Skip to main content
Log in

Design and control of JAIST active robotic walker

  • Original Research Paper
  • Published:
Intelligent Service Robotics Aims and scope Submit manuscript

Abstract

This paper presents the design and control of a novel assistive robotic walker that we call “JAIST active robotic walker (JARoW)”. JARoW is developed to provide potential users with sufficient ambulatory capability in an efficient, cost-effective way. Specifically, our focus is placed on how to allow easier maneuverability by creating a natural interface between the user and JARoW. For the purpose, we develop a rotating infrared sensor to detect the user’s lower limb movement. The implementation details of the JARoW control algorithms based on the sensor measurements are explained, and the effectiveness of the proposed algorithms is verified through experiments. Our results confirmed that JARoW can autonomously adjust its motion direction and velocity according to the user’s walking behavior without requiring any additional user effort.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Topping M (2000) An overview of development of Handy-1, a rehabilitation robot to assist the severely disabled. Artif Life Robot 4(4): 188–192

    Article  MathSciNet  Google Scholar 

  2. Soyama R, Ishii S, Fukase A (2003) The development of meal-assistance robot ‘My Spoon’. In: Proceedings of the 8th IEEE international conference on rehabilitation robotics, pp 88–91

  3. Romer GRBE, Stuyt HJA, Peters G, Woerden KV (2003) The current and future processes for obtaining a ‘Manus’ (ARM) rehabrobot within the Netherlands. In: Proceedings of the 8th IEEE international conference on rehabilitation robotics, pp 9–12

  4. Ikeda H, Katsumata Y, Shoji M, Takahashi T, Nakano E (2008) Cooperative strategy for a wheelchair and a robot to climb and descend a step. Adv Robot 22(13–14): 1439–1460

    Article  Google Scholar 

  5. Kuo C-H, Yeh H-W, Wu C-E (2007) Development of autonomous navigation robotic wheelchairs using programmable system-on-chip based distributed computing architecture. In: Proceedings of the IEEE international conference on systems, man and cybernetics, pp 2939–2944

  6. Shim I, Yoon J, Yoh M (2004) A human robot interactive system ‘RoJi’. Int J Control Automation Syst 2(3): 398–405

    Google Scholar 

  7. Yu H, Spenko M, Dubowsky S (2003) An adaptive shared control system for an intelligent mobility aid for the elderly. Auton Robot 15(1): 53–66

    Article  Google Scholar 

  8. Mori Y, Okada J, Takayama K (2006) Development of a standing style transfer system ‘able’ for disabled lower limbs. IEEE/ASME Trans Mechatron 11(4): 372–380

    Article  Google Scholar 

  9. Kinnaird CR, Ferris DP (2009) Medial gastrocnemius myoelectric control of a robotic ankle exoskeleton. IEEE Trans Neural Syst Rehabil Eng 17(1): 31–37

    Article  Google Scholar 

  10. Suzuki K, Mito G, Kawamoto H, Hasegawa Y, Sankai Y (2007) Intention-based walking support for paraplegia patients with robot suit HAL. Adv Robot 21(12): 1441–1469

    Google Scholar 

  11. Zoss AB, Kazerooni H, Chu A (2006) Biomechanical design of the berkeley lower extremity exoskeleton (BLEEX). IEEE/ASME Trans Mechatron 11(2): 128–138

    Article  Google Scholar 

  12. Hirata Y, Hara A, Kosuge K (2007) Motion control of passive intelligent walker using servo brakes. IEEE Trans Robot 23(5): 981–990

    Article  Google Scholar 

  13. Veg A, Popovic DB (2008) Walkaround: mobile balance support for therapy of walking. IEEE Trans Neural Syst Rehabil Eng 16(3): 264–269

    Article  Google Scholar 

  14. Kulyukin V, Kutiyanawala A, LoPresti E, Matthews J, Simpson R (2008) iWalker: toward a rollator-mounted wayfinding system for the elderly. In: Proceedings of the IEEE international conference on RFID, pp 303–311

  15. Lacey GJ, Rodriguez-Losada D (2008) The evolution of guido. IEEE Robot Autom Mag 15(4): 75–83

    Article  Google Scholar 

  16. Kong K, Jeon D (2006) Design and control of an exoskeleton for the elderly and patients. IEEE/ASME Trans Mechatron 11(4): 428–432

    Article  Google Scholar 

  17. Kobayashi H, Karato T, Tsuji T (2007) Development of an active walker as a new orthosis. In: Proceedings of the IEEE international conference on mechatronics and automation, pp 186–191

  18. Tani M, Suzuki R, Furuya S, Kobayashi N (2004) Internal model control for assisting unit of wheeled walking frames. In: Proceedings of the IEEE international conference on control applications, pp 928–933

  19. Rentschler AJ, Simpson R, Cooper RA, Boninger ML (2008) Clinical evaluation of Guido robotic walker. J Rehabil Res Dev 45(9): 1281–1294

    Article  Google Scholar 

  20. Hashimoto H, Sasaki A, Ohyama Y, Ishii C (2006) Walker with hand haptic interface for spatial recognition. In: Proceedings of the 9th IEEE international workshop on advanced motion control, pp 311–316

  21. Morris A, Donamukkala R, Kapuria A, Steinfeld A., Matthews J, Dunbar-Jacobs J, Thrun S (2003) A robotic walker that provides guidance. In: Proceedings of the IEEE international conference on robotics and automation, pp 25–30

  22. Lacey G, MacNamara S (2000) User involvement in the design and evaluation of a smart mobility aid. J Rehabil Res Dev 37(6): 709–723

    Google Scholar 

  23. Rentschler AJ, Cooper RA, Blasch B, Boninger ML (2003) Intelligent walkers for the elderly: performance and safety testing of VA-PAMAID robotic walker. J Rehabil Res Dev 40(5): 423–432

    Article  Google Scholar 

  24. Graf B (2009) An adaptive guidance system for robotic walking aids. J Comput Inf Technol 17(1): 109–120

    Google Scholar 

  25. Shim H-M, Lee E-H, Shim J-H, Lee S-M, Hong S-H (2005) Implementation of an intelligent walking assistant robot for the elderly in outdoor environment. In: Proceedings of the 9th IEEE international conference on rehabilitation robotics, pp 452–455

  26. Graf B, Hans M, Schraft RD (2004) Care-O-bot II—development of a next generation robotic home assistant. Auton Robots 16(2): 193–205

    Article  Google Scholar 

  27. Kulyukin V (2004) Human–robot interaction through gesture-free spoken dialogue. Auton Robots 16(3): 239–257

    Article  Google Scholar 

  28. MacNamara S, Lacey G (2000) A smart walker for the frail visually impaired. In: Proceedings of the IEEE international conference on robotics and automation, pp 1354–1359

  29. Yano H, Hosomi Y, Aoki K, Nanba R, Hirotomi T, Satoru Okamoto (2008) Unstable motion detect system for four-casterd walker. IEICE technical report, Speech 107(434): 13–18 (in Japanese)

    Google Scholar 

  30. Rodriguez RV, Lewis RP, Mason JSD, Evans NWD (2008) Footstep recognition for a smart home environment. Int J Smart Home 2(2): 95–110

    Google Scholar 

  31. Hirasawa M, Okada H, Shimojo M (2007) The development of the plantar pressure sensor shoes for gait analysis. J Robot Mechatron 20(3): 324–330

    Google Scholar 

  32. Kong K, Tomizuka M (2008) Smooth and continuous human gait phase detection based on foot pressure patterns. In: Proceedings of the IEEE international conference on robotics and automation, pp 3678–3683

  33. Burnfield JM, Powers CM (2006) Normal and pathologic gait. In: Placzek JD, Boyce DA (eds) Orthopaedic physical therapy secrets. 2nd edn. Hanley and Belfus, Philadelphia

    Google Scholar 

  34. Gonzalez RC, Woods RE (2002) Digital image processing, 2nd edn. Prentice Hall, Englewood Cliffs

    Google Scholar 

  35. Vince J (2004) Geometry for computer graphics: formulae, examples and proofs. Springer, Berlin

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geunho Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, G., Ohnuma, T. & Chong, N.Y. Design and control of JAIST active robotic walker. Intel Serv Robotics 3, 125–135 (2010). https://doi.org/10.1007/s11370-010-0064-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11370-010-0064-5

Keywords

Navigation