Skip to main content
Log in

Progress and Prospect of Some Fundamental Research on Information Security in China

  • Network and Security
  • Published:
Journal of Computer Science and Technology Aims and scope Submit manuscript

Abstract

With the development of network and information technologies, information security is more and more widely researched in China. To know where the work is and where it goes, we focus on comprehensively surveying the twenty years of important fundamental research by Chinese scholars, and giving, from our point of view, the significance as well as the outlook of future work. Some of the reviewed work, including the researches on fundamental theory of cryptography, cryptographic algorithm, security protocol, security infrastructure and information hiding, greatly advances the related sub-fields, and is highly recognized in and outside of China. Nevertheless, the overall work, we think, is still facing the problems of unbalanced development of sub-areas, limited scope of research, lack of systematic work and application, etc., leaving much room for improvement in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xiao G Z, Massey J L. A spectral characterization of correlation-immune combining functions. IEEE Trans. Info. Theory, 1988, 34(3): 569–571.

    Article  MATH  MathSciNet  Google Scholar 

  2. Yang Y X, Guo B A. Further enumerating Boolean functions of cryptographic significance. J. Cryptology, 1995, 8(3): 115–122.

    Article  MATH  MathSciNet  Google Scholar 

  3. Liu M L, Lu P Z, Mullen G L. Correlation-immune functions over finite fields. IEEE Trans. Info. Theory, 1998, 44(3): 1273–1276.

    Article  MATH  MathSciNet  Google Scholar 

  4. Feng D G, Pei D Y, Xiao G Z. Maximum correlation analysis of nonlinear combining functions. Science in China (Series E), 1998, 41(1): 31–36.

  5. Feng D G. Three characterizations of correlation immune functions over rings Z(N). Theoretical Computer Science, 1999, 226(1–2): 37–43.

    Article  MATH  MathSciNet  Google Scholar 

  6. Chen L S, Fu F W. On the constructions of new resilient functions from old ones. IEEE Trans. Info. Theory, 1999, 45(6): 2077–2082.

    Article  MATH  MathSciNet  Google Scholar 

  7. Zhou J J, Chen W H, Gao F X. Best linear approximation and correlation immunity of functions over Z * m . IEEE Trans. Info. Theory, 1999, 45(1): 303–308.

    Article  MATH  MathSciNet  Google Scholar 

  8. Zhang B D, Lü S W. I/O correlation properties of bent functions. Science in China (Series E), 2000, 43(3): 282–286.

    MATH  MathSciNet  Google Scholar 

  9. Liu F M, Ma Z, Feng K Q. New results on non-existence of generalized bent functions (II). Science in China (Series A), 2002, 45(6): 721–730.

    MathSciNet  MATH  Google Scholar 

  10. Hu Y P, Xiao G Z. Resilient functions over finite fields. IEEE Trans. Info. Theory, 2003, 49(8): 2040–2046.

    Article  MathSciNet  Google Scholar 

  11. Feng K Q, Liu F M. New results on the nonexistence of generalized bent functions. IEEE Trans. Info. Theory, 2003, 49(11): 3066–3071.

    Article  MathSciNet  Google Scholar 

  12. Wu C K, Dawson E D. Correlation immunity and resiliency of symmetric Boolean functions. Theoretical Computer Science, 2004, 312(2–3): 321–335.

    Article  MATH  MathSciNet  Google Scholar 

  13. Teng J H, Li S Q, Huang X Y. The kth-order quasi-generalized Bent functions over ring Z p . In Proc. 1st SKLOIS Conf. Info. Security and Cryptology (CISC’05), Beijing, China, Dec. 15–17, 2005, Lecture Notes in Computer Science 3822, Feng D G et al. (eds.), Springer-Verlag, 2005, pp. 189–201.

  14. Feng D G. Spectral Theory and Its Applications in Cryptography. The Science Press, 2000. (in Chinese)

  15. Wen Q Y, Niu X X, Yang Y X. Boolean Functions in Modern Cryptography. The Science Press, 2000. (in Chinese)

  16. Li S Q, Zeng B S, L Y Z et al. Logical Functions in Cryptography. Beijing Zhongruan Electronic Press, 2003. (in Chinese)

  17. Yang J H, Dai Z D, Zeng K C. The data base of selected permutations (extended abstract). In Proc. ASIACRYPT’91, Fujiyosida, Japan, Nov. 11–14, 1991, Lecture Notes in Computer Science 739, Imai H et al. (eds.), Springer-Verlag, 1993, pp. 73–81.

  18. Chang X G, Dai Z D, Gong G. Some cryptographic properties of exponential functions. In Proc. ASIACRYPT’94, Wollongong, Australia, November 28–December 1, 1994, Lecture Notes in Computer Science 917, Pieprzyk J, Safavi-Naini R (eds.), Springer-Verlag, 1995, pp. 415–418.

  19. Dai Z D, Solomon W G, Gong G. Generating all linear orthomorphisms without repetition. Discrete Mathematics, 1999, 205(1-3): 47–54.

    Article  MATH  MathSciNet  Google Scholar 

  20. Chen H, Feng D G. An evolutionary algorithm to improve the nonlinearity of self-inverse S-Boxes. In Proc. ICISC’04, Seoul, Korea, Dec. 2–3, 2004, Lecture Notes in Computer Science 3506, Park C, Chee S (eds.), Springer-Verlag, 2005, pp. 352–361.

  21. Chen D, Dai Z D. On feedforward transforms and p-fold periodic p-arrays. In Proc. EUROCRYPT’85, Linz, Austria, April 1985, Lecture Notes in Computer Science 219, Pichler F (ed.), Springer-Verlag, 1985, pp. 130–134.

  22. Liu M L, Wan Z X. Generalized multiplexed sequences. In Proc. EUROCRYPT’85, Linz, Austria, April 1985, Lecture Notes in Computer Science 219, Pichler F (ed.), Springer-Verlag, 1985, pp. 135–141.

  23. Dai Z D. Proof of Rueppel’s linear complexity conjecture. IEEE Trans. Info. Theory, 1986, 32(3): 440–443.

    Article  MATH  Google Scholar 

  24. Beth T, Dai Z D. On the complexity of pseudo-random sequences — Or: If you can describe a sequence it can’t be random. In Proc. EUROCRYPT’89, Houthalen, Belgium, April 10–13, 1989, Lecture Notes in Computer Science 434, Quisquater J, Vandewalle J (eds.), Springer-Verlag, 1990, pp. 533–543.

  25. Dai Z D, Zeng K C. Feedforward functions defined by de Brujin sequences. In Proc. EUROCRYPT’89, Houthalen, Belgium, April 10–13, 1989, Lecture Notes in Computer Science 434, Quisquater J, Vandewalle J (eds.), Springer-Verlag, pp. 544–548.

  26. Dai Z D, Zeng K C. Continued fractions and the Berlekamp-Massey algorithm. In Proc. ASIACRYPT’90, Sydney, Australia, January 8–11, 1990, Lecture Notes in Computer Science 453, Seberry J, Pieprzyk J (eds.), Springer-Verlag, pp. 24–31.

  27. Cheng H, Xiao G Z. The linear complexity of binary sequences with period (2n−1)k. IEEE Trans. Info. Theory, 1991, 37(3): 672–673.

    Article  Google Scholar 

  28. Dai Z D, Yang J H. Linear complexity of periodically repeated random sequences. In Proc. EUROCRYPT’91, Lecture Notes in Computer Science 547, Davies D W (ed.), Springer-Verlag, Brighton, UK, April 8–11, 1991, pp. 168–175.

  29. Dai Z D. Binary sequences derived from ML-sequences over rings, I: Periods of minimal polynomials. J. Cryptology, 1992, 5(3): 193–207.

    Article  MATH  MathSciNet  Google Scholar 

  30. Lin D D, Liu M L. Structure and properties of linear recurring m-arrays. IEEE Trans. Info. Theory, 1993, 39(5): 1758–1762.

    Article  MATH  MathSciNet  Google Scholar 

  31. Dai Z D, Feng X N, Liu M L, Wan Z X. Nonlinear feedforward sequences of m-sequences I. Discrete Mathematics, 1993, 123(1-3): 17–34.

    Article  MATH  MathSciNet  Google Scholar 

  32. Dai Z D, Imamura K. Linear complexity for one-symbol substitution of a periodic sequence over GF(q). IEEE Trans. Info. Theory, 1998, 44(3): 1328–1331.

    Article  MATH  MathSciNet  Google Scholar 

  33. Qi W F, Yang J H, Zhou J J. ML-sequences over rings Z/(2e)*: I. constructions of nondegenerative ML-sequences II. injectiveness of compression mappings of new classes. In Proc. ASIACRYPT’98, Beijing, China, October 1998, Lecture Notes in Computer Science 1514, Ohta K, Pei D Y (eds.), Springer-Verlag, pp. 315–326.

  34. Feng K Q, Shiue P J S, Xiang Q. On aperiodic and periodic complementary binary sequences. IEEE Trans. Info. Theory, 1999, 45(1): 296–303.

    Article  MATH  MathSciNet  Google Scholar 

  35. Jiang S Q, Dai Z D, Imamura K. Linear complexity of a sequence obtained from a periodic sequence by either substituting, inserting, or deleting k symbols within one period. IEEE Trans. Info. Theory, 2000, 46(3): 1174–1177.

    Article  MATH  MathSciNet  Google Scholar 

  36. Xiao G Z, Wei S M, Lam K Y, Imamura K. A fast algorithm for determining the linear complexity of a sequence with period p n over GF(q). IEEE Trans. Info. Theory, 2000, 46(6): 2203–2206.

    Article  MATH  MathSciNet  Google Scholar 

  37. Gong G, Dai Z D, Golomb S W. Enumeration and criteria for cyclically shift-distinct GMW sequences. IEEE Trans. Info. Theory, 2000, 46(1): 474–484.

    Article  MATH  MathSciNet  Google Scholar 

  38. Tang X H, Fan P Z. A class of pseudonoise sequences over GF(p) with low correlation zone. IEEE Trans. Info. Theory, 2001, 47(4): 1644–1649.

    Article  MATH  MathSciNet  Google Scholar 

  39. Wei S M, Xiao G Z, Chen Z. A fast algorithm for determining the minimal polynomial of a sequence with period 2p n over GF(q). IEEE Trans. Info. Theory, 2002, 48(10): 2754–2758.

    Article  MATH  MathSciNet  Google Scholar 

  40. Qi W F, Xu H. Partial period distribution of FCSR sequences. IEEE Trans. Info. Theory, 2003, 49(3): 761–765.

    Article  MATH  MathSciNet  Google Scholar 

  41. Fan S Q, Han W B. Random properties of the highest level sequences of primitive sequences over Z(2e). IEEE Trans. Info. Theory, 2003, 49(6): 1553–1557.

    Article  MATH  MathSciNet  Google Scholar 

  42. Zhu X Y, Qi W F. Compression mappings on primitive sequences over Z/(p e). IEEE Trans. Info. Theory, 2004, 50(10): 2442–2448.

    Article  MathSciNet  Google Scholar 

  43. Wang L P, Zhu Y F, Pei D Y. On the lattice basis reduction multisequence synthesis algorithm. IEEE Trans. Info. Theory, 2004, 50(11): 2905–2910.

    Google Scholar 

  44. Dai Z D, Jiang S Q, Imamura K, Gong G. Asymptotic behavior of normalized linear complexity of ultimately nonperiodic binary sequences. IEEE Trans. Info. Theory, 2004, 50(11): 2911–2915.

    Google Scholar 

  45. Feng X T, Dai Z D. Expected value of the linear complexity of two-dimensional binary sequences. In Proc. 3rd Int. Conf. Sequences and Their Applications (SETA’04), Seoul, Korea, October 24–28, 2004, Lecture Notes in Computer Science 3486, Helleseth T et al. (eds.), Springer-Verlag, pp. 113–128.

  46. Dai Z D, Imamura K, Yang J H. Asymptotic behavior of normalized linear complexity of multi-sequences. In Proc. 3rd Int. Conf. Sequences and Their Applications (SETA’04), Seoul, Korea, October 24–28, 2004, Lecture Notes in Computer Science 3486, Helleseth T et al. (eds.), Springer-Verlag, 2005, pp. 129–142.

  47. Hu H G, Feng D G. On the 2-adic complexity and the k-error 2-adic complexity of periodic binary sequences. In Proc. 3rd Int. Conf. Sequences and Their Applications (SETA’04), Seoul, Korea, October 24–28, 2004, Lecture Notes in Computer Science 3486, Helleseth T et al. (eds.), Springer-Verlag, 2005, pp. 185–196.

  48. Feng X T, Wang Q L, Dai Z D. Multi-sequences with d-perfect property. In Proc. 2004 IEEE Int. Symp. Info. Theory (ISIT’04), Chicago, Illinois, USA, June 27–July 2, 2004, pp. 86–98.

  49. Feng X T, Wang Q L, Dai Z D. Multi-sequences with d-perfect property. Theory of Complexity, 2005, 21(2): 230–242.

    Article  MATH  MathSciNet  Google Scholar 

  50. Feng X T, Dai Z D. The expected value of the normalized linear complexity of 2-dimensional binary sequences. In Proc. 3rd Int. Conf. Sequences and Their Applications (SETA’04), Helleseth T et al. (eds.), Seoul, Korea, October 24–28, 2004, pp. 24–28.

  51. Gong G. Theory and applications of q-ary interleaved sequences. IEEE Trans. Info. Theory, 1995, 41(2): 400–411.

    Article  MATH  Google Scholar 

  52. Dai Z D, Feng X T, Yang J H. Multi-continued fraction algorithm and generalized B-M algorithm over F 2. In Proc. Int. Conf. Sequences and Their Applications, Seoul, Korea, October 24–28, 2004, Lecture Notes in Computer Science 3486, Helleseth T et al. (eds.), Springer-Verlag, 2005, pp. 339–354.

  53. Dai Z D, Wang K P, Ye D F. M-continued fraction expansions of multi-Laurent series. Advances in Mathematics, 2004, 33(2): 246–248.

    Google Scholar 

  54. Hu L, Pei D Y. Polynomial characterization of characteristic ideal of maximal periodic arrays over Galois rings. Discrete Mathematics, 2004, 278(1-3): 139–149.

    Article  MATH  MathSciNet  Google Scholar 

  55. Tang X H, Udaya P, Fan P Z. A new family of nonbinary sequences with three-level correlation property and large linear span. IEEE Trans. Info. Theory, 2005, 51(8): 2906–2914.

    Article  MathSciNet  Google Scholar 

  56. Bai E J, Liu X J, Xiao G Z. Linear complexity of new generalized cyclotomic sequences of order two of length pq. IEEE Trans. Info. Theory, 2005, 51(5): 1849–1853.

    Article  MathSciNet  Google Scholar 

  57. Wei S M, Chen G L, Xiao G Z. A fast algorithm for determining the linear complexity of periodic sequences. In Proc. 1st SKLOIS Conf. Info. Security and Cryptology (CISC’05), Beijing, China, December 15–17, 2005, Lecture Notes in Computer Science 3822, Feng D G et al. (eds.), Springer-Verlag, 2005, pp. 202–209.

  58. Smeets B, Vanroose P, Wan Z X. On the construction of authentication codes with secrecy and codes withstanding spoofing attacks of order L ≥ 2. In Proc. EUROCRYPT’90, Aarhus, Denmark, May 21–24, 1990, Lecture Notes in Computer Science 473, Damgård I (ed.), Springer-Verlag, 1991, pp. 306–312.

  59. Wan Z X. Construction of Cartesian authentication codes from unitary geometry. Designs, Codes and Cryptography, 1992, 2(4): 333–356.

    Article  MATH  MathSciNet  Google Scholar 

  60. Wan Z X, Ben J M S, Vanroose P. On the construction of Cartesian authentication codes over symplectic spaces. IEEE Trans. Info. Theory, 1994, 40(3): 920–929.

    Google Scholar 

  61. Pei D Y. Information-theoretic bounds for authentication codes and block designs. J. Cryptology, 1995, 8(4): 177–188.

    Article  MATH  MathSciNet  Google Scholar 

  62. Pei D Y. A problem of combinatorial designs related to authentication codes. J. Combinatorial Design, 1998, 6(6): 417–429.

    Article  MATH  MathSciNet  Google Scholar 

  63. Pei D Y, Li Y Q, Wang Y J, Rei S N. Characterization of optimal authentication codes with arbitration. In Proc. ACISP’99, Wollongong, Australia, April 7–9, 1999, Lecture Notes in Computer Science 1587, Pieprzyk J et al. (eds.), Springer-Verlag, 1999, pp. 303–314.

  64. Pei D Y. Authentication Codes and Combinatorial Designs. Boca Raton: Chapman & Hall/CRC, 2006.

    MATH  Google Scholar 

  65. Tao R J. Invertibility of Finite Automata. The Science Press, 1979. (in Chinese)

  66. Tao R J. Invertibility of linear finite automata over a ring. In Proc. ICALP’88, Tampere, Finland, July 11–15, 1988, Lecture Notes in Computer Science 317, Lepistö T, Salomaa A (eds.), Springer-Verlag, 1988, pp. 489–501.

  67. Bao F. Composition and Decomposition of finite automata. Science in China (Series A), 1993, 23(7): 759–765.

    Google Scholar 

  68. Dai Z D, Ye D F. Weak invertibility of linear finite automata. Science in China (Series A), 1996, 39(6): 613–623.

    MATH  MathSciNet  Google Scholar 

  69. Liu M L, Zhou Z F. Ideal homomorphic secret sharing schemes over cyclic group. Science in China (Series E), 1998, 28(6): 524–533.

    Google Scholar 

  70. Xiao L L, Liu M L. Linear multi-secret sharing schemes. Science in China (Series F), 2005, 48(1): 125–136.

    Article  MathSciNet  MATH  Google Scholar 

  71. Zhang Z F, Liu M L, Xiao L L. Parallel multi-party computation from linear multi-secret sharing schemes. In Proc. AISACRYPT’05, Chennai, India, December 4–8, 2005, Lecture Notes in Computer Science 3788, Roy B (ed.), Springer-Verlag, 2005, pp. 156–173.

  72. Zhou Z F. Classification of universally ideal homomorphic secret sharing schemes and ideal black-box secret sharing schemes. In Proc. 1st SKLOIS Conf. Info. Security and Cryptology (CISC’05), Beijing, China, December 15–17, 2005, Lecture Notes in Computer Science 3822, Feng D G et al. (eds.), Springer-Verlag, 2005, pp. 370–383.

  73. Ma W P, Zhang F T. New methods to construct cheating immune multisecret sharing scheme. In Proc. 1st SKLOIS Conf. Info. Security and Cryptology (CISC’05), Beijing, China, December 15–17, 2005, Lecture Notes in Computer Science 3822, Feng D G et al. (eds.), Springer-Verlag, 2005, pp. 384–394.

  74. Zeng K C, Huang M. On the linear syndrome method in cryptoanalysis. In Proc. CRTPTO’88, Santa Barbara, CA, USA, August 21–25, 1988, Lecture Notes in Computer Science 403, Goldwasser S (ed.), Springer-Verlag, 1990, pp. 469–478.

  75. Zeng K C, Yang C H, Rao T R N. On the linear consistency Test (LCT) in cryptanalysis with applications. In Proc. CRTPTO’89, Santa Barbara, CA, USA, August 20–24, 1989, Lecture Notes in Computer Science 435, Brassard G (ed.), Springer-Verlag, 1990, pp. 164–174.

  76. Zeng K C, Yang C H, Rao T R N. An improved linear syndrome algorithm in cryptanalysis with applications. In Proc. CRTPTO’90, Santa Barbara, CA, USA, August 11–15, 1990, Lecture Notes in Computer Science 537, Menezes A, Vanstone, S A (eds.), Springer-Verlag, 1991, pp. 34–47.

  77. Ding C S, Xiao G Z, Shan W J. The Stability Theory of Stream Ciphers. Lecture Notes in Computer Science 561, Springer-Verlag, 1991.

  78. Hu Y P, Xiao G Z. Generalized self-shrinking generator. IEEE Trans. Info. Theory, 2004, 50(4): 714–719.

    Article  MathSciNet  Google Scholar 

  79. Zhang B, Wu H J, Feng D G, Bao F. Security analysis of the generalized self-shrinking generator. In Proc. ICICS’04, Malaga, Spain, October 27–29, 2004, Lecture Notes in Computer Science 3269, Lopez J et al. (eds.), Springer-Verlag, 2004, pp. 388–400.

  80. Zhang B, Wu H J, Feng D G et al. Chosen ciphertext attack on a new class of self-synchronizing stream ciphers. In Proc. INDOCRYPT’04, Chennai, India, December 20–22, 2004, Lecture Notes in Computer Science 3348, Canteaut A, Viswanathan K (eds.), Springer-Verlag, 2004, pp. 73–83.

  81. Zhang B, Wu H J, Feng D G et al. Cryptanalysis of a knapsack based two-lock cryptosystem. In Proc. 2nd Int. Conf. Applied Cryptography and Network Security (ACNS’04), Yellow Mountain, China, June 8–11, 2004, Lecture Notes in Computer Science 3089, Jakobsson M et al. (eds.), Springer-Verlag, 2004, pp. 303–309.

  82. Zhang B, Wu H J, Feng D G, Bao F. A fast correlation attack on the shrinking generator. In Proc. CT-RSA’05, San Francisco, CA, USA, February 14–18, 2005, Lecture Notes in Computer Science 3376, Menezes A (ed.), Springer-Verlag, 2005, pp. 72–86.

  83. Zhang B, Feng D G. On the security of three stream cipher. Journal of Software, 2005, 16(7): 1344–1351.

    Article  MATH  Google Scholar 

  84. Zhang B, Feng D G. Security analysis of a new stream cipher. Science in China (Series F), 2006, 49(3): 1–16.

    MATH  MathSciNet  Google Scholar 

  85. Zeng K C, Yang J H, Dai Z D. Patterns of entropy drop of the key in an S-box of the DES. In Proc. CRTPTO’87, Santa Barbara, CA, USA, August 16–20, 1987, Lecture Notes in Computer Science 293, Pomerance C (ed.), Springer-Verlag, 1988, pp. 438–444.

  86. Wu W L, Li B, Feng D G, Qing S H. Cryptanalysis of some AES candidate algorithms. In Proc. ICICS’99, Sydney, Australia, November 9–11, 1999, Lecture Notes in Computer Science 1726, Varadharajan V, Mu Y (eds.), Springer-Verlag, 1999, pp. 13–21.

  87. Zhu F, Guo B A. A multiplication-addition structure against differential attack. In Proc. ICICS’99, Sydney, Australia, November 9–11, 1999, Lecture Notes in Computer Science 1726, Varadharajan V, Mu Y (eds.), Springer-Verlag, 1999, pp. 247–257.

  88. He Y P, Qing S H. Square attack on reduced Camellia cipher. In Proc. ICICS’01, Xian, China, November 13–16, 2001, Lecture Notes in Computer Science 2229, Qing S H et al. (eds.), Springer-Verlag, 2001, pp. 238–245.

  89. Wu W L, Feng D G. Linear cryptanalysis of NUSH block cipher. Science in China (Series F), 2002, 45(1): 59–67.

    MathSciNet  MATH  Google Scholar 

  90. Wu W L, Feng D G. Collision attack on reduced-round Camellia. Science in China (Series E), 2004, 34(8): 857–868.

    Google Scholar 

  91. Wu W L, Feng D G, Chen H. Collision attack and pseudorandomness of reduced-round Camellia. In Proc. SAC’04, Waterloo, Canada, August 9–10, 2004, Lecture Notes in Computer Science 3357, Handschuh H, Hasan M A (eds.), Springer-Verlag, 2004, pp. 252–266.

  92. Wang P, Feng D G, Wu W L. HCTR: A variable-input-length enciphering mode. In Proc. 1st SKLOIS Conf. Info. Security and Cryptology (CISC’05), Beijing, China, December 15–17, 2005, Lecture Notes in Computer Science 3822, Feng D G et al. (eds.), Springer-Verlag, 2005, pp. 175–188.

  93. Wang P, Feng D G, Wu W L. On the security of tweakable modes of operation: TBC and TAE. In Proc. ISC’05, Singapore, Sept. 20–23, 2005, Lecture Notes in Computer Science 3650, Zhou J Y et al. (eds.), Springer-Verlag, 2005, pp. 274–287.

  94. Tao R J, Chen S H. A finite automation public key scheme and digital signature. Chinese Journal of Computers, 1985, (8): 401–409. (in Chinese)

  95. Wang X M. A digital signature scheme constructed with error-correcting codes. IEE Electronics Letters, 1990, 26(13): 898–899.

    Google Scholar 

  96. Bao F. Increasing ranks of linear automata and the complexity of FAPKC. Science in China (Series A), 1994, 24(2): 193–200.

    Google Scholar 

  97. Dai D W, Wu K, Zhang H G. Cryptanalysis of finite automata public key cryptosystem. Science in China (Series A), 1995, 25(11): 1226–1232.

    Google Scholar 

  98. Xu M Z, Wang E F. The crack of public key cryptosystem PKCY. Science in China (Series E), 1997, 27(2): 171–178.

    Google Scholar 

  99. Tao R J, Chen S H, Chen X M. FAPKC3: A new finite automation public key cryptosystem. J. Computer Science and Technology, 1997, 12(4): 289–305.

    MathSciNet  Google Scholar 

  100. Dai Z D, Ye D F, Lam K Y. Weak invertibility of finite automata and cryptanalysis on FAPKC. In Proc. ASIACRYPT’98, Beijing, China, October 1998, Lecture Notes in Computer Science 1514, Ohta K, Pei D Y (eds.), Springer-Verlag, 1998, pp. 227–241.

  101. Tao R J, Chen S H. On finite automaton public key cryptosystem. Theoretical Computer Science, 1999, 226(1-2): 143–172.

    Article  MATH  MathSciNet  Google Scholar 

  102. Ye D F, Lam K Y, Dai Z D. Cryptanalysis of “2R” schemes. In Proc. CRYPTO’99, Santa Barbara, CA, USA, August 15–19, 1999, Lecture Notes in Computer Science 1666, Wiener M J (ed.), Springer-Verlag, 1999, pp. 315–325.

  103. Ye D F, Dai Z D, Lam K Y. Decomposing attacks on asymmetric cryptography based on mapping compositions. J. Cryptology, 2001, 14(2): 137–150.

    Article  MATH  MathSciNet  Google Scholar 

  104. Ye D F, Yang J H, Dai Z D, Ou H W. Attacks on two digital signature schemes based on error correcting codes. In Proc. ICICS’01, Xian, China, November 13–16, 2001, Lecture Notes in Computer Science 2229, Qing S H et al. (eds.), Springer-Verlag, 2001, pp. 84–89.

  105. Dai Z D, Yang J H, Ye D F, Gong G. Cryptanalysis of Wang’s original and revised digital signature scheme. IEE Electronics Letters, 2001, 37(4): 220.

    Article  Google Scholar 

  106. Dai Z D, Ye D F, Pei D Y. Cryptanalysis of ElGamal type encryption schemes based conic curves. IEE Electronics Letters, 2001, 37(7): 426.

    Article  Google Scholar 

  107. Zhang Z F, Feng D G, Dai Z D. Cryptanalysis on AW digital signature scheme based on error-correcting codes. Science in China (Series E), 2003, 33(2): 164–167.

    Google Scholar 

  108. Wang X Y, Feng D G, Lai X J, Yu H B. Collisions for hash functions MD4, MD5, HAVAL-128 and RIPEMD. Cryptology ePrint Archive: Report 2004/199. Aug. 2004.

  109. Wang X Y, Yu H B, Yin Y Q L. Efficient collision search attacks on SHA-0. In Proc. CRYPTO’05, Santa Barbara, CA, USA, August 14–18, 2005, Lecture Notes in Computer Science 3621, Shoup V (ed.), Springer-Verlag, 2005, pp. 1–16.

  110. Wang X Y, Yin Y Q L, Yu H B. Finding collisions in the full SHA-1. In Proc. CRYPTO’05, Santa Barbara, CA, USA, August 14–18, 2005, Lecture Notes in Computer Science 3621, Shoup V (ed.), Springer-Verlag, 2005, pp. 17–36.

  111. Wang X Y, Lai X J, Feng D G et al. Cryptanalysis of the hash functions MD4 and RIPEMD. In Proc. EUROCRYPT’05, Aarhus, Denmark, May 22–26, 2005, Lecture Notes in Computer Science 3494, Gramer R (ed.), Springer-Verlag, 2005, pp. 1–18.

  112. Wang X Y, Yu H B. How to break MD5 and other hash functions. In Proc. EUROCRYPT’05, Aarhus, Denmark, May 22–26, 2005, Lecture Notes in Computer Science 3494, Gramer R (ed.), Springer-Verlag, 2005, pp. 19–35.

  113. Chen X F, Zhang F G, Kim K. Chameleon hashing without key exposure. In Proc. ISC’04, Palo Alto, CA, USA, Sept. 27–29, 2004, Lecture Notes in Computer Science 3225, Zhang K, Zheng Y L (eds.), Springer-Verlag, 2004, pp. 87–98.

  114. Cao Z F. A threshold key escrow scheme based on public key cryptosystem. Science in China (Series E), 2001, 44(4): 441–448.

    Google Scholar 

  115. Yang B, Zhu S X, Wang Y M. Unconditionally-secure oblivious transfer. In Proc. ICICS’01, Xian, China, Nov. 13–16, 2001, Lecture Notes in Computer Science 2229, Qing S H et al. (eds.), Springer-Verlag, 2001, pp. 35–41.

  116. Wang G L, Qing S H, Wang M S, Zhou Z F. Threshold undeniable RSA signature scheme. In Proc. ICICS’01, Xian, China, Nov. 13–16, 2001, Lecture Notes in Computer Science 2229, Qing S H et al. (eds.), Springer-Verlag, 2001, pp. 221–232.

  117. Zhang F G, Kim K. ID-based blind signature and ring signature from pairings. In Proc. ASIACRYPT’02, Queenstown, New Zealand, Dec. 1–5, 2002, Lecture Notes in Computer Science 2501, Zheng Y L (ed.), Springer-Verlag, 2002, pp. 533–547.

  118. Zhao Y L, Deng X T, Lee C H, Zhu H. Resettable zero-knowledge in the weak public-key model. In Proc. EUROCRYPT’03, Warsaw, Poland, May 4–8, 2003, Lecture Notes in Computer Science 2656, Biham E (ed.), Springer-Verlag, 2003, pp. 123–139.

  119. Ma W P, Lee M H. Group oriented cryptosystems based on linear access structures information security and cryptology. In Proc. Int. Conf. Info. Security and Cryptology (ICISC’03), Seoul, Korea, November 27–28, 2003, Lecture Notes in Computer Science 2971, Lim J I, Lee D H (eds.), Springer-Verlag, 2004, pp. 370–376.

  120. Zhang F G, Safavi-Naini R, Susilo W. Efficient verifiably encrypted signature and partially blind signature from bilinear pairings. In Proc. INDOCRYPT’03, New Delhi, India, Dec. 8–10, 2003, Lecture Notes in Computer Science 2904, Johansson T, Maitra S (eds.), Springer-Verlag, 2003, pp. 191–204.

  121. Yao G, Ren K, Bao F, Deng R H, Feng D G. Making the key agreement protocol in mobile ad hoc network more efficient. In Proc. 1st Int. Conf. Applied Cryptography and Network Security (ACNS’03), Kunming, China, Oct. 16–19, 2003, Lecture Notes in Computer Science 2846, Zhou J Y et al. (eds.), Springer-Verlag, 2003, pp. 343–356.

  122. Wu Q H, Zhang J H, Wang Y M. Practical t-out-n oblivious transfer and its applications. In Proc. ICICS’03, Huhehaote, China, Oct. 10–13, 2003, Lecture Notes in Computer Science 2836, Qing S H et al. (eds.), Springer-Verlag, 2003, pp. 226–237.

  123. Zhang J H, Wu Q H, Wang Y M. A Novel efficient group signature scheme with forward security. In Proc. ICICS’03, Huhehaote, China, October 10–13, 2003, Lecture Notes in Computer Science 2836, Qing S H et al. (eds.), Springer-Verlag, 2003, pp. 292–300.

  124. Li H D, Ji D Y, Feng D G, Li B. Oblivious polynomial evaluation, J. Computer Science and Technology, 2004, 19(4): 550–554.

    MathSciNet  Google Scholar 

  125. Li H D, Yang X, Feng D G, Li B. Distributed oblivious function evaluation and its applications, J. Computer Science and Technology, 2004, 19(6): 942–947.

    MathSciNet  Google Scholar 

  126. Chen X F, Zhang F G, Konidala D M, Kim K. New ID-based threshold signature scheme from bilinear pairings. In Proc. INDOCRYPT’04, Chennai, India, December 20–22, 2004, Lecture Notes in Computer Science 3348, Canteaut A, Viswanathan K (eds.), Springer-Verlag, 2004, pp. 371–383.

  127. Chen Z W, Wang J L, Wang Y M et al. An efficient revocation algorithm in group signatures. In Proc. Int. Conf. Info. Security and Cryptology (ICISC’03), Seoul, Korea, Nov. 27–28, 2003, Lecture Notes in Computer Science 2971, Lim J I, Lee D H (eds.), Springer-Verlag 2004, pp. 339–351.

  128. Chen W D, Feng D G. A group of threshold group-signature schemes with privilege subsets. Progress on Cryptography: 25 Years of Cryptography in China, Chen K F (ed.), Kluwer academic Publishers, Netherlands, 2004. See also: Chen W D, Feng D G. A group of threshold group-signature schemes with privilege subsets, J. Software, 2004, 16(7): 1289–1295.

    Google Scholar 

  129. Zhang Z F, Feng D G, Xu J, Zhou Y B. Efficient ID-based optimistic fair exchange with provable security. In Proc. ICICS’05, Beijing, China, December 10–13, 2005, Lecture Notes in Computer Science 3783, Qing S H et al. (eds.), Springer-Verlag, 2005, pp. 14–26.

  130. Wang H, Zhang Y Q, Feng D G. Short threshold signature schemes without random oracles. In Proc. INDOCRYPT’05, Bangalore, India, December 10–12, 2005, Lecture Notes in Computer Science 3797, Maitra S et al. (eds.), Springer-Verlag, 2005, pp. 297–310.

  131. Ma C S, Chen K F, Zheng D, Liu S L. Efficient and proactive threshold signcryption, In Proc. ISC’05, Singapore, September 20–23, 2005, Lecture Notes in Computer Science 3650, Zhou J Y et al. (eds.), Springer-Verlag, 2005, pp. 233–243.

  132. Xu J, Zhang Z F, Feng D G. A ring signature scheme using bilinear pairings. In Proc. 5th Int. Workshop Info. Security Applications (WISA’04), Jeju Island, Korea, August 23–25, 2004, Lecture Notes in Computer Science 3325, Lim C H, Yung M (eds.), Springer-Verlag, 2005, pp. 160–169.

  133. Yao G, Feng D G. A new k-anonymous message transmission protocol. In Proc. 5th Int. Workshop Info. Security Applications (WISA’04), Jeju Island, Korea, August 23–25, 2004, Lecture Notes in Computer Science 3325, Lim C H, Yung M (eds.), Springer-Verlag, 2005, pp. 388–399.

  134. Zhang Z F, Feng D G. Efficient fair certified E-mail delivery based on RSA. In Proc. Parallel and Distributed Processing and Applications—ISPA 2005 Workshops, Nanjing, China, Nov. 2–5, 2005, Lecture Notes in Computer Science 3759, Chen G H et al. (eds.), Springer-Verlag, 2005, pp. 368–377.

  135. Xu J, Zhang Z F, Feng D G. ID-based proxy signature using bilinear pairings. In Proc. Parallel and Distributed Processing and Applications—ISPA 2005 Workshops, Nanjing, China, November 2–5, 2005, Lecture Notes in Computer Science 3759, Chen G H et al. (eds.), Springer-Verlag, 2005, pp. 359–367.

  136. Zhang Z F, Xu J, Feng D G. Efficient identity-based protocol for fair certified E-mail delivery. In Proc. 4th Int. Conf. Cryptology and Network Security (CANS’05), Xiamen, China, Dec. 14–16, 2005, Lecture Notes in Computer Science 3810, Desmedt Y et al. (eds.), Springer-Verlag, 2005, pp. 200–210.

  137. Xu J, Zhang Z F, Feng D G. ID-based aggregate signatures from bilinear pairings. In Proc. 4th Int. Conf. Cryptology and Network Security (CANS’05), Xiamen, China, Dec. 14–16, 2005, Lecture Notes in Computer Science 3810, Desmedt Y et al. (eds.), Springer-Verlag, 2005, pp. 110–119.

  138. Lu X, Feng D G. An arbitrated quantum message signature scheme. In Proc. 1st Int. Symp. Computational and Info. Science (CIS’04), Shanghai, China, December 16–18, 2004, Lecture Notes in Computer Science 3314, Zhang J et al. (eds.), Springer-Verlag, 2004, pp. 1054–1060.

  139. Gu C X, Zhu Y F. An ID-based verifiable encrypted signature scheme based on Hess’s scheme. In Proc. 1st SKLOIS Conf. Info. Security and Cryptology (CISC’05), Beijing, China, December 15–17, 2005, Lecture Notes in Computer Science 3822, Feng D G et al. (eds.), Springer-Verlag, 2005, pp. 42–52.

  140. Liao J, Xiao J F, Qi Y H et al. ID-based signature scheme without trusted PKG. In Proc. 1st SKLOIS Conf. Info. Security and Cryptology (CISC’05), Beijing, China, Dec. 15–17, 2005, Lecture Notes in Computer Science 3822, Feng D G et al. (eds.), Springer-Verlag, 2005, pp. 53–62.

  141. Cheng X G, Zhu H F, Qiu Y, Wang X M. Efficient group signatures from bilinear pairing. In Proc. 1st SKLOIS Conf. Info. Security and Cryptology (CISC’05), Beijing, China, Dec. 15–17, 2005, Lecture Notes in Computer Science 3822, Feng D G et al. (eds.), Springer-Verlag, 2005, pp128–139.

  142. Shao Z H. Enhanced aggregate signature from pairing. In Proc. 1st SKLOIS Conf. Info. Security and Cryptology (CISC’05), Beijing, China, Dec. 15–17, 2005, Lecture Notes in Computer Science 3822, Feng D G et al. (eds.), Springer-Verlag, 2005, pp. 140–149.

  143. Zhou Y, Cao Z F, Chai Z C. Constructing secure proxy cryptosystem. In Proc. 1st SKLOIS Conf. Info. Security and Cryptology (CISC’05), Beijing, China, Dec. 15–17, 2005, Lecture Notes in Computer Science 3822, Feng D G et al. (eds.), Springer-Verlag, 2005, pp. 150–161.

  144. Li H D, Li B. An Unbounded simulation-sound non-interactive zero-knowledge proof system for NP. In Proc. 1st SKLOIS Conf. Info. Security and Cryptology (CISC’05), Beijing, China, Dec. 15–17, 2005, Lecture Notes in Computer Science 3822, Feng D G et al. (eds.), Springer-Verlag, 2005, pp. 210–220.

  145. Li F G, Gao J T, Hu Y P. ID-based threshold unsigncryption scheme from pairings. In Proc. 1st SKLOIS Conf. Info. Security and Cryptology (CISC’05), Beijing, China, Dec. 15–17, 2005, Lecture Notes in Computer Science 3822, Feng D G et al. (eds.), Springer-Verlag, 2005, pp. 242–253.

  146. Feng D G. Verifiable signature sharing for the DSA with heuristic security. IEE Electronics Letters, 1996, 32(15): 1570–1571.

    Article  Google Scholar 

  147. Dai Z D, Zhang Y F. Partition, construction and enumeration of M-P invertible matrices over finite fields. Finite Fields and Their Applications, July 2001, 7(3): 428–440.

    Article  MathSciNet  MATH  Google Scholar 

  148. Feng D G, Chen W D. Analysis on the two classes of robust threshold key escrow schemes. Progress on Cryptography: 25 Years of Cryptography in China, Chen K F (ed.), Kluwer Academic Publishers, Netherlands, 2004. See also: Feng D G, Chen W D. Analysis on the two classes of robust threshold key escrow schemes. Chinese Journal of Computers, 2004, 27(9): 1170–1176.

    Google Scholar 

  149. Zhang Z F, Feng D G. Cryptanalysis of some signature schemes with message recovery. Applied Mathematics and Computation, 2005, 170(1): 103–114.

    Article  MATH  MathSciNet  Google Scholar 

  150. Zhou Y B, Zhang Z F, Feng D G. Cryptanalysis of the end-to-end security protocol for mobile communications with end-user identification/authentication. IEEE Communications Letters, 2005, 9(4): 372–374.

    Article  Google Scholar 

  151. Li Y, Lipmaa H, Pei D Y. On delegatability of four designated verifier signatures. In Proc. ICICS’05, Beijing, China, Dec. 10–13, 2005, Lecture Notes in Computer Science 3783, Qing S H et al. (eds.), Springer-Verlag, 2005, pp. 61–71.

  152. Gao F, Qin S J, Wen Q Y, Zhu F C. An effective attack on the quantum key distribution protocol based on quantum encryption. In Proc. 1st SKLOIS Conf. Info. Security and Cryptology (CISC’05), Beijing, China, Dec. 15–17, 2005, Lecture Notes in Computer Science 3822, Feng D G et al. (eds.), Springer-Verlag, 2005, pp. 302–312.

  153. Cao T J, Lin D D. Security analysis of some threshold signature schemes and multi-signature schemes. In Proc. 1st SKLOIS Conf. Info. Security and Cryptology (CISC’05), Beijing, China, Dec. 15–17, 2005, Lecture Notes in Computer Science 3822, Feng D G et al. (eds.), Springer-Verlag, 2005, pp. 233–241.

  154. Liu D X, Li X Y, Bai Y C. An intelligent intruder model for security protocol analysis. In Proc. ICICS’01, Xian, China, November 13–16, 2001, Lecture Notes in Computer Science 2229, Qing S H et al. (eds.), Springer-Verlag, 2001, pp. 13–22.

  155. Song Z M, Qing S H. Applying NCP logic to the analysis of SSL 3.0. In Proc. ICICS’01, Xian, China, November 13–16, 2001, Lecture Notes in Computer Science 2229, Qing S H et al. (eds.), Springer-Verlag, 2001, pp. 155–166.

  156. Li Y F. A new semantics of authentication logic. In Proc. ICICS’01, Xian, China, November 13–16, 2001, Lecture Notes in Computer Science 2229, Qing S H et al. (eds.), Springer-Verlag, 2001, pp. 476–482.

  157. Huai J P, Li X X. Algebraic model for security protocols and its security. Science in China (Series E), 2003, 33(12): 1087–1106.

    Google Scholar 

  158. Ji Q G, Qing S H, Zhou Y B, Feng D G. Study on strand space model theory. J. Computer Science and Technology, 2003, 18(5): 553–570.

    Article  MATH  MathSciNet  Google Scholar 

  159. Xue R, Feng D G. New semantic model for authentication protocols in ASMs. J. Computer Science and Technology, 2004, 19(4): 555–563.

    MathSciNet  Google Scholar 

  160. Li X H, Ma J F, Wen X G. Extension to the Canetti-Krawczyk model for the identity-based cryptosystem. Science in China (Series E), 2004, 34(10): 1185–1191.

    Google Scholar 

  161. Jing J W, Liu P, Feng D G et al. ARECA: A highly attack resilient Certification Authority. In Proc. ACM Workshop on Survivable and Self-Regenerative Systems, Fairfax, VA, USA, Oct. 31, 2003, pp. 53–63.

  162. Feng D G, Xiang J. Experience on intrusion tolerance distributed systems. In Proc. 29th Annual Int. Computer Software and Applications Conf., Edinburgh, UK, July 26–28, 2005, pp. 270–271.

  163. Zhang L W, Feng D G. Intrusion tolerant CA scheme with cheaters detection ability. In Proc. Parallel and Distributed Processing and Applications—-ISPA 2005 Workshops, Nanjing, China, Nov. 2–5, 2005, Lecture Notes in Computer Science 3759, Chen G H et al. (eds.), Springer-Verlag, 2005, pp. 378–386.

  164. Luo W J, Cao X B, Wang X F. NIDS research based on artificial immunology. In Proc. ICICS’01, Xian, China, Nov. 13–16, 2001, Lecture Notes in Computer Science 2229, Qing S H et al. (eds.), Springer-Verlag, 2005, pp. 371–375.

  165. Li H P, Chang L L, Wang X M. A useful intrusion detection system prototype to monitor multi-processes based on system calls. In Proc. ICICS’01, Xian, China, Nov. 13–16, 2001, Lecture Notes in Computer Science 2229, Qing S H et al. (eds.), Springer-Verlag, 2005, pp. 441–450.

  166. Luo M, Wang L N, Zhang H G, Chen J. A research on intrusion detection based on unsupervised clustering and support vector machine. In Proc. ICICS’03, Huhehaote, China, Oct. 10–13, 2003, Lecture Notes in Computer Science 2836, Qing S H et al. (eds.), Springer-Verlag, 2003, pp. 325–336.

  167. Sun J H, Jin H, Chen H et al. A compound intrusion detection model. In Proc. ICICS’03, Huhehaote, China, Oct. 10–13, 2003, Lecture Notes in Computer Science 2836, Qing S H et al. (eds.), Springer-Verlag, 2003, pp. 370–381.

  168. Zhang M, Ju J B. Space-economical reassembly for intrusion detection system. In Proc. ICICS’03, Huhehaote, China, Oct. 10–13, 2003, Lecture Notes in Computer Science 2836, Qing S H et al. (eds.), Springer-Verlag, 2003, pp. 393–404.

  169. Huang J W, Shi Y Q, Shi Y. Embedding image watermarks in DC components. IEEE Trans. Circuits and Systems for Video Technology, 2000, 10(6): 974–979.

    Article  Google Scholar 

  170. Huang J W, Shi Y Q. Reliable information bit hiding. IEEE Trans. Circuits and Systems for Video Technology, 2002, 12(10): 916–920.

    Article  Google Scholar 

  171. Zhu X S, Wang Y S. Better use of human visual model in watermarking based on linear prediction synthesis filter. In Proc. 3rd Int. Workshop on Digital Watermarking (IWDW’04), Seoul, Korea, Oct. 30–Nov. 1, 2004, Lecture Notes in Computer Science 3304, Cox I J et al. (eds.), Springer-Verlag, 2005, pp. 66–76.

  172. Liu R Z, Tan T N. An SVD-based watermarking scheme for protecting rightful ownership. IEEE Trans. Multimedia, 2002, 4(1): 121–128.

    Article  MATH  Google Scholar 

  173. Lu Z M, Xu D G, Sun S H. Multipurpose image watermarking algorithm based on multistage vector quantization. IEEE Trans. Image Processing, 2005, 14(6): 822–831.

    Google Scholar 

  174. Kang X G, Huang J W, Shi Y Q. An image watermarking algorithm robust to geometric distortion. In Proc. 1st Int. Workshop on Digital Watermarking (IWDW’02), Seoul, Korea, Nov. 21–22, 2002, Lecture Notes in Computer Science 2613, Fabien A P P et al. (eds.), Springer-Verlag, 2003, pp. 212–223.

  175. Kang X G, Huang J W, Shi Y Q, Lin Y. A DWT-DFT composite watermarking scheme robust to both affine transform and JPEG compression. IEEE Trans. Circuits and Systems for Video Technology, 2003, 13(8): 776–786.

    Article  Google Scholar 

  176. Xue G, Lu P Z, Wang J L. A counter-geometric distortions data hiding scheme using double channels in color images. In Proc. 3rd Int. Workshop on Digital Watermarking (IWDW’04), Seoul, Korea, Oct. 30–Nov. 1, 2004, Lecture Notes in Computer Science 3304, Cox I J et al. (eds.), Springer-Verlag, 2005, pp. 42–54.

  177. Hu J Q, Huang J W, Huang D R, Shi Y Q. A DWT-based fragile watermarking tolerant of JPEG compression. In Proc. 1st Int. Workshop on Digital Watermarking (IWDW’02), Seoul, Korea, Nov. 21–22, 2002, Lecture Notes in Computer Science 2613, Fabien A P P et al. (eds.), Springer-Verlag, 2003, pp. 179–188.

  178. Zhao X F, Wang W N, Chen K F. Multimedia tampering localization based on the perturbation in reverse processing. In Proc. 4th Int. Conf. Web-Age Info. Management (WAIM’03), Chengdu, China, August 17–19, 2003, Lecture Notes in Computer Science 2762, Dong G Z et al. (eds.), Springer-Verlag, 2003, pp. 483–494.

  179. Xuan G R, Yang C Y, Zhen Y Z, Shi Y Q, Ni Z C. Reversible data hiding using integer wavelet transform and companding technique. In Proc. 3rd Int. Workshop on Digital Watermarking (IWDW’04), Seoul, Korea, Oct. 30 – Nov. 1, 2004, Lecture Notes in Computer Science 3304, Cox I J et al. (eds.), Springer-Verlag, 2005, pp. 115–124.

  180. Zhang X P, Wang S Z. Watermarking scheme capable of resisting attacks based on availability of inserter. Signal Processing, 2002, 82(11): 1801–1804.

    Google Scholar 

  181. Zhang X P, Wang S Z. Vulnerability of pixel-value differencing steganography to histogram analysis and modification for enhanced security. Pattern Recognition Letters, 2004, 25(3): 331–339.

    Article  Google Scholar 

  182. Zhang X P, Wang S Z. Invertibility attack against watermarking based on forged algorithm and a countermeasure. Pattern Recognition Letters, 2004, 25(8): 967–973.

    Article  Google Scholar 

  183. Lu P Z, Luo X Y, Tang Q Y, Shen L. An improved sample pairs method for detection of LSB embedding. In 6th Int. Workshop on Info. Hiding (IH’04), Toronto, Canada, May 23–25, 2004, Lecture Notes in Computer Science 3200, Fridrich J J (ed.), Springer-Verlag, 2004, pp. 116–127.

  184. Xuan G R, Shi Y Q, Gao J J et al. Steganalysis based on multiple features formed by statistical moments of wavelet characteristic functions. In 7th Int. Workshop on Info. Hiding (IH’05), Barcelona, Spain, June 6–8, 2005, Lecture Notes in Computer Science 3727, Barni M et al. (eds.), Springer-Verlag, 2005, pp. 262–277.

  185. Zhao X F, Dai Y X, Feng D G. Towards the public but noninvertible watermarking schemes. In Proc. 3rd Int. Workshop on Digital Watermarking (IWDW’04), Seoul, Korea, Oct. 30–Nov. 1, 2004, Lecture Notes in Computer Science 3304, Cox I J et al. (eds.), Springer-Verlag, 2005, pp. 218–231.

  186. Zhao X F, Dai Y X, Feng D G. A generalized method for constructing and proving zero-knowledge watermark proof systems. In Proc. 3rd Int. Workshop on Digital Watermarking (IWDW’04), Seoul, Korea, Oct. 30 – Nov. 1, 2004, Lecture Notes in Computer Science 3304, Cox I J et al. (eds.), Springer-Verlag, 2005, pp. 204–217.

  187. Zhu Y, Feng D G, Zou W. Collusion secure convolutional spread spectrum fingerprinting. In Proc. 4th Int. Workshop on Digital Watermarking (IWDW’05), Siena, Italy, September 15–17, 2005, Lecture Notes in Computer Science 3710, Barni M et al. (eds.), Springer-Verlag, 2006, pp. 67–83.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deng-Guo Feng.

Additional information

Survey: Supported by the National Natural Science Foundation of China under Grant No. 60025205.

Deng-Guo Feng is a professor and Ph.D. supervisor with the Institute of Software (IOS), Chinese Academy of Sciences (CAS). He is also a member of the Consultative Committee of National Informatization Specialists and director of State Key Laboratory of Information Security. In 1995, he received his Ph.D. degree in communication and information system from Xidian University and began to work as a post-doctor with the Graduate School of University of Science and Technology of China. In 1997, he joined IOS and was elected into the project of One Hundred Talents of CAS. Prof. Feng’s research interests are in the areas of cryptology and information security. He has published 8 books and more than 150 papers in the influential journals and conferences. He acquired more than 30 technical patents and software copyrights. In years of productive work, Prof. Feng has received awards or honor from the National Scientific and Technological Progress Award, CAS Scientific and Technological Progress Award, Beijing Science and Technology Award, Ten Prominent CAS Young Researchers Project, Award for Prominent Individuals of State Key Laboratories Program, Award of Ten Excellent Doctoral Dissertations of China, CAS Young Scientists Project, and in particular, the National Foundation of Prominent Young Researchers. Now he is a member of the editorial boards of more than 10 journals, including Chinese Science Bulletin, J. Comput. Sci. & Technol., etc., and also a committee member of international conferences, such as Intern. Conf. Info. and Comm. Security (ICICS), Intern. Conf. Cryptology and Network Security (CANS), etc.

Xiao-Yun Wang is a professor and Ph.D. supervisor with the School of Mathematics and System Science, Shandong University (SU). In the years of 1987, 1990 and 1993, she received her B.S., M.S. and Ph.D. degrees respectively, all in mathematics and from SU. Since 2004, she has been a professor in the project of Zhenning Yang Lectures with Tsinghua University. In 2005, she was granted the National Foundation of Prominent Young Researchers. Prof. Wang’s research interests are in the theory of cryptology. Among lots of achievements, the most recognized work of her and her group is the breaking of a series of widely used hash functions, on which she successfully gave the effective collision attacks. The work has been awarded by the Award for Advances in the Science and Technology of Cryptology. Prof. Wang has authored some papers having impact. 4 of them about the breaking of MD5 and SHA-1 received the awards for the best paper from the most influential conferences in the field, including EUROCRYPT, CRYPTO, etc.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feng, DG., Wang, XY. Progress and Prospect of Some Fundamental Research on Information Security in China. J Comput Sci Technol 21, 740–755 (2006). https://doi.org/10.1007/s11390-006-0740-2

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11390-006-0740-2

Keywords

Navigation