Skip to main content
Log in

Design of a robust adaptive sliding mode control using recurrent fuzzy wavelet functional link neural networks for industrial robot manipulator with dead zone

  • Original Research Paper
  • Published:
Intelligent Service Robotics Aims and scope Submit manuscript

Abstract

This paper addresses the problem of trajectory tracking control for industrial robot manipulators (IRMs) in the presence of external disturbances and uncertain dynamics. A novel robust adaptive recurrent fuzzy wavelet functional link neural network (RFWFLNN) controller based on dead-zone compensator is proposed in order to improve the position tracking performance. To handle the unknown dynamics of the IRMs, the robust adaptive RFWFLNNs are applied to approximate the unknown dynamics. The online learning laws and estimation of the dead zone are determined by using Lyapunov stability theory and the approximation theory. In addition, the robust SMC is applied to eliminate the estimation errors and disturbances of the IRM control system. Therefore, the RFWFLNN controller for IRMs can guarantee not only the robustness and stability but also the position tracking performance. Some simulations and experiments performed on three-link IRMs are provided to prove the robustness and effectiveness of the RFWFLNNs. The superiority of the RFWFLNN controller is also demonstrated based on comparisons with fuzzy wavelet neural networks and PID controllers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Carelli R, Kelly R (1991) An adaptive impedance/force controller for robot manipulators. IEEE Trans Autom Control 36(8):967–971

    Article  MathSciNet  MATH  Google Scholar 

  2. Yang Y, Feng G, Ren J (2004) A combined backstepping and small-gain approach to robust adaptive fuzzy control for strict—feedback nonlinear systems. IEEE Trans Syst 34(3):406–420

    Google Scholar 

  3. Wai RJ, Yang ZW (2008) Adaptive fuzzy neural network control design via a T–S fuzzy model for a robot manipulator including actuator dynamics. IEEE Trans Syst Man Cybern 38(5):1326–1346

    Article  Google Scholar 

  4. Islam S, Liu PX (2011) Robust adaptive fuzzy output feedback control system for robot manipulators. IEEE/ASME Trans Mechatron 16(2):288–296

    Article  Google Scholar 

  5. He W, Amoateng DO, Yang C, Gong DI (2017) Adaptive neural network control of a robotic manipulator with unknown backlash – like hysteresis. IET Control Theory Appl 11(4):567–575

    Article  MathSciNet  Google Scholar 

  6. Shojaei K (2017) Neural adaptive output feedback formation control of type (m, s) wheeled mobile robots. IET Control Theory Appl 11(4):504–515

    Article  MathSciNet  Google Scholar 

  7. Sun C, He W, Hong J (2017) Neural network control of a flexible robotic manipulator using the lumped spring—mass model. IEEE Trans Syst Man Cybern 47(8):1863–1874

    Article  Google Scholar 

  8. Li Z, Xia Y, Wang D, Zhai DH, Su CY, Zhao X (2016) Neural network—based control of networked trilateral teleoperation with geometrically unknown constraints. IEEE Trans Cybern 46(5):1051–1064

    Article  Google Scholar 

  9. He W, Dong Y, Sun C (2016) Adaptive neural impedance control of a robotic manipulator with input saturation. IEEE Trans Syst Man Cybern: Syst 46(3):334–344

    Article  Google Scholar 

  10. Nikdel N, Nildel P, Badamchizadeh MA, Hassanzadeh I (2014) Using neural network model predictive control for controlling shape memory alloy based manipulator. IEEE Trans Ind Electron 61(3):1394–1401

    Article  Google Scholar 

  11. Dierks T, Jagannathan S (2010) neural network output feedback control of robot formations. IEEE Trans Syst Man Cybern- Part B: Cybern 40(2):383–399

    Article  Google Scholar 

  12. Patra JC, Pal RN, Chatterji BN, Panda G (1999) Identification of nonlinear dynamic systems using functional link artificial neural networks. IEEE Trans Syst Man Cybern 29(2):254–262

    Article  Google Scholar 

  13. Patra JC, Kot AC (2002) Nonlinear dynamic system identification using Chebyshev functional link artificial neural networks. IEEE Trans Syst Man Cybern 32(4):505–511

    Article  Google Scholar 

  14. Wai RJ, Muthusamy R (2014) Design of fuzzy-neural-network-inherited backstepping control for robot manipulator including actuator dynamics. IEEE Trans Fuzzy Syst 22(4):709–722

    Article  Google Scholar 

  15. Wai RJ, Muthusamy R (2013) Fuzzy-neural-network inherited sliding-mode control for robot manipulator including actuator dynamics. IEEE Trans Neural Netw Learn Syst 24(2):274–287

    Article  Google Scholar 

  16. Han SI, Lee JM (2014) Fuzzy echo state neural networks and funnel dynamic surface control for prescribed performance of a nonlinear dynamic system. IEEE Trans Ind Electron 61(2):1099–1112

    Article  Google Scholar 

  17. Han SI, Lee JM (2014) Recurrent fuzzy neural network backstepping control for the prescribed output tracking performance of nonlinear dynamic systems. ISA Trans 53:33–43

    Article  Google Scholar 

  18. Agand P, Shoorehdeli MA, Sedigh AK (2017) Adaptive recurrent neural network with Lyapunov stability learning rules for robot dynamic terms identification. Eng Appl Artif Intell 65:1–11

    Article  Google Scholar 

  19. El-Nagar AM (2018) Nonlinear dynamic systems identification using recurrent interval type-2 TSK fuzzy neural network—a novel structure”. ISA Trans 72:205–217

    Article  Google Scholar 

  20. Wai RJ (2003) Robust control for nonlinear motor-mechanism coupling system using wavelet neural network. IEEE Tran Syst Man Cybern 33(3):489–497

    Article  Google Scholar 

  21. Wei S, Wang Y, Zuo Y (2012) wavelet neural networks robust control of farm transmission line deicing robot manipulators. Comput Stand Interfaces 34(3):327–333

    Article  Google Scholar 

  22. Kahkeshi MS, Sheikholeslam F, Zekri M (2013) Design of adaptive fuzzy wavelet neural sliding mode controller for uncertain nonlinear systems. ISA Trans 52(3):342–350

    Article  Google Scholar 

  23. Hou R, Wang L, Gao Q, Hou Y, Wang C (2017) Indirect adaptive fuzzy wavelet neural network self – recurrent consequent part for AC servo system. ISA Trans 70:298–307

    Article  Google Scholar 

  24. Solgi Y, Ganjefar S (2018) Variable structure fuzzy wavelet neural network controller for complex nonlinear systems. Appl Soft Comput 64:674–685

    Article  Google Scholar 

  25. Vu TY, Wang YN, Pham VC, Nguyen XQ, Vu HT (2017) Robust adaptive sliding mode control for industrial robot manipulator using fuzzy wavelet neural network. Int J Control Autom Syst 15(6):2930–2941

    Article  Google Scholar 

  26. Tsai CH, Chuang HT (2004) Deadzone compensation based on constrained RBF neural network. J Frank Inst 341:361–374

    Article  MATH  Google Scholar 

  27. Selmic R, Lewis FL (2000) Deadzone compensation in motion control systems using neural networks. IEEE Trans Autom Control 45(4):602–613

    Article  MathSciNet  MATH  Google Scholar 

  28. Lewis FL, Tim K, Wang LZ, Li ZX (1999) Deadzone compensation in motion control systems using adaptive fuzzy control system. IEEE Trans Control Syst Technol 7(6):731–742

    Article  Google Scholar 

  29. Slotine JJE, Li W (1991) Applied nonlinear control. Prentice-Hall, Hoboken

    MATH  Google Scholar 

  30. Abiyev RH, Kaynak O (2008) Fuzzy wavelet neural networks for identification and control of dynamic plants—a novel structure ad a comparative study. IEEE Trans Ind Electron 55(8):3133–3140

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vu Thi Yen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quynh, N.X., Nan, W.Y. & Yen, V.T. Design of a robust adaptive sliding mode control using recurrent fuzzy wavelet functional link neural networks for industrial robot manipulator with dead zone. Intel Serv Robotics 13, 219–233 (2020). https://doi.org/10.1007/s11370-019-00300-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11370-019-00300-y

Keywords

Navigation