Skip to main content
Log in

On repelling robotic trajectories: coordination in navigation of multiple mobile robots

  • Original Research Paper
  • Published:
Intelligent Service Robotics Aims and scope Submit manuscript

Abstract

The paper attacks the problem of motion planning of a set of mobile robots. While artificial potential fields are the simplest methods of use, they are also locally optimal and can be easily stuck in scenarios. Probabilistic roadmap, elastic roadmaps, elastic strip and similar methods have a weak modelling of coordination between the robots. An inspiration is drawn from the artificial potential field method where the potential is computed in configuration space. In this paper the notion is extended to a ‘trajectory space’, where the complete trajectories of robots repel each other. With the added assumption of communication between the robots and higher computational costs, the resultant approach is near optimal and does not get the robot stuck or trapped. A variant of the algorithm with no direct communication is also presented. The method is experimented by using computer simulations and found to perform better over well-known approaches in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Latombe JC (1991) Robot motion planning. Kluwer Academic Press, Boston

    Book  MATH  Google Scholar 

  2. Tiwari R, Shukla A, Kala R (2013) Intelligent planning for mobile robotics: algorithmic approaches. IGI Global Publishers, Hershey

    Book  Google Scholar 

  3. Arai T, Pagello E, Parker LE (2002) Editorial: advances in multi-robot systems. IEEE Trans Robot Autom 18(5):655–661

    Article  Google Scholar 

  4. Parker LE, Schneider FE, Schultz AC (2005) Multi-robot systems: from swarms to intelligent automata, vol 3. Springer, New York

    Book  MATH  Google Scholar 

  5. Khatib O (1985) Real-time obstacle avoidance for manipulators and mobile robots. In: Proceedings of the 1985 IEEE international conference on robotics and automation, St. Louis, Missouri, pp 500–505

  6. Hwang YK, Ahuja N (1992) A potential field approach to path planning. IEEE Trans Robot Autom 8(1):23–32

    Article  Google Scholar 

  7. Barraquand J, Langlois B, Latombe JC (1992) Numerical potential field techniques for robot path planning. IEEE Trans Syst Man Cybern 22(2):224–241

    Article  MathSciNet  Google Scholar 

  8. Chang H (1996) A new technique to handle local minimum for imperfect potential field based motion planning. In: Proceedings of the 1996 IEEE international conference on robotics and automation, pp 108–112

  9. Kala R, Shukla A, Tiwari R (2010) Dynamic environment robot path planning using hierarchical evolutionary algorithms. Cybern Syst 41(6):435–454

    Article  Google Scholar 

  10. Sgorbissa A, Zaccaria R (2012) Planning and obstacle avoidance in mobile robotics. Robot Auton Syst 60(4):628–638

    Article  Google Scholar 

  11. Kavraki LE, Kolountzakis MN, Latombe JC (1998) Analysis of probabilistic roadmaps for path planning. IEEE Trans Robot Autom 14(1):166–171

    Article  Google Scholar 

  12. Kavraki LE, Svestka P, Latombe JC, Overmars MH (1996) Probabilistic roadmaps for path planning in highdimensional configuration spaces. IEEE Trans Robot Autom 12(4):566–580

    Article  Google Scholar 

  13. Kala R (2013) Rapidly-exploring random graphs: motion planning of multiple mobile robots. Adv Robot 27(14):1113–1122

    Article  Google Scholar 

  14. Gayle R, Sud A, Andersen E, Guy SJ, Lin MC, Manocha D (2009) Interactive navigation of heterogeneous agents using adaptive roadmaps. IEEE Trans Visual Comput Graph 15(1):34–48

    Article  Google Scholar 

  15. Gayle R, Sud A, Lin MC, Manocha D (2007) Reactive deformation roadmaps: motion planning of multiple robots in dynamic environments. In: Proceedings of the 2007 IEEE/RSJ international conference on intelligent robots and systems, San Diego, CA, pp 3777–3783

  16. Hilgert J, Hirsch K, Bertram T, Hiller M (2003) Emergency path planning for autonomous vehicles using elastic band theory. In: Proceedings of the 2003 IEEE/ASME international conference on advanced intelligent mechatronics, vol 2, pp 1390–1395

  17. Quinlan S, Khatib O (1993) Elastic bands: connecting path planning and control. In: Proceedings of the 1993 IEEE international conference on robotics and automation, pp 802–807

  18. Yang Y, Brock O (2010) Elastic roadmaps–motion generation for autonomous mobile manipulation. Auton Robot 28(1):113–130

    Article  Google Scholar 

  19. Lumelsky VJ, Harinarayan KR (1997) Decentralized motion planning for multiple mobile robots: the cocktail party model. Auton Robot 4:121–135

    Article  Google Scholar 

  20. Sánchez-Ante G, Latombe JC (2002) Using a PRM planner to compare centralized and decoupled planning for multi-robot systems. In: Proceedings of the IEEE international conference on robotics and automation, Washington DC, pp 2112–2119

  21. Desaraju VR, How JP (2012) Decentralized path planning for multi-agent teams with complex constraints. Auton Robot 32:385–403

    Article  Google Scholar 

  22. Bennewitz M, Burgard W, Thrun S (2001) Optimizing schedules for prioritized path planning of multi-robot systems. In: Proceedings of the 2001 IEEE international conference on robotics and automation, pp 271–276

  23. Bennewitz M, Burgard W, Thrun S (2002) Finding and optimizing solvable priority schemes for decoupled path planning techniques for teams of mobile robots. Robot Auton Syst 41(2–3):89–99

    Article  Google Scholar 

  24. Kant K, Zucker SW (1986) Toward efficient trajectory planning: the path-velocity decomposition. Int J Robot Res 5(3):72–89

    Article  Google Scholar 

  25. Kala R (2012) Multi-robot path planning using co-evolutionary genetic programming. Expert Syst Appl 39(3):3817–3831

    Article  Google Scholar 

  26. Brock O, Khatib O (2000) Elastic strips: a framework for integrated planning and execution. In: Experimental robotics VI, Lecture notes in control and information sciences, vol 250, pp 329–338

  27. Baxter JL, Burke EK, Garibald JM, Normanb M (2009) Shared potential fields and their place in a multi-robot co-ordination taxonomy. Robot Auton Syst 57(10):1048–1055

    Article  Google Scholar 

  28. Vadakkepat P, Tan KC, Ming-Liang W (2000) Evolutionary artificial potential fields and their application in real time robot path planning. In: Proceedings of the 2000 congress on evolutionary computation, pp 256–263

  29. Tu KY, Baltes J (2006) Fuzzy potential energy for a map approach to robot navigation. Robot Auton Syst 54(7):574–589

    Article  Google Scholar 

  30. Ge SS, Cui YJ (2002) Dynamic motion planning for mobile robots using potential field method. Auton Robot 13:207–222

    Article  MATH  Google Scholar 

  31. Jaradat MAK, Garibeh MH, Feilat EA (2012) Autonomous mobile robot dynamic motion planning using hybrid fuzzy potential field. Soft Comput 16:153–164

    Article  Google Scholar 

  32. Yin L, Yin Y, Lin CJ (2009) A new potential field method for mobile robot path planning in the dynamic environments. Asian J Control 11(2):214–225

    Article  MathSciNet  Google Scholar 

  33. Chang YC, Yamamoto Y (2009) Path planning of wheeled mobile robot with simultaneous free space locating capability. Intell Serv Robot 2(1):9–22

    Article  Google Scholar 

  34. Masoud AA (2013) A harmonic potential field approach for joint planning and control of a rigid, separable nonholonomic, mobile robot. Robot Auton Syst 61:593–615

    Article  Google Scholar 

  35. Lee J, Nam Y, Hong S, Cho W (2012) New potential functions with random force algorithms using potential field method. J Intell Robot Syst 66:303–319

    Article  Google Scholar 

  36. Motlagh O, Tang SH, Ismail N, Ramli AR (2012) An expert fuzzy cognitive map for reactive navigation of mobile robots. Fuzzy Sets Syst 201:105–121

    Article  MathSciNet  Google Scholar 

  37. Selekwa MF, Dunlap DD, Shi D, Collins EG Jr (2008) Robot navigation in very cluttered environments by preference-based fuzzy behaviours. Robot Auton Syst 56(3):231–246

    Article  Google Scholar 

  38. Kala R, Shukla A, Tiwari R (2010) Fusion of probabilistic A* algorithm and fuzzy inference system for robotic path planning. Artif Intell Rev 33(4):275–306

    Article  Google Scholar 

  39. Hank M, Haddad M (2016) A hybrid approach for autonomous navigation of mobile robots in partially-known environments. Robot Auton Syst 86:113–127

    Article  Google Scholar 

  40. Urdiales C, Perez EJ, Vázquez-Salceda J, Sànchez-Marrè M, Sandoval F (2006) A purely reactive navigation scheme for dynamic environments using case-based reasoning. Auton Robot 21(1):65–78

    Article  Google Scholar 

  41. Kim Y, Kwon SJ (2015) A heuristic obstacle avoidance algorithm using vanishing point and obstacle angle. Intell Serv Robot 8(3):175–183

    Article  Google Scholar 

  42. Solovey K, Salzman O, Halperin D (2015) Finding a needle in an exponential haystack: discrete RRT for exploration of implicit roadmaps in multi-robot motion planning. In: Selected contributions of the eleventh international workshop on the algorithmic foundations of robotics, algorithmic foundations of robotics XI, vol 107. Springer, pp 591–607

  43. Kala R (2014) Coordination in navigation of multiple mobile robots. Cybern Syst 45(1):1–24

    Article  MATH  Google Scholar 

  44. Saska M, Spurný V, Vonásek V (2016) Predictive control and stabilization of nonholonomic formations with integrated spline-path planning. Robot Auton Syst 75:379–397

    Article  Google Scholar 

  45. Indelman V (2017) Cooperative multi-robot belief space planning for autonomous navigation in unknown environments. Robot Auton. doi:10.1007/s10514-017-9620-6

    Google Scholar 

  46. Lee T, Kim YJ (2013) GPU-based motion planning under uncertainties using POMDP. In: Proceedings of the 2013 IEEE international conference on robotics and automation, Karlsruhe, pp 4576–4581

  47. Feyzabadi S, Carpin S (2017) Planning using hierarchical constrained Markov decision processes. Robot Auton. doi:10.1007/s10514-017-9630-4

    Google Scholar 

  48. Wu F, Zilberstein S, Chen X (2011) Online planning for multi-agent systems with bounded communication. Artif Intell 175:487–511

    Article  MathSciNet  MATH  Google Scholar 

  49. Kim DW, Lasky TA, Velinsky SA (2013) Autonomous multi-mobile robot system: simulation and implementation using fuzzy logic. Int J Control Autom Syst 11(3):545–554

    Article  Google Scholar 

  50. Das PK, Behera HS, Jena PK, Panigrahi BK (2017) An intelligent multi-robot path planning in a dynamic environment using improved gravitational search algorithm. J Autom Comput Int. doi:10.1007/s11633-016-1019-x

    Google Scholar 

  51. Hoy M, Matveev AS, Savkin AV (2012) Collision free cooperative navigation of multiple wheeled robots in unknown cluttered environments. Robot Auton Syst 60:1253–1266

    Article  Google Scholar 

  52. Charalampous K, Kostavelis I, Gasteratos A (2015) Thorough robot navigation based on SVM local planning. Robot Auton Syst 70:166–180

    Article  Google Scholar 

  53. Kala R, Warwick K (2013) Multi-level planning for semi-autonomous vehicles in traffic scenarios based on separation maximization. J Int Robot Syst 72(3–4):559–590

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahul Kala.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 9476 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kala, R. On repelling robotic trajectories: coordination in navigation of multiple mobile robots. Intel Serv Robotics 11, 79–95 (2018). https://doi.org/10.1007/s11370-017-0238-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11370-017-0238-5

Keywords

Navigation