an unmanageable explosion of
guards. However, to fire in parallel, transitions must be con-
tained in parallel regions and also be enabled by the same
trigger (or be untriggered). In practice, sincemost systems do
not contain many parallel regions, the number of transitions
that can fire in parallel is limited. Transition finalisation can
be left until it is needed for the proof of a particular property
and does not generate any new proof obligations since adding
guards is a trivial refinement step. Finalisation is also needed
in order to remove non-deterministic behaviours when the
model is animated for validation purposes.

1 MACHINE basis
// (generated for SCXML)

2 SEES basis_ctx
3 VARIABLES
4 iQ

// internal trigger queue
5 eQ

// external trigger queue

6 uc
// run to completion flag

7 dt
// dequeued trigger for this run

8 INVARIANTS
9 iQ∈ InternalQueueType

// internal queue
10 eQ∈ ExternalQueueType

// external queue
11 uc∈BOOL

// completion flag
12 dt⊆ SCXML_TRIGGER

// dequeued trigger
13 dt�=∅ ⇒(∃t.dt={t})

// at most one dequeued trigger
14 EVENTS
15 INITIALISATION

// queues empty, completion false, no dequeued triggers
16 iQ, eQ,uc,dt := ∅,∅, FALSE,∅
17 END
18

19 futureRaiseExternalTrigger
//basis of future event to raise an external trigger

20 ANY raisedTrigger WHERE raisedTrigger∈ FutureExternalTrigger
21 THEN eQ:=append(eQ 	→ raisedTrigger)
22 END
23

24 dequeueInternalTriggered
//event to dequeue an internal trigger

25 WHEN iQ �=∅ ∧dt=∅ ∧uc=TRUE
26 THEN dt, iQ,uc := {head(iQ)}, tail(iQ), FALSE
27 END
28

29 dequeueExternalTriggered
//event to dequeue an external trigger

30 WHEN eQ �=∅ ∧dt=∅ ∧uc=TRUE∧ iqQ∅

31 THEN dt, eQ,uc := {head(eQ)}, tail(eQ), FALSE
32 END
33

34 futureTriggeredTransitionSet
//basis of future event representing triggered transitions

35 ANY trigger, raisedTriggersWHERE
36 trigger∈dt∧uc= FALSE∧ raisedTriggers∈ Seq(FutureInternalTrigger)
37 THEN dt, iQ := ∅ , concat(iQ 	→raisedTriggers)
38 END
39

40 noTriggeredTransitionsEnabled
//event to fire when no triggered transitions enabled

41 WHEN uc=FALSE∧dt�=∅

42 THEN dt := ∅

43 END
44

45 futureUntriggeredTransitionSet
//basis of future event representing untriggered transitions

46 ANY raisedTriggers WHERE uc=FALSE∧dt=∅ ∧ raisedTriggers∈Seq(
FutureInternalTrigger)

47 THEN iQ := concat(iQ 	→raisedTriggers)
48 END
49

50 noUntriggeredTransitionsEnabled
//event fired when no untriggered transitions enabled

51 WHEN uc=FALSE∧dt=∅

52 THEN uc := TRUE
53 END
54 END
55

Listing 3 Abstract basis machine

5 State chart refinement

The work presented here includes three refinement rules.

1. Rule A:Guard conditions on a transition can be strength-
ened (but not weakened); this can be done by adding
textual guards to the transition, or changing the source of
the transition to a nested state.
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Fig. 2 State chart refinement
rules

2. Rule B: Transitions can have additional actions, provided
they do notmodify variables appearing in the abstraction;
this can be accomplished by adding textual action to the
transition or by changing the target to nested state.

3. Rule C: A state chart can be embedded within a state of
another state chart—sometimes called hierarchical com-
position or hierarchical refinement.

The application of these rules is illustrated in Fig. 2. Rule
A is applied to refine the abstract transition from SA to SB
after adding child states SC and SD. The refinement strength-
ens the guard of the transition by restricting it to SD. On
the other hand, Rule B refines the abstraction by introduc-
ing a new concrete variable, x , into the model. The abstract
transition is refined by the actions associated with this new
variable. Finally, Rule C constructs a refinement introduc-
ing state charts SC, SD and SG, SH through hierarchical and
parallel composition, respectively.

Via the translation explained in Sect. 7, these rules rely
on the usual Event-B proof obligations to ensure that they do
indeed yield refinements in the Event-B semantics.

6 Description of the sample application

To illustrate the development and analysis process of a design
using the previously described state chart semantics, we
will discuss a quadrotor helicopter or quadrotor application
similar to the one presented by Syriani et al. [20]. The appli-
cation will focus on the incremental design of some of the
drone’s required functionality. The constructed model must
obey state chart refinement rules listed in Sect. 5, and these
rules are proven within the Rodin tool. The structure of the
state chart for this model at each subsequent abstraction level
restricts further the development of the model to refinements

that obey the rules. This will allow us to prove properties of
the model in a very strategic fashion, as properties proven
of early abstraction levels are preserved in later refinements.
Unlike other case studies previously presented [14,15,17],
this drone example illustrated the model construction and
analysis of amore complex systemwith several parallel com-
ponents and refinement levels.

The initial abstraction and first refinement of the model,
shown in Fig. 3, capture the basic functionality of the drone.
The abstract model is shown in blue; the model’s initial state
is OFF and as a result of the on and toTakeoff external trig-
gers it transitions to the START and OPERATIONAL states,
respectively.5 The drone reacts to the off external trigger
by shutting down and subsequently transitioning to the OFF
state. The first refinement is constructed using Rule C, which
adds details within the OPERATIONAL state (grey states in
Fig. 3). Within the OPERATIONAL state, the drone will tran-
sition to FLY or DESCEND after the internal trigger toFly
or toLand is raised, respectively. In refinement level one,
these internal triggers are raised non-deterministically in the
system by functionality not currently defined. As additional
details are incorporated into the model in later refinements,
some of that non-determinism is removed and replaced by
transitions with actions that raised the previously defined
internal triggers. A further external trigger, landed, directs
the system to progress to the LANDED state. It should be noted
that this abstraction of the drone model includes a transition
from TAKEOFF to DESCEND (dashed transition in Fig. 3).
This allows for the drone to respond to a toLand trigger if it
encounters some problems while in the TAKEOFF state. Syr-
iani et al. [20] introduce this transition in later refinements

5 Transitions in Figs. 3 and 4 are labelled with trigger names (e.g.
toTakeoff, toFly) not with event names as it is in UML-B.
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Fig. 3 State chart of drone application. Abstract level including only generic start/shutdown behaviour (shown in blue). The first refinement
introducing main operational sub-states is shown in grey

under Rule 8 path refinement rule. This rule is inconsistent
with our rules of refinement as it results in a concrete event
with no corresponding behaviour in the abstraction.

Figure 4 builds in Fig. 3 to show three more refinements
to the drone model. The second refinement (shown in green
in Fig. 4) extends the capabilities within OPERATIONAL by
usingRuleC tomake it a parallel state that controls flying and
battery related functionality. This is the same as Rule 4 and-
state rule defined by Syriani et al. [20]. The charge within the
drone battery is monitored by the parallel BATTERYOP state.
A new ancillary variable, charge, is introduced to keep track
of the amount of charge left in the drone. It is decreased by a
self-transition on state BATTERYOK in response to an exter-
nal trigger decreaseCharge. If the battery monitor works
correctly, we would expect the battery charge to have at least
20% capacity while in the state BATTERYOK. This can be
expressed as an invariant property:

(BATTERYOK= TRUE)⇒ charge> 20% .

When the monitored charge drops to 20% or less, the
BATTERY state chart raises the internal trigger toLand, which
will cause a reaction in the FLYOP start chart to bring it out of
TAKEOFF or FLY and into DESCEND (hence removing some
of the non-determinism concerning where toLand is raised).
While in the TAKEOFF state, we would expect the battery
monitor to be in the BATTERYOK state or to have raised a
toLand trigger.

(TAKEOFF= TRUE)⇒ (BATTERYOK= TRUE∨ toLand) .

To ensure the drone only enters TAKEOFF or FLY with
enough battery power, we strengthen the guards of transitions
to the FLY and TAKEOFF states (Rule A). We will discuss how
these state-invariant properties are verified in Sect. 9.

The third refinement of themodel (shown in beige) refines
the state TAKEOFF by applying Rule B and C. Under these
rules, we introduce child states and new model variables,
similar to Rule 2 basic-to-or state rule defined by Syriani et

al. [20] As part of this refinement, we introduced an untrig-
gered transition responsible for raising the toFly internal
trigger and therefore removed some of the non-determinisms
concerning this trigger.

The fourth refinement of the drone model (shown in lilac)
usesRule C to introduce additional implementation details to
allow a take-off to be cancelled in response to an external trig-
ger cancel. If the trigger is raised, the climbing process must
be aborted and the drone descending sequence shall start.
This refinement level is done differently to Syriani et al. [20],
which follows Rule 7 state extension rule. The aforemen-
tioned rule requires a data remapping of the abstract states
TAKEOFF,CLIMB, andHOVER, which should be distinct from
the states in this refinement, as the stateABORT is introduced.
In contrast, we implement this refinement using a rule similar
to Syriani et al.’s Rule 2 basic-to-or state rule, which intro-
duces the concrete states CLIMB2 and ABORT to the abstract
state CLIMB.

Although the autonomous drone example in this paper
is based on the example described in [20], the definition of
refinement used in that work is quite different from our own.
This forces some differences in our refinement rules, and
consequently, the way the example is developed. In [20],
‘refinement’ is a transformation of the model which pre-
serves reachability of a state with respect to sequences of
inputs. However, this also allows the possibility of introduc-
ing new behaviours in the concrete model that the abstraction
does not exhibit. While this notion of refinement seems use-
ful in certain contexts, unlike refinement in Event-B it does
not guarantee preservation of safety properties. Therefore, it
should be considered less suited to development of safety-
critical systems.
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Fig. 4 State chart of drone application. Second refinement for battery monitoring functionality (shown in green). Third refinement introducing
details for take-off (shown in beige). Fourth refinement level to allow cancelling during take-off (shown in lilac)

7 SCXMLtranslation to UML-B/Event-B

The translation of a specific SCXMLmodel to UML-B and
Event-B comprises the following stages:

– Firstly, a basismachine and context are created to embody
the semantics of the SCXMLlanguage (as described in
Sect. 4). The basis provides variables and events tomodel
the queue of triggers as well as abstract versions of events
tomodel transitions firing. The basis is independent of the
particular SCXMLmodel which is added in subsequent
refinements. Hence, it is not necessary to re-prove any of
the proof obligations associated with this basis.

– Secondly, all possible combinations of each set of transi-
tions that can fire together are calculated and correspond-
ing events are generated, at appropriate refinement levels
(given by the refinement annotations embedded in the
SCXMLmodel) that refine the abstract basis events. The
transitions that can fire together are those that are trig-
gered by the same trigger (or are both untriggered) and
are in different parallel (‘and’) sub-states. For example,
the untriggered transitions shown in the parallel states
FLYOP and BATTERYOP of Fig. 4 are combined into
an event in the Event-B representation of the model,
through a conjunction of the guards and actions of
each of the transitions. If these transitions raise internal
triggers, a guard, {i1, i2, ...}⊆ content(raisedTriggers)
(where i1, i2, ... have been added to the internal triggers

set), is introduced to define the raised triggers parameter.
The subset used in the guard retains non-determinism to
allow more triggers to be raised in later refinements. For
triggered transitions, the trigger is specified by a guard
that defines the value of the trigger parameter.

– Thirdly, at each refinement level, the SCXMLstate chart
is translated into a corresponding UML-B state machine
whose transitions elaborate (i.e. add state change details
to) the transition combination events that the transition
may be involved in. A transition may fire in parallel with
transitions of parallel nested state machines that have the
same (possibly null) trigger.

– Finally, the UML-B state machine is translated into
Event-B by programmatically invoking the UML-B
translator.

A previous version of the translator was described in [15,
16]. New features of the translation added since [15,16] are
as follows:

Trigger queues in basis: The encoding of trigger queues in
the abstract basis context andmachine has been improved
so that a queue is properly modelled as a sequence of
triggers. This more accurately reflects the SCXMLse-
mantics.
De-queuing triggers from queues: The abstract basis
machine has been improved so that triggers are properly
de-queued before potential use, which allows triggers to
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Fig. 5 Generated UML-B state machine for drone refinement level 2

be discarded if the controller cannot respond to them.
This more accurately reflects the SCXMLsemantics and
was necessary in order tomodel the new drone case study
properly.
Finalisation:Transitions canbeflagged asfinalisedwhich
means their guards can not be strengthened in subsequent
refinements. This allows them to ‘enforced’ when they
are enabled (i.e. completion cannot occur until they have
fired) which is needed for verification.
Restricted raising of internal triggers: Once a trigger is
introduced, it must immediately be raised at that refine-
ment level by any transitions that wish to do so. It cannot
be raised in later refinements except by newly introduced
transitions. This restriction was necessary to make simu-
lationmore useful by removing non-deterministic raising
of triggers in anticipation of refinements.
Context instantiation: The axioms of the basis context,
that allow future triggers to be added, have been improved
so that ProB6 can automatically create an instantiation.

A tool to automatically translate SCXMLsource mod-
els into UML-B has been produced. The tool is based
on the Eclipse Modelling Framework (EMF) and uses an

6 ProB is an animator, constraint solver and model checker for the B-
Method. https://www3.hhu.de/stups/prob.

SCXMLmeta-model provided by Sirius [4] which has good
support for extensibility. The UML-B state machine is sub-
sequently translated into Event-B using the standard UML-B
translation which provides variables to model the current
state and guards and actions to model the state changes that
transitions perform.

Figure 5 shows the UML-B model of the drone at refine-
ment level 2 (equivalent to Fig. 4 without the detail inside
TAKEOFF). The structure of the state machine is similar to
the SCXMLversion with purple shading indicating the pre-
viously added states and light blue shading indicating the
detail added at this refinement level. State invariants (prop-
erties that should hold while that state is active) are shown in
TAKEOFF, FLY and BATTERYOK. Verification of these invari-
ants is discussed in Sect. 9.

8 Validation

One of the attractions of ‘run to completion’ style modelling
languages such as SCXMLis their execution semanticswhich
provides a method for animating models to validate their
behaviour. Our approach to SCXMLrefinement results in a
single SCXMLfinal model which can be animated using the
existing SCXMLanimation tools. However, we would like to
validate the developingUML-Bmodel at intermediate refine-
ment levels.
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Fig. 6 Using Scenario Checker to validate behaviour of refinement 1—recording

In previous work [19], we have developed a scenario-
based approach to formal modelling using abstract scenarios
to validate abstract models. The method is supported by a
‘Scenario Checker’ tool, based on the ProB model checker,
that allows scenarios to be recorded and then replayed to
check that important state has not changed since the original
run of the scenario. The Scenario Checker supports the con-
cept of a controller executing a process in response to changes
in the environment which is similar to the run-to-completion
concept addressed in ourwork here. Eventsmay be annotated
as internal to indicate that,when enabled, they should befired
automatically until none remain. Internal events may also be
prioritised to give a simple representation of process order
in the controller (even if it is left non-deterministic in the
model). The user only has to select external events that trigger
the controllers responses. Since our SCXMLderived models
already contain an implementation of run to completion, the
support provided by the Scenario Checker is sufficient to
validate this behaviour. If desired, internal variables that rep-
resent the controllers processing (e.g. the variables thatmodel
the SCXMLrun-to-completion variables) can be annotated as
private so that only the application state is checked during
replay. To help visualise the state of the model, the gener-
ated UML-B state machine is animated during the scenario
validation.

Figure 6 shows a scenario being recorded. The main (top
left) editing view shows the state machine being animated;
the model is currently in the DESCEND state. The bottom
left view is the scenario checker control panel where exter-
nal events can be fired to start a run to completion. In our
model, only the external-trigger-raising events (representing
the environment) are enabled. The main button to be used
is the Big Step button which fires the selected external event

and then automatically fires internal events until none are
enabled. The right-hand view shows the scenario checker
console, listing each big step and its run to completion in
terms of internal events. The bottom centre view shows the
state of the system at the end of the last run.

Figure 7 shows the recorded scenario being played back.
In the control panel, external events are greyed out as they are
being selected from the recording each time the Big Step but-
ton is pressed. The state view shows a discrepancy fromwhen
the scenario was recorded, and the state machine is in the FLY
state instead of the DESCEND state. Comparing the history
in the console panels reveals that cause: an internal trigger,
toLand, was non-deterministically raised during recording
but not during playback. This is because the model allows
for future raising of internal triggers in later refinements.

Figure 8 shows the scenario being played back at a later
refinement where the raising of the toFly and toLand internal
triggers has been defined. While the scenario checker allows
us to animate that the main expected run-to-completion
behaviour is possible, recall that unless the transitions have
all been finalised (i.e. no further refinement is permitted),
other behaviours are possible due to the non-deterministic
completion incorporated in case transition guards are later
strengthened.

9 Verification of safety properties

In a state chart model, we naturally wish to verify properties
of the form; a property P that is expected to hold true in a
particular state S. Hence, all of the safety properties that we
consider are captured as invariants of the form: S=TRUE⇒P
where the antecedent is implicit from the containment of P
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Fig. 7 Using Scenario Checker to validate behaviour of refinement 1—playback

Fig. 8 Using Scenario Checker to validate behaviour of refinement 3—playback

withinS. There are twokinds of properties thatwemightwant
to verify in an SCXMLstate chart: 1) properties concerning
the values of auxiliary data maintained by the system and
2) constraints about the state of another parallel state chart
region. SCXMLmodels represent components that react to
received triggers and cannot be perfectly synchronised with
changes to the monitored properties. Hence, P may be tem-
porarily violated until the system reacts by leaving the state

S in which the property is expected to hold. To cater for this,
we express P in a modified form P’ that allows time for the
reaction to take place. There are two forms of reaction that
can be used to exit S: a) an untriggered transition or b) a tran-
sition that is triggered by an internally raised trigger. For a),
the modified property P’ becomes P∨ untriggered transi-
tions are not complete, and for b), P’ becomes P∨ trigger t
is in the internal queue or de-queued (where t is the internal
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trigger raised when the violation of P is detected). Hence, P
is checked only in stable states that are reachable according
to the run-to-completion semantics.

In this section, we illustrate a typical example of the type
of properties that we imagine could be verified in a reactive
SCXMLsystem. All of the proof obligations are automat-
ically discharged for our example.7 Since our models are
strictly structured and proof obligations will always have this
common form, we are optimistic that proofs will always dis-
charge automatically. We model the safety property features
at an early level of refinement where the models are rela-
tively simple, so that the validity of verification conditions
is clear. Detail is then added in later refinements which are
proven (automatically) to preserve the previously verified
safety properties. In our example, some auxiliary data are
monitored by one state chart region, while a parallel region
refers to the state of the monitoring region. Hence, the reac-
tion consists of an untriggered transition in the monitoring
region which sends an internal trigger to the other region
when it leaves the desired monitor state.

For our drone model, the safety property that we wish to
verify is that the control system does not continue to take off
or fly if the battery charge drops below a certain threshold
(say 21%). By refinement level 1, we have developed the
drone’s state to the point where we distinguish the TAKEOFF
and FLY states (Fig. 3). In refinement level 2, we therefore
introduce the battery charge monitoring function along with
the associated safety properties. A parallel state chart region,
with sub-states BATTERYOK and BATTERYLOW, is added to
the state OPERATIONAL (Fig. 4). The BATTERYOK sub-state
is used in the safety invariant of the TAKEOFF and FLY states.
Thus, we split the verification into two parts: a type b proof to
show that the system reacts to the battery charge decreasing
below 21% (an external event) by leaving the BATTERYOK
sub-state and a type a proof to show that when the system
leaves the BATTERYOK state, it subsequently (within the run
to completion) leaves the FLY or TAKEOFF states. Both parts
are described in more detail as follows.

System Reacts to the Low Battery Charge An external trig-
ger indicates that the battery charge has dropped by 10% and
this is used by a self-transition to decrement the controllers
data value for charge. The BATTERYOK state is supposed to
indicate that the battery charge is ok (>20%) and to ensure
that it does,we add a state invariant to this effect (charge>20).
When charge decreases to 20 (or less), an untriggered transi-
tion immediately reacts by switching to the BATTERYLOW
state. To ensure that this reaction is not bypassed by the
non-determinism that we incorporated to allow for future
refinement, we flag it as finalised at refinement level 2. Final-

7 We use a strong prover configuration including AtelierB provers and
SMT solvers.

isation means that we cannot strengthen its guards in future
refinements as is normally permitted, since its reaction is
needed to ensure the invariant is preserved. If the user for-
goes the finalisation, the property would not be verifiable at
that refinement level and it will need to be verified in later
refinements. After translation to Event-B via UML-B, the
invariant in state BATTERYOK is

(BATTERYOK= TRUE)⇒ (uc= FALSE∨ charge>20) .

The only events that can break this invariant are ones
that make the antecedent become true or the consequent
become false and we deal with these as follows: the tran-
sitions that enter state OPERATIONAL and initialise the
BATTERY region by entering BATTERYOK (hence making the
antecedent become true) contain the guard that charge>50
(since we do not allow the drone to take off unless the bat-
tery is well charged) and hence the invariant is satisfied.
The self-transition that decreases charge (and hence could
potentially falsify the consequent) is guarded by uc= FALSE
since it is a triggered transition, and hence, the disjunction
in the consequent ensures it remains true. The comple-
tion event NoUntriggeredTransitionsEnabled of the basis
machine resets uc= TRUE to indicate completion of the
cycle and hence could potentially break the invariant. How-
ever, finalising the transition BATTERYOK_BATTERYLOW
(that leaves BATTERYOK when charge>20 becomes false)
means that the negation of its guard is added to the comple-
tion event by the translation. Since this transition fires when
BATTERYOK= TRUE (i.e. its source state) and charge≤20,
the completion event is guarded by ¬(BATTERYOK= TRUE∧
charge≤20) which means that it does not fire when it could
break the invariant (i.e. forcing the untriggered reaction to
fire first).

System Subsequently Leaves the FLY or TAKEOFF States
The safety property of the TAKEOFF and FLY states can now
be simply stated as BATTERYOK= TRUE. However, since this
relies on a particular internal trigger (toLand) to make the
appropriate reaction, we also need to specify that trigger as
an attribute of the invariant in the SCXMLmodel. After trans-
lation to Event-B via UML-B, the invariant in state TAKEOFF
becomes

(TAKEOFF= TRUE)
⇒
(toLand∈ content(iQ)∨ toLand∈dt∨BATTERYOK=TRUE).

The invariant for the FLY state is similar with a correspond-
ing antecedent. The transitions that enter TAKEOFF (which
make the antecedent true) simultaneously enter BATTERYOK
ensuring the consequent is true.Theonly transition that enters
FLY (which makes the antecedent of the FLY invariant true)
comes from the TAKEOFF state and hence the consequent is
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already true. The transition that leaves BATTERYOK (making
the last disjunct of the consequent false) raises the toLand
trigger making the first disjunct true. Some transitions leave
the superstates of BATTERYOK, but these either simultane-
ously leave OPERATIONAL (the superstate of TAKEOFF and
FLY), or re-enter BATTERYOK. The basis contains an event
to de-queue the internal triggers which preserves the over-
all consequent because it establishes the second conjunct as
it falsifies the first (i.e. it removes toLand from the iQ but
simultaneously adds it to dt). The only events that falsify
the second conjunct are the transitions triggered by toLand
which leave theTAKEOFForFLY statesmaking the antecedent
false.

Hence, invariant properties that follow these suggested
patterns are automatically proven due to simple logic about
the changes in state.

10 Verification of control responses

A model that has been proven to satisfy some safety (e.g.
invariant) properties may still not behave in a useful way.
Therefore, aswell as verifying invariant properties, wewould
like to verify the system’s liveness (e.g. responsive) proper-
ties. That is, we want to ensure that the controller responds
to external triggers and makes appropriate modifications to
the system variables. These kind of liveness properties are
difficult to prove via invariant preservation since they are
temporal properties. In this section, we present our approach
to verify the responsive properties of the system.

We first start with some generic properties of our gener-
ated Event-B model and the fairness assumption about the
executions of the events. We then discuss the proof for ter-
mination of responses for external triggers in Sect. 10.1 and
correctness of the responses for external triggers inSect. 10.2.

Event Categories. In our Event-B model, the events can be
separated into the following categories.

– External events: These events raise external triggers.
– System events: Events other than external events are
called system events. They are the events by which the
system responds to the external triggers (by creating dif-
ferent runs or simulation paths). These events can be seen
in Fig. 1 and are further categorised as follows.

• Future system events: These events might raise
internal triggers, i.e. futureTriggeredTransitionSet,
and futureUntriggeredTransitionSet. The purpose
of these events is to enable future introductionofmore
system details via refinement.

• The de-queue external trigger event (i.e. dequeue
ExternalTriggered): These events de-queue the exter-
nal trigger queue and will start a run.

• Internal system events: These events belong to the
internal behaviour of the system to accommodate the
runs for external triggers. These events can be seen
in different groups as in Fig. 1.

• Thede-queue internal trigger event (i.e.dequeue
InternalTriggered): These events de-queue the
internal triggers queue and will start a run.

• Triggered events: The events corresponding to
the event fired by (external or internal) triggers.

• The discard trigger event (i.e. noTriggered
TransitionsEnabled): This event will move the
system from the FIRINGTRIGGERED state to the
FIRINGUNTRIGGERED state in the casewhere no
triggered transition events are enabled.

• Untriggered events: These are all the untriggered
events in the systems.

• The completion event (i.e. noUntriggered
TransitionsEnabled): This event will move the
system from FIRINGUNTRIGGERED state to the
READYTODE−QUEUE state in the case where
no untriggered transition events are enabled.

Events from different categories have different roles in our
reasoning about responsive properties.

We now present a theorem and a corollary related to (rela-
tive) deadlock-freeness properties for a different set of events.

Theorem 1 (Internal System Events are Relative Deadlock-
Free)Under the condition that iQ �=∅∨uc= FALSE∨dt �=∅,
the internal system events are deadlock-free, i.e. there must
be one internal system event enabled.

Proof This is based on the generation of our Event-B
model (according to the basis structure as shown in Fig. 1).
In particular, we consider the different cases correspond-
ing to the different ‘states’, i.e. READYTODE−QUEUE,
FIRINGTRIGGERED, and FIRINGUNTRIGGERED.

– When the system is in the READYTODE−QUEUE state,
we know that uc= TRUE∧dt=∅. According to our
assumption, we then have iQ �=∅, hence dequeue
InternalTriggered event is enabled.

– When the system is in the FIRINGTRIGGERED state,
either one of the triggered events is enabled or the
noTriggeredTransitionsEnabled event is enabled.

– Similarly,when the system is in theFIRINGUNTRIGGERED
state, either one of the untriggered events is enabled or
the noUntriggeredTransitionsEnabled event is enabled.

��
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Corollary 1 (System Events are Relative Deadlock-Free)
Under the condition that eQ �=∅∨ iQ �=∅∨uc= FALSE∨
dt �=∅, the system events are deadlock-free, i.e. there must
be one system event enabled.

Proof This is based on the generation of our Event-B model
(according to the basis structure as shown in Fig. 1) and
Theorem 1.

– In the casewhere iQ �=∅∨uc= FALSE∨dt �=∅, accord-
ing to Theorem 1, one of the internal events is enabled.

– Otherwise, i.e. iQ=∅∧uc= TRUE∧dt=∅, according
to our assumption, eQ �=∅. In this case, the dequeue
ExternalTriggered event is enabled.

��
In order to reason about any liveness properties for an

event system, we have to make assumptions about how often
events will be fired. Here, we assume that all the system
events are strongly fair.

Assumption 1 (Fair System Events) We assume that all
internal system event e is strongly fair, i.e. SF(e) ; and
the de-queue external trigger event is weakly fair, i.e.
WF(dequeueExternalTriggered) .

This assumption will ensure that the system will response
no matter how often the external triggers are raised by the
external events.

10.1 Termination of responses for external triggers

We first define the notion of event convergence and event
anticipation.

Definition 1 (Event Convergence) A set of events is said to
be convergent if they all decrease a variant according to some
well-founded order.

Definition 2 (Event Anticipation) Given a set of convergent
events with respect to a variant, another set of events is antic-
ipated with respect to the same variant if they do not increase
the variant.

Note that the anticipated events augment the set of con-
vergent events and respect the variant used to prove the
convergence property.

We start first by stating the main theorem about termina-
tion of responses for external triggers: it is always the case
that the systemwill come back to the READYTODE−QUEUE
state and iQ=∅, i.e. the system is ready to de-queue an exter-
nal trigger (if any). This is stated as the following theorem.

Theorem 2 (Termination of Internal System Events) Given
that the internal events are convergent and the external events

are anticipated, the system’s internal queue is always even-
tually empty and the system transitions to the Ready to
De-queue state, i.e.

GF(iQ=∅∧uc= TRUE∧dt=∅) .

Proof Assuming that the properties are not satisfied, i.e.
eventually, it is always the case that iQ �=∅∨ uc= FALSE∨
dt �= ∅. This can be formalised as follows.

FG(iQ �=∅∨uc= FALSE∨dt �=∅) .

Observe that in the states satisfying this condition, the
dequeueExternalTriggered event is disabled. Furthermore,
according to Theorem 1, the internal events will always be
deadlock-free, and as a result, at least one of the internal
event is enabled infinitely often, hence under Assumption 1,
this event occurs infinitely often. According to Definition 1,
the variant will be decreased infinitely which violate the con-
dition that the variant is defined on an well-founded order.
Here, the external events are anticipated to ensure that the
variant does not increase and hence does not interfere with
the convergence of the internal events. ��

Note that Theorem 2 relies on convergence of internal
events and anticipation of external events, which we will
prove later.

Theorem 3 (Responsiveness to External Triggers) If an
external trigger is raised, then eventually, it will be de-
queued.

G([externalTrigger.t]⇒ F([dequeueExternalTriggered.t])) ,

where we use externalTrigger.t (resp. [dequeueExternal
Triggered.t]) to denote the occurrence of externalTrigger
(resp. dequeueExternalTriggered) with parameter t.

Proof Assuming that [externalTrigger.t] hence t∈ content
(eQ), i.e. eQ �=∅. According to Theorem 2, we have that
dequeueExternalTriggered is enabled infinitely often. Since
dequeueExternalTriggered is weakly fair (Assumption 1),
it is taken infinitely. We have two cases.

– If t=head(eQ), it means we have [dequeueExternal
Triggered.t]

– If t �=head(eQ), an occurrence of dequeueExternal
Triggered will move t closer to be the head of the exter-
nal queue eQ and eventually it will become the head of
the queue and subsequently be processed eventually.

��

10.1.1 Proof of convergence and anticipation

The responsiveness to external triggers presented in Theo-
rem 3 relies on Theorem 2, which in turn relies on the proof
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of convergence for internal system events and anticipation for
external events. These proof will need to be done for each
individual SCXMLstate chart as they do not hold a priori.We
present a systematic approach to reason about the proof of
convergence and anticipation relying on lexicographic order
as follow.

A variant in Event-B can be a natural number (bounded
bellow by 0) or a finite set (bounded below by the empty
set ∅). Moreover, for a set of events, the variants V1, V2, ...
are combined into a lexicographic variant, i.e. (V1, V2, ...)
with V1 has a higher priority than V2, etc. An event is said
to decrease this lexicographic variant if it either decreases
V1 or if it keeps V1 the same and decreases V2, so on and
so forth. Lexicographic variants are supported in the latest
Rodin (version 3.5).

Our generic approach to construct a lexicographic variant
is according to the following order and the rule for each
variant.

1. VexternalTrigger = dt ∩ ExternalTrigger. This variant is
used to prove the convergence for any externally triggered
events (i.e. triggered event by some external trigger).
These event remove the external trigger from dt and
hence ‘decrease’ dt to the empty set.

2. Variants based on the state machine to prove the con-
vergence of internally triggered events and untriggered
events. This depends on the SCXML diagram, and we
will illustrate this on the example later.

3. VdequeueInternalTriggered = length(iQ). This variant is
used to prove the convergence of the dequeueInternal
Triggered event. Since this event removes the head of
the iQ, it decreases the length of the iQ trivially, while
other events might increase iQ, by raising new internal
triggers. However, these events should have been proved
to converge using higher-priority variants.

4. VnoTriggeredTransi tionsEnabled = dt. This variant is used
to prove the convergence of the noTriggeredTransitions
Enabled event. The event discards the trigger in dt and
hence ‘decreases’ dt to the empty set.

5. VnoUntriggeredTransti tionsEnabled ={uc, TRUE}.This vari-
ant is used toprove the convergenceof thenoUntriggered
TransitionsEnabled event. The event changes uc flag
from FALSE to TRUE and hence ‘decreases’ the variant
from {FALSE, TRUE} to {TRUE}.

Note that except for the variant related to the internally
triggered events and untriggered events, i.e. (2), all other
variants, i.e. VexternalT rigger , VdequeueInternalTriggered ,
VnoTriggeredTransi tionsEnabled , and
VnoUntriggeredTransti tionsEnabled are generic according to the
underlying run-to-completion semantics.

The external events are anticipated according to the above
variants trivially since they only modify the external queue

eQ. Note that we do not attempt to prove the convergence
of any future events here. Instead, we assume that these
future events will be proved to be convergent later. While
these future events raise new internal triggers (hence will
increase variant VdequeueInternalTriggered ), ultimately, they
will be converted to internal triggered and untriggered events.
These events will need to be proved to be convergent by
state machine-based variants which has higher priority than
VdequeueInternalTriggered . At the moment, we do not have the
notation of anticipation for a subset of a lexicographic vari-
ant. This can be introduced into Event-B in the future.

We now discuss the specific variants for the Drone exam-
ple based on the actual state chart as shown in Fig. 4. The
variants are for the internally triggered events and untrig-
gered events. The lexicographic order of the variant use is
to prove the convergence of the events depending (1) on the
nested structure of the state chart and (2) on the order of
the transitions with the same state chart. For example, the
variant for proving the convergence for the transition from
SHUTDOWN to OFF will have a higher priority than the one
for the transition from TAKEOFF to FLY, and this variant sub-
sequently has higher priority than the one for the transition
from CLIMB to HOVER. Furthermore, the variant for proving
the convergence for the transition from TAKEOFF to FLY has
higher priority than the one for the transition from FLY to
DESCEND.

The translation of SCXML state chart intoUML-B/Event-
B represents each state by a Boolean variable, TRUE if the
system in that state and FALSE otherwise. As a result, the
variant for proving the convergence of an event going out
of a state S can be {S, FALSE}: the transition ‘decreases’ the
value of the variant from {TRUE, FALSE} to FALSE.

Based on the above analysis, the variants that we used for
proving the convergence of the internally triggered events
and untriggered events in the Drone example are.

– {SHUTDOWN, FALSE}
– {TAKEOFF, FALSE}
– {FLY, FALSE}
– {BATTERYOK, FALSE}
– {CLIMB, FALSE}
– {CLIMB2, FALSE}

This variant proof is available in the Rodin archive at
https://tinyurl.com/ISSE-Drone.

10.2 Correct responses to external triggers

In the previous section, we illustrate the reasoning about the
responsiveness of the system to external triggers. However,
we also need to prove that the response to the external triggers
is correct. In our conference paper [16], we illustrate the use
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of ProBmodel checker to reason about such a property. Here,
we show how we can prove such a property.

Once again, we assume that the system events are strongly
fair as in Assumption 1. In general, our correct-response
properties will have the following form:

G([external_trigger_event]⇒ F{predicate}) ,

where the predicate concerns variables v that the system
maintains, and may refer to old values old(v) that existed
when the external trigger occurred. The translator generates a
separate ‘branch’ refinement for each LTLproperty to be ver-
ified. In this special refinement, history variables are added to
record the value at the state when the external trigger occurs,
of any variables that are referenced as ‘old’ values.

We illustrate the method with an example of a temporal
property that we expect to hold in the drone SCXMLsystem.
The liveness property that we wish to verify is that, after an
external trigger event decreaseCharge, the battery charge
value should decrease in value, i.e.

G ([ExternalTriggerEvent_decreaseCharge]⇒ F{charge<old(charge)}) .

As discussed in [16], this above property is too strong and
does not hold for the SCXML drone model. We have to
weaken the property to state that the expected behaviour is
only achieved if the external trigger is raised at the right time,
specified as {BATTERYOK=TRUE∧ charge>20}, and there
are no external conflict triggers, here off, in processing or
that has been raised, i.e. off /∈dt ∪ content{eQ}. The prop-
erty can be formalised as follows

G([ExternalTriggerEvent_decreaseCharge]∧
{BATTERYOK=TRUE∧ charge>20∧off/∈dt∧off /∈ content(eQ)}

⇒ F {charge<old(charge)}) .

In order to prove the above property, we first recall the defi-
nition of unless property [3,8].

Definition 3 (Unless Properties) An unless property of the
following form

P unless Q

means that if P holds, then it will hold continuously unless
Q hold.

We restate the Unless rule (Theorem 1 in [8]) here.

Theorem 4 An event system satisfies the unless property P
unless Q, if for every event, if it starts in a state satisfying
P∧¬Q, it will reach a state satisfying P∨Q.

Coming back to our example,we first prove that the Event-
B model satisfies the following important unless property.

Theorem 5 The drone system satisfies the following unless
property.

BATTERYOK= TRUE∧ charge>20∧decreaseCharge
∈ content(eQ)∧off /∈dt∧

(∀ i ∈dom(eQ) . eQ(i)=off⇒ (∃j∈dom(eQ) . eQ(j)
=decreaseCharge∧ j< i))

unless
BATTERYOK= TRUE∧ charge>20∧dt= {decreaseCharge}

Proof (Sketch) The proof relies on Theorem 4, i.e. reasoning
per event. The encoding of the proof obligations is available
from theRodin archive.We informally explainwhy this prop-
erty holds for different class of events below.

– External events: The external events raise a new exter-
nal trigger and append the new trigger to eQ. Given that

decreaseCharge is already in eQ, even if the new trig-
ger is off, this trigger cannot over take decreaseCharge
in the queue, i.e. it is always behind decreaseCharge.
These external events therefore maintain the left-hand
side of the unless property.

– De-queue external trigger: If the de-queued external trig-
ger is decreaseCharge, we will have dt= {decrease
Charge}, and hence, we establish the right-hand side of

the unless property. If it is not decreaseCharge (that is
decreaseCharge is still in the queue), the de-queued trig-
ger also cannot be off (as any off trigger in eQ has to be
behind a decreaseCharge trigger). As a result, the condi-
tion that off is behind decreaseCharge in the remaining
queue ismaintained and off cannot be indt after the event
execution.

– Internal system events: For the internal systems events,
we separate them into those that are outside the BATTERY
state and those that are inside of the BATTERY state.

• For those that are outside the BATTERY state, they
maintain the left-hand side of the unless property
trivially (by leaving external queue unchanged and
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does not alter the relevant state, i.e. BATTERY or the
charge).

• For the self-transition which is triggered by decrease
Charge inside the BATTERY state, the proof of the
unless property is trivial, since we assume the nega-
tion of the right-hand side of the unless property,
including that that decreaseCharge is not in dt. For
the transition from BATTERYOK to BATTERYLOW,
the proof of the unless property is also trivial, since
we assume the left-hand side of the unless property,
including that charge> 20.

��
Theorem5means that the systemwill continuously satisfy

the following conditions:

– in the BATTERYOK state ,
– charge is more than 20 ,
– decreaseCharge is in the external queue eQ .
– off is not in dt .
– if off is in the external queue eQ then it is behind a
decreaseCharge trigger .

unless it reaches a state satisfying the following conditions:

– in the BATTERYOK state ,
– charge is more than 20 ,
– decreaseCharge is in dt.

Coming back to the proof for our correct-response
property, assume that the system is at the right time
and the [ExternalTriggerEvent_decreaseCharge] event hap-
pens. Notice that at that particular moment, the left-hand
side of the progress property in Theorem 5 is also satis-
fied. According to Theorem 3, eventually, [dequeueExternal
Triggered.decreaseCharge] is fired (and dt= {decrease
Charge}), i.e.decreaseCharge is de-queued from theeQ into
dt. And at that time, according to Theorem 5, we also have
BATTERYOK= TRUE and charge> 20. That ensures the trig-
gered transition event for decreaseCharge is enabled (and
it is the only internal event enabled) and will be eventually
taken and hence decrease the charge’s value accordingly.

11 Conclusion

Reactive State charts are useful andwidely used by engineers
for modelling the design of control systems. Event-B pro-
vides an effective language for formally verifying properties
via incremental refinements. However, it is not straightfor-
ward to apply the latter to the former.We have demonstrated a
technique for introducing refinement of reactive State charts

that can be translated to Event-B for verification. Invariant
properties about the expected coordination of states can be
added and are interpreted with additional allowance for the
reactions to take place. That is, they hold only after the reac-
tion has takenplace. Such invariants prove automaticallywith
the existing Rodin theorem provers. We also demonstrate a
complementary process for verifying expected reactions to
environmental triggers that uses the LTLmodel checker. We
show how liveness can be verified to show that the ‘run’ con-
verges to completion, i.e. transition loops and raised internal
triggers do not introduce endless live-lock, but eventually
terminate to allow the next external trigger to be consumed.
This convergence proof uses lexicographic variants which
(at our suggestion) have recently been added to the Rodin
toolset for Event-B. These verifications do not validate that
the model behaviour is useful. For this, the SCXML model
should be animated so that its behaviour can be observed by
a domain expert. Elsewhere [19] we have developed a ‘Sce-
nario Checker’ tool and methods for animating pre-defined
domain specific scenarios at various levels of abstraction.We
demonstrate the use of this tool for automatically executing
the run to completion in order to validate that the expected
behaviour is emerging and is useful.

In future work, we intend to formalise the semantics of
our extended SCXMLnotation in order to define its notion of
refinement and correspondence to Event-B.

All data supporting this study are openly available at
https://tinyurl.com/ISSE-Drone.
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