Skip to main content
Log in

An efficient cooperative exploration strategy for wireless sensor network

  • Original Research Paper
  • Published:
Intelligent Service Robotics Aims and scope Submit manuscript

Abstract

Wireless sensor networks (WSNs) are used in several applications such as healthcare devices, aerospace systems, automobile industry, security monitoring. However, WSNs have several challenges to improve the efficiency, robustness, failure tolerance and reliability of these sensors. Thus, cooperation between sensors is an important deal that increases sensor trust. Cooperative WSNs can be used to optimize the exploration of an unknown area in a distributed way. In this paper, the distributed Markovian model strategy that is used due to their past state-dependent reasoning. Moreover, the exploration strategy depends totally on the wireless communication protocol. Hence, in this paper, we propose an efficient cooperative strategy based on cognitive radio and software-defined radio which are promising technologies that increase spectral utilization and optimize the use of radio resources. We implement a distributed exploration strategy (DES) in mobile robots, and several experiments have been performed to localize targets while avoiding obstacles. Experiments were performed with several exploration robots. A comparison with another exploration strategy shows that DES improves the robots exploration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Industrial, Scientific and Medical band.

  2. http://www.3ds.com/fr/produits-et-services/catia/.

References

  1. Akyildiz IF, Lee WY, Vuran MC, Mohanty S (2006) Next generation/dynamic spectrum access/cognitive radio wireless networks. Comput Netw 50(13):2127–2159

    Article  MATH  Google Scholar 

  2. Alemdar H, Ersoy C (2010) Wireless sensor networks for healthcare: a survey. Comput Netw 54(15):2688–2710. https://doi.org/10.1016/j.comnet.2010.05.003

    Article  Google Scholar 

  3. Baldini G, Sturman TA, Biswas AR, Leschhorn R, Gdor G, Street M (2012) Security aspects in software defined radio and cognitive radio networks: a survey and a way ahead. IEEE Commun Surv Tutor 14(2):355–379

    Article  Google Scholar 

  4. Belbachir A, Benabid S (2016) Smart communication for cooperative wireless sensor network. In: 2016 International conference on applied electronics (AE), pp 15–18. https://doi.org/10.1109/AE.2016.7577231

  5. Belbachir A, Ingrand F, Lacroix S (2012) A cooperative architecture for target localization using multiple AUVs. Intell Serv Robot 5(2):119–132. https://doi.org/10.1007/s11370-012-0107-1

    Article  Google Scholar 

  6. Benabid S, Aghdam E (2014) Design and simulation of a 6th order continuous-time sigma–delta modulator using integrated lc filter in a standard CMOS technology. In: International conference on applied electronics, pp 21–25

  7. Bourgault F, Makarenko AA, Williams SB, Grocholsky B, Durrant-Whyte HF (2002) Information based adaptive robotic exploration. In: IEEE/RSJ international conference on intelligent robots and systems, 2002, vol 1, pp 540–545. https://doi.org/10.1109/IRDS.2002.1041446

  8. Burgard W, Moors M, Schneider F (2002) Collaborative exploration of unknown environments with teams of mobile robots. In: Advances in plan-based control of robotic agents: international seminar dagstuhl castle, Germany, 21–26 Oct 2001, revised papers. Springer, Berlin, pp 52–70

  9. Cadena C, Carlone L, Carrillo H, Latif Y, Scaramuzza D, Neira J, Reid ID, Leonard JJ (2016) Simultaneous localization and mapping: present, future, and the robust-perception age. CoRR arXiv.org:1606.05830

  10. Carrillo H, Dames P, Kumar V, Castellanos JA (2015) Autonomous robotic exploration using occupancy grid maps and graph slam based on Shannon and Renyi entropy. In: 2015 IEEE international conference on robotics and automation (ICRA), pp 487–494. https://doi.org/10.1109/ICRA.2015.7139224

  11. Deng X, Milios E, Mirzaian A (2001) Robot map verification of a graph world. J Combin Optim 5(4):383–395. https://doi.org/10.1023/A:1011688823715

    Article  MathSciNet  MATH  Google Scholar 

  12. Doroodgar B, Liu Y, Nejat G (2014) A learning-based semi-autonomous controller for robotic exploration of unknown disaster scenes while searching for victims. IEEE Trans Cybern 44(12):2719–2732. https://doi.org/10.1109/TCYB.2014.2314294

    Article  Google Scholar 

  13. Elfes A (1989) Occupancy grids: a probabilistic framework for robot perception and navigation. PhD thesis, Pittsburgh, PA, USA. AAI9006205

  14. Katiyar V, Kumar P, Chand N (2011) An intelligent transportation systems architecture using wireless sensor networks. Int J Comput Appl 14(2):22–26

    Google Scholar 

  15. Lee JS, Su YW, Shen CC (2007) A comparative study of wireless protocols: Bluetooth, UWB, ZigBee, and Wi-Fi. In: Industrial Electronics Society, 2007. IECON 2007. 33rd Annual Conference of the IEEE, pp 46–51

  16. Liu Y, Nejat G (2013) Robotic urban search and rescue: a survey from the control perspective. J Intell Robot Syst 72(2):147–165. https://doi.org/10.1007/s10846-013-9822-x

    Article  Google Scholar 

  17. Lovász L (1996) Random walks on graphs: a survey. In: Miklós D, Sós VT, Szőnyi T (eds) Combinatorics, Paul Erdős is Eighty, vol 2. János Bolyai Mathematical Society, Budapest, pp 353–398

    Google Scholar 

  18. Low KH, Dolan J, Khosla P (2009) Information-theoretic approach to efficient adaptive path planning for mobile robotic environmental sensing. In: Proceedings of the 19th international conference on automated planning and scheduling (ICAPS-09), pp 233–240

  19. Mitola J III (2000) Cognitive radio: an integrated agent architecture for software defined radio. PhD dissertation, KTH Royal Institute of Technology Stockholm, Sweden

  20. Mitola J III, Maguire GQ Jr (1999) Cognitive radio: making software radios more personal. IEEE Pers Commun 6(4):13–18

    Article  Google Scholar 

  21. Moorehead SJ, Simmons R, Whittaker WL (2001) Autonomous exploration using multiple sources of information. In: Proceedings 2001 ICRA. IEEE international conference on robotics and automation (Cat. No. 01CH37164), vol 3, pp 3098–3103. https://doi.org/10.1109/ROBOT.2001.933093

  22. Popa D, Sanderson A, Komerska R, Mupparapu S, Blidberg R, Chappel S (2004) Adaptive sampling algorithms for multiple autonomous underwater vehicles. In: Autonomous underwater vehicles IEEE/OES, pp 108–118

  23. Razavi B (2015) The future of radios. In: IEEE international symposium on circuits and systems, pp 1–8

  24. Stachniss C, Martínez Mozos Ó, Burgard W (2008) Efficient exploration of unknown indoor environments using a team of mobile robots. Ann Math Artif Intell 52(2):205–227. https://doi.org/10.1007/s10472-009-9123-z

    Article  MathSciNet  MATH  Google Scholar 

  25. Stachniss C, Martínez Mozos Ó, Burgard W (2009) Efficient exploration of unknown indoor environments using a team of mobile robots. Ann Math Artif Intell 52(2):205–227. https://doi.org/10.1007/s10472-009-9123-z

    MathSciNet  MATH  Google Scholar 

  26. Tarokh V, Jafarkhani H, Calderbank A (1999) Space–time block codes from orthogonal designs. IEEE Trans Inf Theory 45(5):1456–1467. https://doi.org/10.1109/18.771146

    Article  MathSciNet  MATH  Google Scholar 

  27. Tarokh V, Seshadri N, Calderbank AR (1998) Space–time codes for high data rate wireless communication: performance criterion and code construction. IEEE Trans. Inf. Theory 44(2):744–765

    Article  MathSciNet  MATH  Google Scholar 

  28. Taylor CJ, Kriegman DJ (1993) Exploration strategies for mobile robots. In: IEEE international conference on robotics and automation, pp 248–253

  29. Thrun S (2003) Exploring artificial intelligence in the new millennium. In: Robotic mapping: a survey. Morgan Kaufmann Publishers Inc., San Francisco, pp 1–35. http://dl.acm.org/citation.cfm?id=779343.779345. Accessed 20 Mar 2018

  30. Thrun S, Burgard W, Fox D (1998) A probabilistic approach to concurrent mapping and localization for mobile robots. Mach Learn 31(1):29–53. https://doi.org/10.1023/A:1007436523611

    Article  MATH  Google Scholar 

  31. Toriz A, Sánchez López A, Lama MAO (2008) Coordinated multi-robot exploration with SRT-radial. In: Advances in artificial intelligence—IBERAMIA 2008, 11th Ibero-American conference on AI, Lisbon, Portugal, 14-17 Oct 2008. Proceedings, pp 402–411. https://doi.org/10.1007/978-3-540-88309-8_41

  32. Whaite P, Ferrie FP (1997) Autonomous exploration: driven by uncertainty. IEEE Trans Pattern Anal Mach Intell 19(3):193–205. https://doi.org/10.1109/34.584097

    Article  Google Scholar 

  33. Yamauchi B, Schultz A, Adams W (1998) Mobile robot exploration and map-building with continuous localization. In: 1998 IEEE international conference on robotics and automation, 1998. Proceedings, vol 4, pp 3715–3720. https://doi.org/10.1109/ROBOT.1998.681416

  34. Zhang B, Sukhatme GS (2007) Adaptive sampling with multiple mobile robots. In: IEEE international conference on robotics and automation. https://doi.org/10.1109/ROBOT.2007.363077

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Assia Belbachir.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (iwa 3 KB)

Supplementary material 2 (iwa 0 KB)

Supplementary material 3 (iwa 0 KB)

Supplementary material 4 (iwa 0 KB)

Supplementary material 5 (iwa 1 KB)

Supplementary material 6 (iwa 0 KB)

Supplementary material 7 (iwa 0 KB)

Supplementary material 8 (iwa 1 KB)

Supplementary material 9 (iwa 0 KB)

Supplementary material 10 (iwa 0 KB)

Supplementary material 11 (iwa 1 KB)

Supplementary material 12 (iwa 2 KB)

Supplementary material 13 (iwa 1 KB)

Supplementary material 14 (iwa 1 KB)

Supplementary material 15 (iwa 0 KB)

Supplementary material 16 (iwa 0 KB)

Supplementary material 17 (iwa 35 KB)

Supplementary material 18 (iwa 0 KB)

Supplementary material 19 (iwa 0 KB)

Supplementary material 20 (iwa 16 KB)

Supplementary material 21 (plist 0 KB)

Supplementary material 22 (plist 0 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belbachir, A., Benabid, S. An efficient cooperative exploration strategy for wireless sensor network. Intel Serv Robotics 11, 237–246 (2018). https://doi.org/10.1007/s11370-018-0249-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11370-018-0249-x

Keywords

Navigation