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Abstract Providing robots with large-scale robot skin

is a challenging goal, especially when considering sur-

faces characterised by different shapes and curvatures.

The problem originates from technological advances in

tactile sensing, and in particular from two requirements:

(i) covering the largest possible area of a robot’s sur-

face with tactile sensors, and (ii) doing it using cheap,

replicabile hardware modules. Given modules of a spe-

cific shape, the problem of optimally placing them re-

quires to maximise the number of modules that can

be fixed on the selected robot body part. Differently

from previous approaches, which are based on methods

inspired by computational geometry (e.g., packing), we

propose a novel layout design method inspired by physi-

cal insights, referred to as Iterative Placement (ItPla),

which arranges modules as if physical forces acted on
them. A number of case studies from the literature are

considered to evaluate the algorithm.

Keywords Tactile sensing · Robot skin · Optimal

placement

1 Introduction

In the past few years, human-robot interaction (HRI)

emerged as a major research field and design paradigm
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to enable novel robot behaviours, considering aspects

related to perception, reasoning and action [14][10]. Two

research strands can be identified. On the one hand,

cognitive HRI aims at understanding how human and

robot behaviours can be integrated to obtain advanced

forms of assistance or cooperation, e.g., in case of house-

hold robots [19][9]. On the other hand, physical HRI

investigates how humans and robots can exploit haptic

information to carry out a set of tasks where physical

contact is essential, e.g., for robot co-workers [4][5].

In physical HRI, special attention is devoted to the

use of large-scale robot skin to provide robots with tac-

tile information originating from their whole body. The

sense of touch is expected to play a fundamental role

and to act as a key enabling technology to implement

novel robot behaviours, specifically in humanoid robots

employed in service scenarios [7][11][12].

Although different technological solutions to deploy

large-scale robot skin have been presented (please re-

fer to [8] and the references therein for a comprehen-

sive analysis of the literature), only a few approaches

consider general-purpose methods adaptable to differ-

ent robots and robot’s surfaces. Modular robot skin

designs are a good trade-off between cost and quality,

specifically in terms of covered robot’s surface [23][20],

adaptability of models for data processing [21][12][15],

as well as hardware and software infrastructure [25][26].

Among these solutions, ROBOSKIN [23][16] proves to

be adaptable to different robot mechanical designs and

shapes [17][6][18]. ROBOSKIN modules are triangles of

equal side, connected together to form an integrated

mesh with just a limited number of entry points.

In this paper we consider the problem of optimally

placing robot skin modules on a given robot’s surface, a

problem defined in [2] and further developed in [28][29].

We refer to the ROBOSKIN technology and, as a con-
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(a) (b)

Fig. 1 Two examples of ROBOSKIN layouts: (a) bottom
view of layout for a robot’s hand palm; (b) top view of a
layout for a robot’s torso coverage.

sequence, we consider triangular modules (Figure 1).

However, the technique we present in this paper is not

specific to the triangular shape, and an extension to

different shapes can be derived. In the problem we con-

sider, optimality refers to the actual amount of robot’s

surface covered by robot skin, subject to a number

of mechanical and design constraints characterising it.

The typical mathematical formulation induces a NP-

HARD class problem, for which a closed-form solution

in polynomial time subject to certain conditions has

been derived in [29].

Apart from related problems, i.e., point placement

[13] and microchip placement [22], only a few techniques

have been proposed to address the problem we consider

in this paper. Anghinolfi and colleagues first define the

robot skin placement problem and solve it using a set of

heuristics, which are based on placing a polygon (rep-

resenting the border of the robot’s surface to cover,

which has been appropriately flattened) over an iso-

metric grid, in order to maximise the number of grid’s

cells contained by the polygon itself [2]. They show that

this formulation is equivalent to fit the highest num-

ber of triangles on the robot’s surface. Although they

propose seven heuristics (integrated in a multi-start ap-

proach), they argue that one seems to always outper-

form the others. In their approach, since the isometric

grid defines the mutual position of triangular modules,

the relative displacement is fixed and rigid. Further-

more, all modules in the resulting placement must be

strictly located inside the polygon’s border. As a conse-

quence, the approach by Anghinolfi and colleagues does

not take into account any soft violation of the geomet-

rical constraints. An extension to the original algorithm

has been proposed by Wei and colleagues [28][29], who

adopt a greedy strategy to improve the original results.

Their algorithm repeats the polygon placement steps

several times. Each time, it gets the most stable place-

ment part and consider it as part of the final placement,

and separates the corresponding area from the poly-

gon’s border. The relative rigid displacement between

modules is relaxed, and this leads to better placement

results. However, the approach by Wei and colleagues

cannot tolerate constraint violations, and because of the

adopted greedy strategy, a number of (possibly good)

placements may not be generated.

The paper by Wang and colleagues [27], although

not directly related to the problem we consider here,

shares some similarity with our work. They tackle a

triangle-based packing problem, where an area must be

filled with the maximum number of triangles allowed by

the area size. According to their approach, triangles en-

ter the area one at a time, and they are positioned con-

sidering also the locations of already packed triangles.

If no triangles can be added anymore, the packing pro-

cess is terminated. However, there are important differ-

ences with respect to our work: (i) we allow triangles to

reposition (according to certain conditions) before the

final placement is reached at any time, whereas Wang

and colleagues fix the position of each triangle, incre-

mentally; (ii) we set a few rules to move triangles in

order to obtain the final placement, whereas Wang and

colleagues use strategies inspired by the way humans

would perform the packing problem.

The main contribution of this paper is a new physics-

based placement algorithm for the automated layout

design of large-scale robot skin, referred to as Iterative

Placement (ItPla), which is available open source1.

Given generic robot body parts, a general-purpose pro-

cess is described to optimally place robot skin modules

to cover such body parts. Each module is subject to

a number of pseudo-forces, which move it according to

mutual positions of other modules.

The paper is organised as follows. Section 2 intro-

duces the automated robot skin placement problem and

outlines the proposed algorithm, and it poses a number

of definitions. Section 3 details a simpler version of our

problem, which is based on circular modules, to describe

basic concepts. Section 4 discusses our solution to the

robot skin placement problem for triangular modules.

Case studies are discussed in Section 6. Conclusions fol-

low.

2 The Robot Skin Placement Problem

2.1 Constraints and Problem Statement

The robot skin placement problem for triangular mod-

ules has been introduced in [2]. As previously pointed

out, different aspects of the problem have been dis-

cussed also in [1][3]. The problem originates from novel

technological solutions to the development of large-scale

1 Web: https://github.com/boy2000-007man/ITPLA.

https://github.com/boy2000-007man/ITPLA
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robot skin. ROBOSKIN [23][16] is a modular robot skin

where each module, of triangular shape, has a 3 cm

side and hosts a number of tactile elements (i.e., tax-

els) representing discrete sensing locations. Triangular

modules are mechanically connected with each other

at the mid points of their sides. Such connections can

be slightly bent (or even cut) but cannot be stretched

nor twisted in an operational arrangement of modules

(i.e., a patch). Therefore, triangular modules must not

overlap (constraint C1) nor slide (C2) with each other

because this would twist the connectors to a breaking

point. It is noteworthy that connectors host wires to

allow data signals to be exchanged between any two

modules.

The whole problem can be divided in three steps,

namely (i) body part surface flattening, in which a 2D

version of the 3D surface to cover is obtained through

a proper topographic mapping in the form of a (possi-

bly distorted) polygon P , (ii) optimal body part cover-

age, which aims at maximising the area of P covered

with robot skin, i.e., finding the maximum number of

triangles contained in P , and (iii) optimal data signals

routing in patches, where data buses are routed via con-

nectors to enforce redundancy and fault tolerance [1].

As described in [2], the problem of determining the

optimal coverage when fixing robot skin on robot’s body

parts can be modelled as finding an appropriate place-

ment of a polygon (representing a flattened version of

the surface to cover) over an isometric grid, subject to

the two constraints C1 and C2 outlined above, to max-

imise the number of triangles which can be contained

in it. As discussed in [2], this proves to be equivalent to

cover the original 3D surface in so far as the distortions

induced by the flattening procedure are minimised. In

such a model, the isometric grid represents an arrange-

ment of triangles of equal side consistent with the RO-

BOSKIN layout. In this paper, we focus on the second

step outlined above, i.e., optimal body part coverage.

2.2 Outline of the Iterative Placement Algorithm

In this Section, we formalise the problem we address

more precisely. In our case, optimality refers to the

amount of robot’s surface that is actually covered. In

Iterative Placement, body part coverage is divided in

two steps: first, the algorithm places the highest possi-

ble number of triangles inside P (computed based on

the ratio between the polygon’s and a triangle’s area);

second, it iteratively adjusts triangle’s poses to satisfy

constraints C1 and C2.

Before outlining the overall algorithm’s behaviour,

a few informal definitions must be introduced. With tri-

angle’s pose, we refer to the location and orientation of

Start

Check 
whether the 

obtained stable 
placement is 
acceptable

End

Input polygon P

Production of acceptable 
placements

Computation of an upper 
bound to the number of 

possible
triangles inside P

Initial randomly generated 
poses

Iterative adjustment of 
triangle’s poses

Check 
whether the 

current 
placement is 

stable

not stable

stable

Removal of overlapping 
triangles

not acceptable

acceptable

Fig. 2 A flowchart of the ItPla algorithm.

a triangle-centred reference frame with respect to an

external (i.e., absolute) reference frame. Given a poly-

gon P , we refer to a placement as a configuration of

any number of triangle’s poses within P . We label as

acceptable a placement free from mutual overlaps be-

tween triangles, and as stable a placement where trian-

gle’s poses tend to stabilise as a result of an iterative

pose adjustment process aimed at satisfying constraints

C1 and C2. Two notions of stability are used in ItPla.

A placement is absolutely stable if poses are not updated

in the iterative process, whereas we refer to an approxi-

mately stable placement as a placement where each pose

varies of a very small amount (i.e., the displacement is

below a given threshold), which is negligible in practice.

The steps of ItPla are described as follows (Figure 2).

1. Computation of an upper bound to the number of

possible triangles inside P and initial randomly gen-

erated poses. Given a polygon P (Figure 3a), the up-

per bound is computed using the ratio between the

areas of P and a module’s. A corresponding number

of triangles is placed randomly inside P (Figure 3b).

It is noteworthy that, initially, triangles can overlap

with each other as well as with the border of P . The
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(a) (b) (c) (d) (e)

Fig. 3 An example of the whole coverage process: (a) a polygon P ; (b) triangles are randomly placed in P ; (c) an invalid
placement is generated; (d) an overlapping triangle is removed; (e) a valid placement is obtained.

final result of the process may vary according to the

initial placement. In practice, it is possible to adopt

a multi-start approach and select the best placement

result.

2. Iterative adjustment of triangle’s poses. Given the

initial placement, ItPla adjusts poses to obtain an

overall acceptable placement. The algorithm pro-

ceeds by iteratively arranging triangles using pseudo-

forces (i.e., associating each triangle’s reference frame

with a velocity vector), therefore making triangles

translate and rotate. Pseudo-forces are designed to

tend to reduce the overlap between triangles and to

properly align them. As a consequence, it can be

noticed that solutions are not guaranteed to satisfy

the two constraints C1 and C2.

3. Check whether the current placement is stable. Af-

ter a number of iterations, triangle’s poses will tend

to balance each other and stabilise (Figure 3c). In

ideal conditions (and with a theoretically infinite

number of iterations), such a force balance leads to

an absolutely stable placement. However, in order

to obtain realistic solutions in a limited amount of

time, we deem sufficient to consider placements in

which approximate stability is reached. This is a

good trade-off between placement stability, solution

accuracy and processing time. To this aim, ItPla

employs simulated annealing to determine whether

the placement is approximately stable according to

a metric related to the degree of triangles overlap.

4. Check whether the obtained stable placement is ac-

ceptable. After a stable placement is obtained, It-

Pla evaluates whether it is acceptable. Acceptabil-

ity mainly depends on modelled physical constraints

between triangular modules. In the reference robot

skin technology, constraints are related to mechan-

ical connectors, which are located at the middle of

triangular module’s sides. Furthermore, end corners

of triangular modules can be cut to a certain extent

to accommodate for situations in which triangles

overlap with borders of P . Since P originates from

a 3D surface, it is subject to distortions. As a con-

sequence, the algorithm considers the placement to

be acceptable when the amount of overlap between

neighbouring triangles is below a given threshold.

5. Removal of overlapping triangles. When a stable

placement is not acceptable, a triangle in overlap

is chosen and removed (Figure 3d). Then, a new it-

erative adjustment process starts considering the re-

maining triangles until a final acceptable placement

is obtained.

6. Production of acceptable placements. When a stable

placement is acceptable, it is shown to the user for

evaluation (Figure 3e). However, if a multi-start ap-

proach is employed, ItPla starts again from step 2,

until the selected number of algorithm iterations is

reached.

2.3 Preliminary Definitions

The unfolded surface of the robot body part to cover

is modelled as a simple and closed polygon P , whose

boundary ∂P is characterised by a finite set EP of φ

edges, such that EP = {e1, . . . , eφ} (Figure 3a). A poly-

gon is labelled as simple if its edges do not pairwise
intersect, with the obvious exception of their vertexes.

Since the goal of the robot skin placement is to cover as

much of a robot’s surface as possible, it will be conve-

nient to refer to A(·) as the area of any generic planar

shape. P must be covered with the highest number B∗P
of modules, such that B∗P ≤ BP , where BP is a theo-

retical upper bound to the number of possible modules

fitting in, defined as the floor of the ratio between the

areas of P and a module’s m, as follows:

BP =

⌊
A(P )

A(m)

⌋
. (1)

For instance, with respect to Figure 3b, the upper bound

BP is equal to 3. In this paper, we refer to the set of

modules covering P as SP = {m1, . . . ,mB∗P }. Given a

module m, we refer to its pose as pm. A placement P
of a polygon P can therefore be expressed as a set of

module’s poses, as follows:

PP = {pm1 , . . . , pmB∗
P
}. (2)
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The physical constraints C1 and C2 described above,

which are imposed by the target robot skin technology,

are modelled in ItPla as rules in the algorithm.

From constraint C1, given a polygon P , we have that

modules belonging to SP should not overlap with each

other (Figure 3c). However, since P is a flattened pla-

nar representation of a robot body part, it is likely that

P is distorted with respect to the original 3D surface,

either when unfolding [2] or surface parameterisation

techniques are used [12]. Therefore, results where small

overlaps are present may still be acceptable in practice

(Figure 3d). In case even minor overlaps cannot be ac-

cepted, the reference technology may still allow one to

cut (to a limited extent) a module’s end corner, which

may solve a few issues associated with overlapping. In

ItPla, we introduce an overlapping threshold τo, which

is an upper bound to the overlapping degree of any ac-

ceptable placement.

From constraint C2, module’s layouts are hard con-

straints. However, for the same reasons considered for

C1, small violations of these constraints still may lead to

acceptable solutions in practice. ItPla minimises mis-

placements among neighbouring modules, and uses a

misplacement threshold τm for acceptable placements.

The two thresholds τo and τm may be tuned to allow

for more or less permissive violations of the constraints.

3 ItPla-Circ: Circular Modules Placement and

the Role of Distances

If we consider the ROBOSKIN layout, we may observe

that triangular modules are arranged in an hexagonal

pattern. This Section considers a set SP of circular mod-

ules to be arranged in an hexagonal structure in order

to cover at best the polygon P . We focus on circular

modules to discuss a few basic properties of ItPla.

It has been demonstrated, first by Gauss and then

by Fejes Tóth [24], that hexagonal packing is the densest

packing in the plane, as it forms a lattice with a packing

density η = 0.9068. Such a packing lattice replicates a

number of configurations which can be found in Nature,

e.g., bee’s honeycombs and the graphite structure [30].

It does make sense to understand how such properties

can be adapted to our purposes.

As anticipated in the previous Section, ItPla pro-

ceeds by iteratively arranging modules using a simu-

lated pseudo-force field, which models attraction and

repulsion forces among modules. The algorithm tends

to produce stable placements because attraction and

repulsion forces tend to equate as by the energy loss

caused by simulated friction. In our case, friction is

mimicked considering the level of overlap between mod-

ules.

While repulsion forces act to separate two neigh-

bouring modules, attraction forces allow them to ag-

gregate. In the algorithm, a repulsion force occurs when

modules overlap with each other. The placement result-

ing from a distributed local effect of attracting and re-

pulsing pseudo-forces is expected to resemble an hexag-

onal packing. In order to obtain such placements, how-

ever, a faithful simulation of attraction and repulsion

forces is not necessary. Indeed, as pointed out by Eades

[13], it is possible to adopt pseudo-forces, which can be

used to compute velocity vectors associated with mod-

ule’s poses each time quantum ∆t, whereas real forces

would induce accelerations. In our case, this distinction

is important because real forces lead to dynamic equi-

libria, whereas we are interested in static equilibria.

Given the geometric nature of the problem, let us

define the overlap and neighbour relationships between

modules. In case of circular modules, the concept of

pose reduces to their positions. For the overlap, a work-

ing definition is straightforward.

Definition 1 Given two modules mi, mj ∈ SP , let us

consider the open subset of mi as ℘mi = mi\∂mi and

mj as ℘mj = mj\∂mj . An overlap exists between mi

and mj , referred to as O(mi,mj) or O(mj ,mi), when

℘mi ∩ ℘mj 6= ∅.

It is noteworthy that overlaps can occur also between

modules and a polygon’s edges.

Definition 2 Given a module mi ∈ SP and a poly-

gon’s edge ej ∈ EP , let us consider the open subset of

mi as ℘mi. An overlap exists between mi and ej , re-

ferred to as O(mi, ej) or O(ej ,mi), when ℘mi ∩ ej 6= ∅.

We define Omi as the set of all mj for which an

O(mi,mj) relationship holds, plus the set of all ej for

which an O(mi, ej) relationship holds. In order to quan-

tify the level of overlap between a module mi and an

edge ej ∈ EP , it is possible to refer to P(·) as the area

of mi outside P , i.e., A(mi\P ). Ideally, the total over-

lap area OP associated with a placement PP can be

computed as:

OP =
1

2

B∗P∑
i=1

A (O(mi,mj)) +

B∗P∑
i=1

P (O(mi, ej)) , (3)

which can be reduced to:

OP =

B∗P∑
i=1

A(mi)−A

B∗P⋃
i=1

mi ∩ P

 . (4)

The total overlap area is used to determine whether

the associated placement PP is acceptable. This occurs

if OP is lower than or equal to the threshold τo:

OP ≤ τo. (5)
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Fig. 4 The neighbour relationship is not always reciprocal.

In our case, neighbouring relationships are tied to

the peculiar geometrical nature of the problem. A cir-

cular module can have at most 6 neighbours, which we

want to be arranged in an hexagonal structure to en-

force the covered area. To this aim, we ideally parti-

tion the planar space around a given module mi in 6

equal semi-spaces si,k, with k = 1, . . . , 6, and we con-

sider as the neighbour module in each semi-space si,k
the one closest to mi. Of course, this implies the no-

tion of distance between modules, which is introduced

and discussed later. It is noteworthy that, according to

this statement, if mi is a neighbour of mj , does not

necessarily hold that mj is a neighbour of mi, i.e., the

relationship is not reciprocal. An example is shown in

Figure 4. Here, m1 is a neighbour of m2, but the op-

posite does not hold. This is due to the fact that m1 is

the only module belonging to one of the semi-spaces of

m2, whereas both m2 and m3 lie in the same semi-space

of m1, and m3 is closer to m1. As a consequence, be-

cause the interaction caused by pseudo-forces depends

on neighbour relationships, they are not expected to be

necessarily mutual.

Definition 3 Given a module mi ∈ SP , let us consider

the open subset of mi as ℘mi and its pose pi. For each

module mj ∈ SP \mi, let us consider its open subset

℘mj and its pose pj . For each semi-space si,k around

mi, we classify each mj as belonging to strictly one

semi-space si,k, i.e., mj ∈ si,k, depending on its pose.

Then, for each si,k, we define m∗j as a neighbour of mi,

and we write Nk(m∗j ,mi), if and only if:

m∗j = arg min
j

d(pj , pi), (6)

where d is an Euclidean distance function of module’s

poses, i.e., their centres in this case, and mj ∈ si,k.

Figure 5 shows two examples of neighbour relation-

ships. On the left, we notice that only N(m2,m3) holds,

whereas N(m1,m3) and N(m4,m3) do not hold since

m1 and m4 are farther from m2 than m3. On the right,

(a) (b)

Fig. 5 Two examples of neighbour relationships: (a) the line
segment between two module’s centres, if not interrupted, de-
termines the neighbour relationships; (b) the closest module
is defined as the neighbour.

(a)

(b)

Fig. 6 Determining the lowest distance between two mod-
ules: (a) circular modules; (b) triangular modules.

both N(m1,m3) and N(m2,m3) hold, since m1 and m2

belong to two different semi-spaces.

We consider overlap relationships as an indicator

of sub-optimal placements. In fact, in the ideal case

of acceptable placements, no overlap relationships are

present, because all modules keep the proper distance

from their neighbours. Henceforth, we assume that only

neighbour modules can influence each other through

pseudo-forces. This allows ItPla to consider only local

pseudo-forces, which can be modelled using local infor-

mation only, such as the current and the theoretically

lowest distances between modules.

Figure 6 shows how the lowest distance between any

two modulesmi andmj ∈ si,k is computed, respectively

for circular and – we anticipate – for triangular mod-

ules. For circular modules, the lowest Euclidean dis-

tance is obviously independent from module’s orienta-

tions and dependent on module’s radii, whereas this is

not the case for triangular modules. In order to avoid

any module’s shape-specific differences when comput-
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ing the distance, we adopt a normalised distance, de-

scribed as follows.

Definition 4 Given a module mi ∈ SP and a module

mj ∈ si,k, we consider the corresponding poses pi and

pj . We let mj translate (and not rotate) along the seg-

ment determined by the centres of pi and pj . The near-

est pose p∗j such that mj can reach mi without over-

lapping determines the closest location to mi. Then,

the normalised distance d between mi and mj can be

computed as follows:

d(pi, pj) =

(
|pipj |
|pip∗j |

2

− 1

)
·
d(pi, p

∗
j )

|pip∗j |
. (7)

It is noteworthy that the normalised distance in (7)

is not mutual, i.e., d(pi, pj) 6= d(pj , pi). If mi and mj

are such close that their distance is lower than d(pi, p
∗
j ),

then d is negative (i.e., there is overlap) and mi and mj

are subject to a repulsion force. Otherwise, d is posi-

tive and they are subject to an attraction force. The

actual amplitude of the pseudo-force varies according

to the difference between the current and the minimum

distance as reflected by the normalised distance defined

before (i.e., the bigger the difference, the stronger the

pseudo-force) and indirectly to the level of overlap be-

tween two modules.

A modulemi is influenced by pseudo-forces originat-

ing from neighbours of each semi-space si,k. Assuming

that mk is the neighbour module in si,k, then we re-

fer to fdk,i as the pseudo-force originating from mk and

acting on mi related to the normalised distance, as:

fdk,i = χd · d(pi, pk), (8)

where χd is a positive real number, possibly used to

model a number of features of the pseudo-force, e.g.,

attraction and repulsion profiles. Therefore, we label a

pseudo-force as attractive when fd > 0, and as repulsive

otherwise. The overall pseudo-force Φdi on mi can be

computed as the sum of all pseudo-forces in each semi-

space:

Φdi =
∑
k

fdk,i. (9)

The connection between modules must be kept until

the repulsive pseudo-force exceeds a parametric ampli-

tude. We adopt a weighting approach to obtain stable

placements in the iterative process. Specifically, (9) can

be rewritten as follows:

Φdi =

∑
k w

d
k,i · fdk,i∑
k w

d
k,i

, (10)

where wdk,i refers to the weight of fdk,i on mi.

In order to determine such weights, different func-

tions are equally legitimate. Here, we adopt a simple

function depending on the ratio between distances in-

volving modules mi and mk (i.e., the neighbour in si,k),

and in particular with respect to their poses:

wdk,i =
|pip∗k|
|pipk|

n

, (11)

where n is an positive integer number. The weighting

mechanism in (11) considers the ratio between the theo-

retically lowest and the current distance of modules mi

and mk, earlier referred to as |pip∗k|. When the current

and the lowest distances are the same (i.e., modules

are connected), then wdk,i = 1. If the actual distance is

smaller that the theoretically lowest one (i.e., an over-

lap occurs), the weighting function increases so that a

repulsive pseudo-force fdk,i caused by the overlapping

module is weighted more in (10). Otherwise, if the dis-

tance is greater than the theoretically lowest one, which

implies that the corresponding module does not vio-

late any constraints, then the corresponding forces are

weighted less. As a result, ItPla first tends to elimi-

nate overlaps, then maintains the established connec-

tions, and finally deals with isolated modules.

4 ItPla-Tri: Triangular Modules Placement and

the Effects of Moments and Translation Offsets

In the previous Section, we discussed the basic princi-

ples of ItPla in the case of circular modules. In order

to consider a set SP of triangular modules covering a

polygon P , a few differences with respect to the previ-

ous case must be discussed.

– The notions of overlap between modules, total over-

lap and neighbouring do not change, subject to the

different concept of Euclidean distance shown in

Figure 6. However, the normalised distance in (7)

is used also in the case of triangular modules.

– Considering a triangular module mi, the number of

semi-spaces si,k reduces to 3, because each module

can be connected at most to three other modules.

– The pose pi must explicitly include the module’s

orientation θi, which is expressed with respect to an

external (i.e., absolute) reference frame.

– Whilst circular modules can be connected together

without defining a specific connection location on

their border, ROBOSKIN triangular modules can

be only connected to each other through the mid

points of their sides.

As a consequence, beside the one described in (10), two

other pseudo-forces are designedAs discussed in [2], this
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Fig. 7 The angle ∆θi,j between mi and mj as computed
using (12).

proves to be equivalent to cover the original 3D sur-

face in so far as the distortions induced by the flatten-

ing procedure are minimised. to play a major role in

ItPla-Tri, the first related to a triangular module’s

moment, the second to the translation offset alignment

between adjacent sides of neighbour modules. On the

one hand, the constraints C1 and C2 introduced above

are met when there is no overlap nor offset misplace-

ment between neighbour triangular modules, i.e., when

close sides are aligned with each other. This implies

that it is necessary to induce moments to rotate them

of a certain amount. On the other hand, neighbouring

triangular modules must shift along their closest sides

to match the corresponding mid points. This induces

an additional interaction constraint, which is related to

how real-world modules are connected to each other.

We define first how to characterise the angular dif-

ference between two neighbour triangular modules.

Definition 5 Given two triangular modules mi and

mj such that N(mi,mj) and N(mj ,mi), let us define

ei as the side of mi closest to mj , and ej as the side of

mj closest to mi, i.e., ei and ej face each other. Then,

the angular difference ∆θi,j between mi and mj can be

computed as:

∆θi,j = θi − θj +
Π

3
· (−→ei −−→ej )−

Π

2
, (12)

where −→ei and −→ej are vectors associated with modules’

sides ei and ej .

An example is shown in Figure 7. In order to align two

triangular modules, we can use (12) to distribute the

variation in modules orientation between mi and mj

(i.e., their moments τi and τj), as follows:

τi = τj =
∆θi,j

2
, (13)

where the scaling factor 1
2 is applied so that both mi

and mj rotate of the same amount to align their closest

sides ei and ej . Of course, other scaling factors can be

chosen. Here, we assume an equal distribution of angu-

lar variations.

Fig. 8 The parameters used in offset pseudo-force calcula-
tion

As in the case of circular modules, a module mi

is influenced by the pseudo-forces exerted by its neigh-

bours. Given a module mk in a semi-space si,k, we refer

to fτk,i as the pseudo-force acting on mi related to the

rotation induced by mk, as:

fτk,i = χτ ·
∆θi,k

2
, (14)

where χτ is a positive real number. In this case, we con-

sider the pseudo-force as attractive when θi and θk con-

verge to each other, and as repulsive otherwise. Given

the contribution of the three semi-spaces around mi,

the overall pseudo-force Φτi is given by:

Φτi =
∑
k

fτk,i. (15)

Analogously to (10), stable placements can be enforced

by introducing weights, such as:

Φτi =

∑
k w

τ
k,i · fτk,i∑
k w

τ
k,i

, (16)

where wτk,i refers to the weight of fτk,i on mi. Weights

can depend on the angular difference between the two

modules, for example:

wτk,i = (∆θi,k)2, (17)

where, when θi = θk, then fτk,i = 0.

Now we define the translation offset between two

neighbour triangular modules.

Definition 6 Given two triangular modules mi and

mj such that N(mi,mj) and N(mj ,mi), let us define

ei as the side of mi closest to mj , and ej as the side

of mj closest to mi, i.e., ei and ej face each other, ci
as the mid point of ei and cj as the mid point of ej .

Then, the translation offset ∆Ti,j between mi and mj

is computed as:

∆Ti,j =
−−→cicj · −→ei

2
·
−→ei
|ei|

, (18)

where −−→cicj is the vector connecting the two mid points,

and −→ei is a vector associated with ei.
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The situation is depicted in Figure 8. Analogously to

what we do in (13), we can distribute equally the offset

reduction to mi and mj , by imposing:

ti = tj =
∆Ti,j

2
. (19)

Given a module mk in a semi-space si,k, we refer

to fTk,i as the pseudo-force acting on mi related to the

translation offset induced by mk, as:

fTk,i = χT ·
∆Ti,k

2
, (20)

where χT is a positive real number. The pseudo-force

is always attractive whether ∆T reduces or increases.

Given the contribution of the three semi-spaces around

mi, the overall pseudo-force ΦTi can be computed as:

ΦTi =
∑
k

fTk,i. (21)

Also in this case we introduce weights to enforce stable

placements, as follows:

ΦTi =

∑
k w

T
k,i · fTk,i∑
k w

T
k,i

, (22)

where:

wTk,i = (∆Ti,k)2. (23)

The total misplacementMP associated with a place-

ment PP can be computed as:

MP =
1

2

B∗P∑
i=1

B∗P∑
j=1,j 6=i

L(∆Ti,j), (24)

where L(·) denotes the length of a line segment. The

total misplacement is used to determine whether the

associated placement PP is acceptable. This occurs if it

is lower than or equal to the threshold τm:

MP ≤ τm. (25)

Once these two pseudo-forces are introduced, we can

define the overall pseudo-force acting on a triangular

module mi simply by summing up the contributions

of distances (10), moments (16) and offsets (22), as

follows:

Φi = Φd + Φτi + ΦTi . (26)

Figure 9 shows an example of the effects of Φi on two

triangular modules. It is possible to note that distances,

moments and translation offset alignments contribute

to the mutual position of two modules mi and mj .

Fig. 9 An example of the combined effect of the three
pseudo-forces Φd, Φτ and ΦT .

5 ItPla: Iterative Placement

Having devised the main roles of pseudo-forces, we can

now introduce the whole ItPla algorithm. It is nec-

essary to determine how the algorithm deals with the

effects of the polygon’s border on modules, how stable

placements are determined, and how modules in over-

lap (which cannot be accommodated) are removed from

the placement.

5.1 The Influence of the Polygon’s Border on Modules

In this Section we describe how a polygon’s border in-

fluences the poses of the modules inside it. As we antic-

ipated, the border constitutes a hard constraint, since

no overlap is allowed with its edges. However, if the al-

gorithm is used to cover a robot’s body part using the

ROBOSKIN technology, a small portion of triangular

module corners can be cut, and in practice we can al-

low module’s corners to overlap with polygon’s edges

[2]. This is not true in general, though.

Let us define first the neighbour relationship be-

tween modules and edges.

Definition 7 Given a module mi ∈ SP and an edge

ej ∈ EP , let us consider the open subset of mi as ℘mi,

its pose pi, and let us define cj as the mid point of

ej . For each semi-space si,k around mi, we classify ej
as belonging to strictly one semi-space si,k, such that

ej ∈ si,k, depending on the position of cj . Then, for

each si,k, we define e∗j as a neighbour of mi, and we

write N(e∗j ,mi), such as:

e∗j = arg min
j

d(cj , pi), (27)

where d is the Euclidean distance and ej ∈ si,k.

Henceforth, we refer to Nmi as the set of all mj for

which a N(mi,mj) relationship holds, plus the set of

all ej for which a N(ej ,mi) relationship holds.

Given a polygon P , each edge ej ∈ EP contributes

to the pose pi of a neighbour module mi, both with an

induced attraction or repulsion, as well as with a mo-

ment pseudo-force. In order to define how an edge ej
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attracts or repels a module mi, we must define the no-

tion of distance between them. We recur to the notion

of generalised distance previously introduced in Defini-

tion 4.

Definition 8 Given a module mi ∈ SP and a poly-

gon’s edge ej ∈ EP , we consider the pose pi and the

point cj of ej where pi can be projected along the

normal direction. We let mi translate (and not rotate)

along the segment determined by pi and cj . The nearest

location p∗i such that mi can reach ej without overlap-

ping determines the closest location to ej . We refer to

p∗i cj as the Euclidean distance between p∗i and cj . Then,

the normalised distance d between mi and ej can be

computed as follows:

d(pi, ej) =

(
d(pi, cj)

|p∗i cj |

2

− 1

)
· d(p∗i , cj)

|p∗i cj |
. (28)

This notion of distance can be visualised as a particular

case of what happens in Figure 6, where the edge ej acts

as if it were a triangular module’s edge.

The attractive or repulsive pseudo-force originating

from ej and acting on mi depends on the distance d, as

follows:

fP,dj,i = χP,d · d(pi, ej), (29)

where χP,d is a positive real number. It is noteworthy

that, if the actual distance between mi and ej is lower

than p∗i cj , the distance is negative (i.e., there is over-

lap), then mi and ej are subject to a repulsion force;

otherwise, to an attractive force. The overall weighted

pseudo-force ΦP,di on mi due to polygon’s edges can be

computed as:

ΦP,di =

∑
j w

P,d
j,i · f

P,d
j,i∑

j w
P,d
j,i

, (30)

where wP,dj,i refers to the weight of fP,dj,i on mi, i.e., the

contribution of ej related to its distance with respect

to the module mi.

As far as the moment pseudo-force is concerned, we

can reuse the notion of angular difference of Definition

5, treating again the edge ej as if it were the edge of a

triangular module. The rotation induced by ej on mi is

given by the following pseudo-force:

fP,τj,i = χP,τ ·∆θi,j , (31)

where, differently from (13), all the rotation is induced

on mi. The overall weighted pseudo-force ΦP,τi on mi

due to polygon’s edges is computed as:

ΦP,τi =

∑
j w

P,τ
j,i · f

P,τ
j,i∑

j w
P,τ
j,i

. (32)

Algorithm 1 GenerateNextPlacement()

Require: a polygon P , a set of modules SP , the current
placement PcP , the time quantum ∆t

Ensure: a new placement PnP
for all mi ∈ SP do

for all mk ∈ si,k do

Compute d(pi, pk), fdk,i and wdk,i
end for

5: Compute Φdi
for all mk ∈ si,k do

Compute ∆θi,k, fτk,i and wτk,i
end for
Compute Φτi

10: for all mk ∈ si,k do
Compute ∆Ti,k, fTk,i and wTk,i

end for
Compute Φτi
for all ej ∈ EP do

15: Compute d(pi, ej), f
P,d
j,i and wP,dj,i

end for
Compute ΦP,di
for all ej ∈ EP do

Compute ∆θi,j , f
P,τ
j,i and wP,τj,i

20: end for
Compute ΦP,τi
Φtrai ← Φdi + Φτi + ΦP,di
Φroti ← Φτi + ΦP,τi

end for
25: for all mi ∈ SP do

PnP ← TranslateModule(P , mi, Φtrai ∆t)
PnP ← RotateModule(P , mi, Φroti ∆t)

end for

Analogously to what we do in (30), we introduce weights

to balance the contributions of different edges. As a re-

sult, (26) can be updated as:

Φi = Φd + Φτi + ΦTi + ΦP,di + ΦP,τi , (33)

where we can identify the contributions of modules and

edges, respectively, to a module’s translation and rota-

tion.

5.2 Generation of New Placements

Each placement step requires computing all the pseudo-

forces, and then to use (33) to translate and rotate each

module (Algorithm 1). The step assumes the availabil-

ity of the polygon P associated with the robot body

part to cover (in particular, its edges in EP ), the set

of modules SP constituting the current placement PcP ,

and the time quantum ∆t.

For each module mi, GenerateNextPlacement() pro-

ceeds by computing all the pseudo-forces, respectively

Φdi using (10) in line 5, Φτi using (16) in line 9, Φτi using

(22) in line 13, ΦP,di using (30) in line 17 and ΦP,τi using

(32) in line 21. Then, a resultant pseudo-force for the

translation component Φtrai is computed in line 22, and
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Algorithm 2 GenerateStablePlacements()

Require: a polygon P , a set of modules SP , the number of
modules BcP , the time quantum ∆t, the desired number
of stable solutions τE

Ensure: the set of acceptable candidate placements EP
EP ← {∅}
i← 0
PcP ← GenerateInitialPlacement(P , SP , BcP )
while i < τE do

5: PnP ← GenerateNextPlacement(P , SP , PcP , ∆t)
Compute OcP , OnP , Mc

P and Mn
P

∆E ← αO(OnP −OcP) + αM(Mn
P −Mc

P )

if e
− ∆E

F(OcP ,M
c
P) < random(0, 1) then

EP ← EP ∪ PnP
10: i← i+ 1

end if
PcP ← PnP

end while

a for the rotation component Φroti in line 23. Finally,

two functions, namely TranslateModule() and Rotate-

Module() are used to generate the next placement PnP
(lines 26 and 27). In these two functions, pseudo-forces

(i.e, velocity vectors) are transformed in displacement

by time multiplication for the time quantum ∆t.

5.3 Generation of Stable Placements

When a new polygon P is given, ItPla first computes

with (1) the upper bound BP to the number of mod-

ules to use. ItPla tries to find a stable placement PP ,

whose acceptability must be determined. If the total

overlap area OP exceeds τo or the total misplacement

MP exceeds τm, a module to remove must be chosen

(see next Section), and the algorithm keeps iterating

on possible solutions. Determining whether PP is ac-

ceptable is a crucial step in the iteration process: on

the one hand, removing a module implicitly prunes the

solutions space, therefore making possibly good solu-

tions unreachable; on the other hand, not removing a

module can lead ItPla to bias on a specific portion

of the solutions space, which may not contain the best

solutions.

We employ an adaptive simulated annealing approach

to generate the set of acceptable candidate solutions,

from which to select the best one. In our case, as de-

scribed in Algorithm 1, the iterative generation of the

next solution (i.e., a placement EnP ) depends on the

polygon P , the set of modules SP and the current solu-

tion EcP through the combined effect of pseudo-forces.

Differently from the standard simulated annealing pro-

cedure, where the acceptability of a solution is subject

to a certain randomness degree, in our case we can tie it

also to the total overlap area OP and the total misplace-

ment MP, which are related to the specific placement.

Algorithm 3 ItPla()

Require: a polygon P , the time quantum ∆t, the desired
number of stable solutions τE

Ensure: an acceptable placement P∗P
P∗P ← null
Compute BP
BcP ← B∗P
ScP ← null

5: while P∗P is null do
EP ← GenerateStablePlacements(P , ScP , BcP , ∆t, τE)

P+
P ← SelectFrom(EP )

if OP ≤ τo and MP ≤ τm then
P∗P ← P+

P
10: else

BcP ← BcP − 1

ScP ← RemoveModuleFrom(S+P )
end if

end while

GenerateStablePlacements() (Algorithm 2) assumes

a polygon P , the number of modules BcP used to gen-

erate the current coverage, and the time quantum ∆t,

to forward to GenerateNextPlacement() (Algorithm 1),

as well as the number of desired stable solutions τE . At

the beginning, the set of solutions EP and the solu-

tion index i are initialised (lines 1 and 2). The function

GenerateInitialPlacement() is called once to generate

a random initial placement of modules, i.e., the cur-

rent placement PcP and the associated set of modules

SP (line 3). Then, at least τE iterations of lines 5-12 are

executed. For each iteration, the GenerareNextPlace-

ment() function is called, which generates a new place-

ment PnP (line 5). The two total overlaps (respectively,

for the new and current placements) OnP and OcP, as well

as the two total misplacements Mn
P and Mc

P are com-

puted (line 6). Their weighted difference ∆E is com-

puted (line 7). Parameters αO and αM can be chosen

to weight differently area overlap and misplacements.

When the total overlap and the total misplacement tend

to stabilise, then ∆E decreases, leading to a stable solu-

tion with a given probability. If this happens, the place-

ment PnP is added to the set of stable solutions EP and

i is increased (lines 9 and 10). Otherwise, the new so-

lution becomes the current one and a new placement

for the index i is determined (line 12). It is noteworthy

that the annealing effect is tied to both total area and

total misplacement using a function F : the lower their

values, the greater the annealing effect (line 8).

5.4 Generation of Acceptable Placements

With the generation of acceptable placements, we fully

implement the ItPla procedure, as outlined in Figure

2. ItPla (Algorithm 3) assumes as input a polygon P ,

the time quantum ∆t for the iterative procedure and
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the number of stable solutions to choose from. It pro-

duces an acceptable placement P∗P that can be evalu-

ated by a human designer.

First of all, the upper bound to the number of mod-

ules is computed using (1) in line 2. A number of steps

are executed until an acceptable placement P∗P is found

(lines 5 to 14). The GenerateStablePlacement() func-

tion is executed to generate a set EP of stable place-

ments (line 6). When the set of stable solutions EP is de-

termined, the best candidate for acceptability P+
P can be

selected (line 7). Different strategies may be involved.

For instance, the solution minimising a weighted sum

of total overlap OP and total misplacementMP can be

selected, as follows:

P+
P = arg min

OP,MP

EP . (34)

Obviously, other approaches can be preferred as well.

These can be related to the peculiar geometry of the

problem, distortions in P , adopted technology and com-

mon sense.

If P+
P meets the requirements related to overlap and

misplacement, then an acceptable solution is found (line

9) and the algorithm exits. Otherwise, it is necessary to

remove one module from the corresponding set S+P . To

this aim, in general we induce a total order on the pairs

(|Omi |, |Nmi |) ∈ R2, where mi ∈ SP .

Definition 9 Given two modules mi and mj ∈ SP , we

define a lexicographic order on SP , as we define it as

(SP ,≥), such that:

(|Omi |, |Nmi |) ≥ (|Omj |, |Nmj |)

if an only if:

1. |Nmi | < |Nmj |,
2. |Nmi | = |Nmj | and |Omi | ≥ |Omj |.

Since we want to remove the modulem∗i ∈ S+P which has

the lowest number of neighbours and an above-than-

average overlap, RemoveModuleFrom() selects one such

module such that (i)m∗i ∈ SP and (ii)Om∗i ≥ avg(Om∗i )

(line 12). When the module is removed, a new set ScP
is obtained and the algorithm iterates.

6 Use Cases

This Section introduces first a few notes about the im-

plementation of the algorithm, and then presents three

uses cases involving different robot body parts, one

from the iCub robot, and two from a Schunk manip-

ulator.

6.1 Implementation

ItPla has been implemented both in C++ and Python

to broaden its users base.

The C++ version integrates the CGAL computa-

tional geometry library2 and Box2D3 to simulate poly-

gon’s motions. This version also includes a graphical

user interface developed using the QT libraries4. The

C++ version can be considered as a sort of mock-up:

the runtime environment is not easy to set-up, it may be

difficult to add new features because of poor architec-

tural design choices, and the computation of minimum

distances is just an approximation. As far as the Python

version is concerned, the algorithm natively computes

2D calculations as well as physics simulations, and inte-

grates a Python-based graphical user interface. It uses

the pip package manager, and integrates such libraries

as NumPy5, Box2D and PySDL26. With respect to the

C++ version, it has a number of advantages: (i) setting

up the environment is quite easy; (ii) the code is sim-

pler and more clear; (iii) the computation of the lowest

distance is accurate; (iv) the number of lines of code is

around 200 versus more than 1000 of the C++ version.

As anticipated in Section 1, both versions are available

open source.

6.2 Use Case 1: the iCub’s Left Hip

This use case illustrates how ItPla behaves using the

simplified version of the iCub’s left hip used in [2].

Figure 10 shows a few significant steps in the itera-

tion process. First of all, given a flat representation of

the hip surface as a polygon, the theoretically maximum

number of triangular modules is computed using (1). As

a consequence, a certain amount of triangular modules

are generated and randomly placed inside the polygon,

as shown in Figure 10(a). Obviously enough, triangle’s

sides can actually stick out from the polygon’s area.

Then, the iteration phase of the algorithm starts, and

the modules tend to distribute uniformly as per effect of

the attractive and repulsive forces, leading to the situa-

tion in Figure 10(b), as described in (33). In this case, a

part from a few notable exceptions, all modules turn to

be uniformly distributed. In Figure 10(c), it is possible

to see how pseudo-forces tend to remove overlaps, al-

though some of them seem to be unavoidable. Since

a stable but unacceptable (i.e., it contains overlaps)

2 Web: www.cgal.org.
3 Web: box2d.org/.
4 Web: www.qt.io/.
5 Web: www.numpy.org/.
6 Web: www.pygame.org/.

www.cgal.org
box2d.org/
www.qt.io/
www.numpy.org/
www.pygame.org/
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Fig. 10 The ItPla’s evolution process for the iCub robot’s left hip.

Fig. 11 The evolution of the number of modules and the
overlap area during the process shown in Figure 10.

placement is obtained, ItPla needs to remove one tri-

angular module, which is done as shown in Figure 10(d).

As discussed above, the removed module is the one with

the lowest number of neighbours and the highest over-

lap area. Similar removal operations are performed in

the situations depicted in Figure 10(f), Figure 10(h),

and Figure 10(k). The acceptable placement shown in

Figure 10(l) is finally obtained, which terminates the

algorithm. It is noteworthy that, with respect to the

results in [2], the number of triangular modules that

are accommodated inside the polygon raises from 9 to

10, which amounts to a 11.11% increase in coverage.

The trend in both the number of modules and the

overlap area associated with the process described above

is shown in Figure 11. It is possible to observe that the

number of modules decreases as per effect of module re-

movals, whereas the overlap area tends to stabilise and

sometimes to increase during the iterative procedure.

This phenomenon is caused by the employed weight-

ing mechanism. In ItPla, pseudo-force effects are com-

puted taking into account the amount of overlap multi-

plied by a gain, i.e., the weight, which means that such

Fig. 12 A Schunk manipulator’s link with five different sur-
faces to cover.

functions produce gain-dependent results, i.e., their ef-

fect is uniquely defined only subject to a specific choice

of gains. However, this does not affect the procedure

since the overlap area is used only for evaluations, there-

fore having little influence on the final results.

6.3 Use Cases 2 and 3: a Schunk Manipulator’s Link

The second and third use cases are related to the cover-

age of a Schunk manipulator’s link, as shown in Figure

12. The whole link’s surface has been a priori divided in

five different parts, each one subject to a different flat-

tening and coverage process. As it can be seen in the

Figure, the five surfaces are referred to as tr1 1, . . . ,

tr1 5. Here, we focus only on tr1 2 and tr1 5, which

are characterised by challenging irregular shapes. We

do not consider tr1 3 because its area is too small, nei-

ther do we consider tr1 1 nor tr1 4 because their flat
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shape is similar to a rectangle, which would be trivial

to cover.

Figure 13 shows a sequence of snapshots related to

the coverage of tr1 2. As in the previous case, the num-

ber of triangular modules which – in principle – would

cover at best the polygon is computed, and the corre-

sponding number of modules is randomly placed within

the polygon (Figure 13(a)). As soon as the iterative

process starts, we can observe that the leftmost and

the rightmost regions of the polygon become soon well-

covered, whereas overlaps occur in the central region

(Figure 13(c)). The algorithm alternates iterations nec-

essary to stabilise the placement, which can be shown

in Figure 13(c), Figure 13(f), and Figure 13(h), with

events necessary to remove modules, as shown in Fig-

ure 13(d), Figure 13(e), Figure 13(g), and Figure 13(i).

As a comparison with the results obtained using the

approach described in [2], ItPla generates two differ-

ent patches (instead of one) for a total of 15 triangular

modules instead of 11, thereby obtaining a 36.36% cov-

erage increase rate.

Figure 14 shows a sequence of snapshots related to

the coverage of tr1 5. Analogously to what happens

in other cases, the iterative process alternates phases

where pseudo-forces arrange triangular modules towards

a stable placement, with others where one module is

removed to decrease the overall overlap area. In the

case of Figure 14, we observe an increase in coverage of

about 20% (from 15 to 18 modules) with respect to the

baseline solution presented in [2].

6.4 Discussion

The overall algorithm behaviour discussed in the pre-

vious sections leads us to a number of considerations

about both the results and the possible follow-ups.

– ItPla is able to generate placements where multi-

ple patches are present. Patches are distributed on

the polygon in order to maximise the number of con-

tained modules. Attractive pseudo-forces seem to be

appropriate to guarantee an intra-patch connectiv-

ity, whereas repulsive pseudo-forces are involved in

separating patches. For different patches to be gen-

erated, a non-negligible effect is played by the poly-

gon’s boundaries. This can be observed in the ex-

ample involving tr1 2. In this case, the polygon is

clearly divided in two regions: the leftmost part is

narrower than the rightmost one, which causes an

unsolvable overlap situation at the junction of the

two regions. Two patches are also generated in the

polygon associated with the iCub’s left hip, where

the top left corner cannot accommodate a protru-

sion of the main patch. An irregular (although con-

vex) shape like the one associated with tr1 5 origi-

nates approximately one patch.

– The patches generated by ItPla are not constrained

to share the same regular grid structure, as it is re-

quired in the approach proposed in [2]. Because of

attractive pseudo-forces, triangular modules form-

ing the same patch tend to be aligned along the prin-

cipal directions of a regular isometric grid. However,

because of repulsive pseudo-forces and the effect of

polygon’s edges, different patches become aligned

along different directions. Therefore, each patch is

aligned with respect to a different regular isometric

grid. This effect allows ItPla to be quite flexible

in the process of placements generation and patches

formation, and it is the main reason why it produces

results better than those obtained by the baseline

approach discussed in [2], above all in such cases as

tr1 2, where polygons are characterised by strong

irregular shapes.

– As it is possible to observe from the various snap-

shots in Figure 10, Figure 13 and Figure 14, the

overall overlap area is not a monotone decreasing

function of the iteration procedure. On the contrary,

as per effect of attractive and repulsive pseudo-forces,

it can increase as long as the placement gets stable.

This behaviour can be observed also in Figure 11

for the specific case of the iCub’s left hip. However,

the overlap is reduced from now and then when a

module is removed. Module removals are of the ut-

most importance for the generation of stable and

acceptable placements, as they drastically impact

on the overlap area. Furthermore, by initialising the

number of modules to the theoretical upper bound

subject to the polygon’s area, we enforce (although

this cannot be theoretically guaranteed) the maxi-

mum coverage.

– Other module’s shapes are possible, subject to the

fact that they are radially symmetrical at least with

respect to certain orientations. For instance, circu-

lar modules are radially completely symmetrical,

whereas triangular modules are radially symmet-

rical with respect to three equidistant radii. Since

many of the ItPla’s properties are based on the

abstract circular shape, from it many other shapes

can be derived. One notable example would be the

use of hexagonal shapes (which are radially sym-

metrical with respect to six radii), since a modular

robot skin based on such a shape has been proposed

in [15]. Obviously enough, distance information as

well as the effects of pseudo-forces should be modi-
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 13 The ItPla’s evolution process for the Schunk link’s surface called tr1 2.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 14 The ItPla’s evolution process for the Schunk link’s surface called tr1 5.

fied to reflect the new mechanical constraints asso-

ciated with the employed technology.

– Although we did not discuss it in the paper, and sub-

ject to meeting the possible associated mechanical

constraints, module’s sizes need not to be uniform,

as it is instead implicitly posed by the authors of

[2] with the introduction of an isometric grid. Mod-

ules with different sizes in the same placement are

allowed in ItPla. Such capability may prove to be

useful in covering certain large-scale robot surfaces,

where large regions would be covered by big mod-

ules and small regions by modules of a reduced size.

7 Conclusions

In this paper, we present and discuss ItPla, an algo-

rithm for the design of layouts related to the so-called

robot skin placement problem. The robot skin place-

ment problem is a central issue to provide robots with

the sense of touch, and in particular to attain robots

with large-scale tactile sensing capabilities, which is

fundamental in a wide range of service applications.

Differently from algorithms previously discussed in

the literature, which are based on purely geometrical

considerations, ItPla produces placements by the com-

bined effect of a number of pseudo-forces. Pseudo-forces

locally translate and rotate modules to fit them inside

the area of a polygon representing the robot’s surface

to cover. The algorithm is characterised by a number

of advantages when compared to previous approaches,

namely: generating placements where multiple patches

are present, which are not constrained to be aligned

with respect to the same isometric grid, as well as ac-

commodating for different module’s shapes and sizes.

Given these features, ItPla proves to behave better

than previous algorithms in the performance indicator

of area coverage percentage. The algorithm is available

open source.
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