Skip to main content
Log in

Application of hybrid fast marching method to determine the real-time path for the biped robot

  • Original Research Paper
  • Published:
Intelligent Service Robotics Aims and scope Submit manuscript

Abstract

The research in path planning is very intense in the field of robotics. Researchers around the world are interested in developing various methods to establish the path between a start and goal points in an obstacle-cluttered environment. In the present manuscript, the authors have proposed a solution methodology using fast marching method hybridized with regression search (FMMHRS) to generate an optimal path between the start and goal points in real time. Initially, the path is developed by using a fast marching method (FMM), and later on a regression search algorithm is employed to optimize the path obtained using FMM algorithm. In this work, the efficiency of the developed path planner is tested in simulations. Further, an experimental work is carried out in real-world environment on a two-legged robot to ascertain the path, its length, travelling time and convergence speed of the said approach. It has been observed that the proposed method is found to be superior and efficient when compared with some of the approaches available in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Chang YC, Yamamoto Y (2009) Path planning of wheeled mobile robot with simultaneous free space locating capability. Intell Serv Robot 2:9–22

    Article  Google Scholar 

  2. LaValle S (2011) Motion planning. Robotics Automation Magazine, IEEE 18(1):79–89

    Article  Google Scholar 

  3. Kuffner JJ, LaValle S (2000) RRT-connecting efficient approach to single-query path planning. In: IEEE international conference on robotics and automation, vol 2, pp 995–1001

  4. Hart P, Nilsson N, Raphael B (1968) A formal basis for the heuristic determination of minimum cost paths. IEEE Trans Syst Sci Cybern 4:100–107

    Article  Google Scholar 

  5. Dijkstra EW (1959) A note on two problems in connection with graphs. Numer Math 1:269–271

    Article  MathSciNet  MATH  Google Scholar 

  6. Stentz A (1995) The focused D* algorithm for real-time re-planning. In: International joint conference on artificial intelligence

  7. Kovács B, Szayer G, Tajti F, Burdelis M, Korondi P (2016) A novel potential field method for path planning of mobile robots by adapting animal motion attributes. Robot Auton Syst 82:24–34

    Article  Google Scholar 

  8. Melchior P, Orsoni B, Oustaloup A (2001) Weyl fractional potential in path planning. In: European control conference (ECC), pp 1758–1763

  9. Oustaloup A, Orsoni B, Melchior P, Linares H (2003) Path planning by fractional differentiation. Robotica 21(1):59–69

    Article  Google Scholar 

  10. Melchior P, Metoui B, Najar S, Abdelkrim MN, Oustaloup A (2009) Robust path planning for mobile robot based on fractional attractive force. In: American control conference (ACC), pp 1424–1429

  11. Kelly A (1995) An intelligent predictive control approach to the high-speed cross-country autonomous navigation problem, engineering

  12. Thrun S, Bucken A, Burgard W, Fox D, Frohlinghaus T, Hennig D, Hofmann T, Krell M, Schimdt T (1998) Map learning and high-speed navigation in RHINO. In: Kortenkamp D, Bonasso RP, Murphy R (eds) AI-based mobile robots. Case studies of successful robot systems. MIT Press, Cambridge

    Google Scholar 

  13. Brock O, Khatib O (1999) High-speed navigation using the global dynamic window approach. In: IEEE international conference on robotics and automation, vol 1, pp 341–346

  14. Philippsen R, Siegwart R (2003) Smooth and efficient obstacle avoidance for a tour guide robot. In: IEEE international conference on robotics and automation, vol 1, pp 446–451

  15. Thrun S, Montemerlo M, Dahlkamp H, Stavens D, Aron A, Diebel J, Fong P, Gale J, Halpenny M, Hoffmann G, Lau K, Oakley C, Palatucci M, Pratt V, Stang P, Strohband S, Dupont C, Jendrossek L-E, Koelen C, Markey C, Rummel C, van Niekerk J, Jensen E, Alessandrini P, Bradski G, Davies B, Ettinger S, Kaehler A, Nefian A, Mahoney P (2006) Stanley: the robot that won the DARPA grand challenge: research articles. J Robot Syst 23(9):661–692

    Google Scholar 

  16. Howard TM, Kelly A (2007) Optimal rough terrain trajectory generation for wheeled mobile robots. Int J Robot Res 26(2):141–166

    Article  Google Scholar 

  17. Urmson C, Ragusa C, Ray D, Anhalt J, Bartz D, Galatali T, Gutierrez E, Johnston J, Clark M, Koon P, Mosher A, Struble J (2006) A robust approach to high-speed navigation for unrehearsed desert terrain. J Field Robot 23:467–508

    Article  MATH  Google Scholar 

  18. Braid D, Broggi A, Schmiedel G (2006) The TerraMax autonomous vehicle. J Field Robot 23(9):693–708

    Article  Google Scholar 

  19. Vascak J, Rutrich M (2008) Path planning in dynamic environment using fuzzy cognitive maps. In: 2008 6th international symposium on applied machine intelligence and informatics. IEEE, pp 5–9

  20. Li G, Tamura Y, Yamashita A, Asama H (2013) Effective improved artificial potential field-based regression search method for autonomous mobile robot path planning. Int J Mechatron Autom 3(3):141–170

    Article  Google Scholar 

  21. Mandava RK, Bondada S, Vundavilli PR (2017) An optimized path planning for the mobile robot using potential field method and PSO algorithm. In: 7th international conference on soft computing and problem solving (socpros-2017), Bhubaneswar, India

  22. Sethian JA (1996) A fast marching level set method for monotonically advancing fronts. Proc Natl Acad Sci 93(4):1591–1595

    Article  MathSciNet  MATH  Google Scholar 

  23. Garrido Santiago, Moreno Luis, Blanco Dolores, Jurewicz Piotr (2011) Path planning for mobile robot navigation using voronoi diagram and fast marching. Int J Robot Aut (IJRA) 2(1):42–64

    Google Scholar 

  24. Melchior P, Orsoni B, Lavialle O, Poty A, Oustaloup A (2003) Consideration of obstacle danger level in path planning using A* and fast-marching optimization: comparative study. Signal Process 11:2387–2396

    Article  MATH  Google Scholar 

  25. Chiang CH, Chiang PJ (2007) A comparative study of implementing fast marching method and A* search for mobile robot path planning in grid environment: effect of map resolution. In: Proceedings of IEEE advanced robotics and its social impacts, pp 1–6

  26. Do QuocHuy, Mita Seiichi, Yoneda Keisuke (2013) A practical and optimal path planning for autonomous parking using fast marching algorithm and support vector machine. IEICE Trans Inf Syst 96(12):2795–2804

    Article  Google Scholar 

  27. Do QH, Mita S, Yoneda K (2014) Narrow passage path planning using fast marching method and support vector machine. In: 2014 IEEE intelligent vehicles symposium (IV)

  28. Liu Y, Song R, Bucknall R (2015) A practical path planning and navigation algorithm for an unmanned surface vehicle using the fast marching algorithm. In: OCEANS 2015—Genova, Italy, pp 1–7

  29. Tsitsiklis JN (1995) Efficient algorithms for globally optimal trajectories. IEEE Trans Autom Control 40(9):1528–1538

    Article  MathSciNet  MATH  Google Scholar 

  30. Gomez JV (2012) Advanced applications of the fast marching square planning method. Master’s thesis, Carlos III University

  31. Forcadel N, Le Guyader C, Gout C (2008) Generalized fast marching method: applications to image segmentation. Numer Algorithms 48(1–3):189–211

    Article  MathSciNet  MATH  Google Scholar 

  32. Basu S, Racoceanu D (2014) Reconstructing neuronal morphology from microscopy stacks using fast marching. In: IEEE international conference on image processing, pp 3597–3601

  33. Qu X, Liu S, Wang F (2014) A new ray tracing technique for cross hole radar travel time tomography based on multistencils fast marching method and the steepest descend method. In: 15th international conference on ground penetrating radar, pp 503–508

  34. Zhang X, Bording R (2011) Fast marching method seismic travel times with reconfigurable field programmable gate arrays. Can J Explor Geophys 36(1):60–68

    Google Scholar 

  35. Osher S, Sethian JA (1988) Fronts propagating with curvature dependent speed: algorithms based on Hamilton–Jacobi formulations. J Comput Phys 79(1):12–49

    Article  MathSciNet  MATH  Google Scholar 

  36. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of IEEE international conference on neural networks, pp 1942–1948

  37. Mandava RK, Vundavilli PR (2018) Whole body motion generation of 18-DOF biped robot on flat surface during SSP and DSP. Int J Model Identif Control 29(3):266–277

    Article  Google Scholar 

  38. Kuffner Jr. JJ, Nishiwaki K, Kagami S, Inaba M, Inoue H (2001) Footstep planning among obstacles for biped robots. In: Proceedings of 2001 IEEE RSJ international conference on intelligent robots and systems, Maui, Hawaii, USA, Oct 29–NOV. 03, pp 500–505

  39. Hildebrandt AC, Klischat M, Wahrmann D, Wittmann R, Sygulla F, Seiwald P, Rixen D, Buschmann T (2017) Real-time path planning in unknown environments for bipedal robots. IEEE Robot Autom Lett 2(4):1856–1863

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravi Kumar Mandava.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandava, R.K., Katla, M. & Vundavilli, P.R. Application of hybrid fast marching method to determine the real-time path for the biped robot. Intel Serv Robotics 12, 125–136 (2019). https://doi.org/10.1007/s11370-018-0268-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11370-018-0268-7

Keywords

Navigation