Skip to main content
Log in

Decentralized behavior-based formation control of multiple robots considering obstacle avoidance

  • Original Research Paper
  • Published:
Intelligent Service Robotics Aims and scope Submit manuscript

Abstract

This paper proposes a decentralized behavior-based formation control algorithm for multiple robots considering obstacle avoidance. Using only the information of the relative position of a robot between neighboring robots and obstacles, the proposed algorithm achieves formation control based on a behavior-based algorithm. In addition, the robust formation is achieved by maintaining the distance and angle of each robot toward the leader robot without using information of the leader robot. To avoid the collisions with obstacles, the heading angles of all robots are determined by introducing the concept of an escape angle, which is related with three boundary layers between an obstacle and the robot. The layer on which the robot is located determines the start time of avoidance and escape angle; this, in turn, generates the escape path along which a robot can move toward the safe layer. In this way, the proposed method can significantly simplify the step of the information process. Finally, simulation results are provided to demonstrate the efficiency of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Kingston DB, Beard RW, Holt RS (2008) Decentralized perimeter surveillance using a team of UAVs. IEEE Trans Robot 24(6):1394–1404

    Article  Google Scholar 

  2. Rezaee H, Abdollahi F (2014) A decentralized cooperative control scheme with obstacle avoidance for a team of mobile robots. IEEE Trans Ind Electron 61(1):347–354

    Article  Google Scholar 

  3. Oh K-K, Park M-C, Ahn H-S (2012) A survey of multi-agent formation control: position-, displacement-, and distance-based approaches. Number: Gist DCASL TR 2

  4. Vos E, van der Schaft AJ, Scherpen JMA (2016) Formation control and velocity tracking for a group of nonholonomic wheeled robots. IEEE Trans Autom Control 61(9):2702–2707

    Article  MathSciNet  MATH  Google Scholar 

  5. Burgard W, Moors M, Stanchniss C, Schneider F (2005) Coordinated multi-robot exploration. IEEE Trans Robot 21(3):376–386

    Article  Google Scholar 

  6. Ryu H, Chung WK (2013) Local map-based exploration for mobile robots. Intell Serv Robot 6(1):199–209

    Article  Google Scholar 

  7. Durrant-Whyte H, Bailey T (2006) Simultaneous localization and mapping (SLAM): part I essential algorithm. IEEE Robot Autom Mag 13(2):99–110

    Article  Google Scholar 

  8. Clark J, Fierro R (2005) Cooperative hybrid control of robotic sensors for perimeter detection and tracking. In: Proceedings of the American control conference, Portland, Oregon, USA, vol 5, pp 3500–3505

  9. Merino L, Caballero F, Ramiro Martinez-de-Dios J, Maza I, Ollero A (2012) An unmanned aircraft system for automatic forest fire monitoring and measurement. J Intell Robot Syst 65(1):533–548

    Article  Google Scholar 

  10. Casbeer DW, Kingston DB, Beard RW, McLain TW, Li S-M, Mehra R (2006) Cooperative forest fire surveillance using a team of small unmanned air vehicles. Int J Syst Sci 37(6):351–360

    Article  MATH  Google Scholar 

  11. White BA, Tsourdos A, Ashokaraj I, Subcham S, Zbikowski R (2008) Contaminant cloud boundary monitoring using UAV sensor swarms. IEEE Sens J 8(10):1681–1692

    Article  Google Scholar 

  12. Casper J, Murphy RR (2003) Human–robot interactions during the robot-assisted urban search and rescue response at the world trade center. IEEE Trans Syst Man Cybern B Cybern 33(3):367–385

    Article  Google Scholar 

  13. Liu Y, Nejat G (2013) Robotic urban search and rescue: a survey from the control perspective. J Intell Robot Syst 72(2):147–165

    Article  Google Scholar 

  14. Paola DD, Milella A, Cicirelli G, Distante A (2010) An autonomous mobile robotic system for surveillance of indoor environments. Int J Adv Robot Syst 7(1):19–26

    Article  Google Scholar 

  15. Agmon N, Kraus S, Kaminka GA (2008) Multi-robot perimeter patrol in adversarial settings In: IEEE international conference on robotics and automation, Pasadena, California, USA, pp 2339–2345

  16. Belkhouche F, Belkhouche B (2005) Modeling and controlling a robotic convoy using guidance laws strategies. IEEE Trans Syst Man Cybern B Cybern 35(4):813–825

    Article  Google Scholar 

  17. Lippiello V, Ruggiero F (2012) Exploiting redundancy in cartesian impedance control of UAVs equipped with a robotic arm. IEEE/RSJ international conference on intelligent robots and systems, Vilamoura, pp 3768–3773

  18. Rezaee H, Abdollahi F (2011) Mobile robots cooperative control and obstacle avoidance using potential field. In: IEEE/ASME international conference on advanced intelligent mechatronics, Budapest, pp 61–66

  19. Chen J, Sun D, Yang J, Chen H (2010) Leader–follower formation control of multiple non-holonomic mobile robots incorporating a receding-horizon scheme. Int J Robot Res 29(6):727–747

    Article  Google Scholar 

  20. Consolini L, Morbidi F, Prattichizzo D, Tosques M (2008) Leader–follower formation control of nonholonomic mobile robots with input constraints. Automatica 44(5):1343–1349

    Article  MathSciNet  MATH  Google Scholar 

  21. Cui R, Ge SS, How BVE, Choo YS (2010) Leader–follower formation control of underactuated autonomous underwater vehicles. Ocean Eng 37(17):1491–1502

    Article  Google Scholar 

  22. Ren W, Beard RW (2004) Formation feedback control for multiple spacecraft via virtual structures. IEE Proc Control Theory Appl 151(3):357–368

    Article  Google Scholar 

  23. Lewis MA, Tan K-H (1997) High precision formation control of mobile robots using virtual structures. Auton Robots 4(4):387–403

    Article  Google Scholar 

  24. Naomi NE, Fiorelli E (2001) Virtual leaders, artificial potentials and coordinated control of group. Proceedings of the IEEE conference on decision and control, Orlando, Florida, USA, vol 3, pp 2968–2973

  25. Sadowska A et al (2011) A virtual structure approach to formation control of unicycle mobile robots using mutual coupling. Int J Control 84(11):1886–1902

    Article  MathSciNet  MATH  Google Scholar 

  26. Blach T, Arkin RC (1998) Behavior-based formation control for multi-robot teams. IEEE Trans Robot Autom 14(6):926–939

    Article  Google Scholar 

  27. Xu D, Zhang X, Zhu Z, Chen C, Yang P (2014) Behavior-based formation control of swarm robots. Math Probl Eng 2014:1–13

    Google Scholar 

  28. Towle BA, Nicolescu M (2014) An auction behavior-based robotic architecture for service robotics. Intell Serv Robot 7(3):157–174

    Article  Google Scholar 

  29. Falconi R, Ssbattini L, Secchi C, Fantuzzi C, Melchiorri C (2011) A graph-based collision-free distributed formation control strategy. In: IFAC world congress, Milano, Italy, pp 6011–6016

  30. Dai Y, Choi KS, Lee SG (2013) Adaptive formation control and collision avoidance using a priority strategy for nonholonomic mobile robots. Int J Adv Robot Syst 10(2):323–330

  31. Monteiro S, Bicho E (2008) Robot formation: robot allocation and leader–follower Pairs. In: IEEE conference on robotics and automation, pp 3769–3775

  32. Monteiro S, Bicho E (2010) Attractor dynamics approach to formation control: theory and application. Auton Robots 29(3):331–355

    Article  Google Scholar 

  33. Choi I-S, Choi J-S, Chung W-J (2012) Leader–follower formation control without information of heading angle. In: IEEE/SICE international symposium on system integration, Kyushu, Japan, pp 842–846

  34. Proetzsch M, Luksch T, Berns K (2010) Development of complex robotic systems using the behavior-based control architecture iB2C. Robot Auton Syst 58(1):64–67

    Article  Google Scholar 

  35. Towle BA Jr, Nicolescu M (2014) An auction behavior-based robotic architecture for service robotics. Intell Serv Robot 7(3):157–174

    Article  Google Scholar 

  36. Ropertz T, Berns K, Li X, Schneider K (2016) Verification of behavior-based control systems in their physical environment. In: MBMV, pp 128–137

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea under a grant supported by the Korea government (MSIP) (2014R1A2A1A11053153) and by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (2017R1A2B4009486).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongkyoung Chwa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, G., Chwa, D. Decentralized behavior-based formation control of multiple robots considering obstacle avoidance. Intel Serv Robotics 11, 127–138 (2018). https://doi.org/10.1007/s11370-017-0240-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11370-017-0240-y

Keywords

Navigation