Skip to main content
Log in

Unified Parallel Systolic Multiplier Over \({\it GF}(2^{m})\)

  • Regular Paper
  • Published:
Journal of Computer Science and Technology Aims and scope Submit manuscript

Abstract

In general, there are three popular basis representations, standard (canonical, polynomial) basis, normal basis, and dual basis, for representing elements in \({\it GF}(2^{m})\). Various basis representations have their distinct advantages and have their different associated multiplication architectures. In this paper, we will present a unified systolic multiplication architecture, by employing Hankel matrix-vector multiplication, for various basis representations. For various element representation in \({\it GF}(2^{m})\), we will show that various basis multiplications can be performed by Hankel matrix-vector multiplications. A comparison with existing and similar structures has shown that the proposed architectures perform well both in space and time complexities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Denning D E R. Cryptography and Data Security. Reading, MA: Addison-Wesley, 1983.

    Google Scholar 

  2. Rhee M Y. Cryptography and Secure Communications. Singapore: McGraw-Hill, 1994.

    MATH  Google Scholar 

  3. Menezes A, Oorschot P V, Vanstone S. Handbook of Applied Cryptography. Boca Raton, FL: CRC Press, 1997.

    MATH  Google Scholar 

  4. Massey J L, Omura J K. Computational method and apparatus for finite field arithmetic. U.S. Patent Number 4.587.627, May 1986.

  5. Itoh T, Tsujii S. Structure of parallel multipliers for a class of fields \({\it GF}(2^{m})\). Information and Computation, 1989, 83: 21–40.

    Article  MATH  MathSciNet  Google Scholar 

  6. Wu H, Hasan M A. Low complexity bit-parallel multipliers for a class of finite fields. IEEE Trans. Computers, 1998, 47(8): 883–887.

    Article  MathSciNet  Google Scholar 

  7. Koc C K, Sunar B. Low complexity bit-parallel canonical and normal basis multipliers for a class of finite fields. IEEE Trans. Computers, 1998, 47(3): 353–356.

    Article  MathSciNet  Google Scholar 

  8. Hasan M A, Wang M Z, Bhargava V K. A modified Massey-Omura parallel multiplier for a class of finite fields. IEEE Trans. Computers, 1993, 42(10): 1278–1280.

    Article  Google Scholar 

  9. Sunar B, Koc C K. An efficient optimal normal basis type II multiplier. IEEE Trans. Computers, 2001, 50(1): 83–87.

    Article  MathSciNet  Google Scholar 

  10. Yeh C S, Reed S, Truong T K. Systolic multipliers for finite fields \({\it GF}(2^{m})\). IEEE Trans. Computers, 1984, C-33(4): 357–360.

    MathSciNet  Google Scholar 

  11. Wang C L, Lin J L. Systolic array implementation of multipliers for finite fields \({\it GF}(2^{m})\). IEEE Trans. Circuits and Systems, 1991, 38(7): 796–800.

    Article  Google Scholar 

  12. Wei S W. A systolic power-sum circuit for \({\it GF}(2^{m})\). IEEE Trans. Computers, 1994, 43(2): 226–229.

    Article  Google Scholar 

  13. Wang C L. Bit-level systolic array for fast exponentiation in \({\it GF}(2^{m})\). IEEE Trans. Computers, 1994, 43(7): 838–841.

    Article  MATH  Google Scholar 

  14. Lee C Y. Low-latency bit-parallel systolic multiplier for irreducible x m+x n+1 with gcd(m,n)=1. IEICE Trans. Fundamentals, 2003, E86-A(11): 2844–2852.

    Google Scholar 

  15. Lee C Y, Lu E H, Lee J Y. Bit-parallel systolic multipliers for \({\it GF}(2^{m})\) fields defined by all-one and equally-spaced polynomials. IEEE Trans. Computers, 2001, 50(5): 385–393.

    Article  MathSciNet  Google Scholar 

  16. Kwon S. A low complexity and a low latency bit parallel systolic multiplier over \({\it GF} (2^{m})\) using an optimal normal basis of type II. In Proc. 16th IEEE Symp. Computer Arithmetic, Santiago de Compostela, Spain, 2003, 16: 196–202.

  17. Belekamp E R. Bit-serial Reed-Solomon encoders. IEEE Information Theory, 1982, 28: 869–974.

    Article  Google Scholar 

  18. Morii M, Kasahara K, Whiting D L. Efficient bit-serial multiplication and discrete-time Wiener-Hoph equation over finite fields. IEEE Trans. Information Theory, 1989, 35: 1177–1184.

    Article  MATH  MathSciNet  Google Scholar 

  19. Wang M, Blake I F. Bit serial multiplication in finite fields. SIAM Discrete Math., 1990, 3(1): 140–148.

    Article  MATH  MathSciNet  Google Scholar 

  20. Wang C C. An algorithm to design finite field multipliers using a self-dual normal basis. IEEE Trans. Computers, 1989, 38(10): 1457–1459.

    Article  Google Scholar 

  21. Wu H, Hasan M A, Blake L F. New low-complexity bit-parallel finite field multipliers using weakly dual bases. IEEE Trans. Computers, 1998, 47(11): 1223–1234.

    Article  MathSciNet  Google Scholar 

  22. Fenn S T J, Benaissa M, Taylor D. \({\it GF}(2^{m})\) Multiplication and division over the dual basis. IEEE Trans. Computers, 1996, 45(3): 319–327.

    Article  MATH  Google Scholar 

  23. Fenn S T J, Benaissa M, Taylor D. A dual basis systolic multipliers for \({\it GF}(2^{m})\). IEE Proc-Comp. Digit. Tech., 1997, 144(1): 43–46.

    Article  Google Scholar 

  24. Weisstein E W. Hankel Matrix. Mathworld — A wolfram web resource, http://mathworld.com/HankelMatrix.html.

  25. Parhi K. VLSI Signal Processing Systems: Design and Implementation. John Wiley & Sons, 1999.

  26. Seroussi G. Table of low-weight binary irreducible polynomials. Visual Computing Dept., Hewlett Packard Laboratories, Aug. 1998, Available at: http://www.hpl.hp.com/techreports/98/HPL-98-135.html.

  27. Perlis S. Normal bases of cyclic fields of prime power degree. Duke Math. J., 1942, 9: 507–517.

    Article  MATH  MathSciNet  Google Scholar 

  28. Mullin R C, Onyszchuk I M, Vanstone S A, Wilson R M. Optimal normal bases in \({\it GF}(p^{n})\). Discrete Applied Math., 1988/1989, 22: 149–161.

    Article  MathSciNet  Google Scholar 

  29. Brent R P, Zimmermann P. Algorithms for finding almost irreducible and almost primitive trinomials. In Primes and Misdemeeanours: Lectures in Honour of the Sixtieth Birthday of Hugh Cowie Williams, Fields Institute Communication FIC/41, The Fields Institute, Toronto, 2004, pp.91–102.

  30. Lee C Y. Low complexity bit-parallel systolic multiplier over \({\it GF}(2^{m})\) using irreducible trinomials. IEE Proc.-Comput. and Digit. Tech., 2003, 150(1): 39–42.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiou-Yng Lee.

Additional information

Supported under Contract No. NSC 94-2218-E-262-003.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, CY., Chen, YH., Chiou, CW. et al. Unified Parallel Systolic Multiplier Over \({\it GF}(2^{m})\) . J Comput Sci Technol 22, 28–38 (2007). https://doi.org/10.1007/s11390-007-9003-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11390-007-9003-0

Keywords

Navigation