Skip to main content
Log in

A General Approach to L(h,k)-Label Interconnection Networks

  • Short Paper
  • Published:
Journal of Computer Science and Technology Aims and scope Submit manuscript

Abstract

Given two non-negative integers h and k, an L(h, k)-labeling of a graph G = (V, E) is a function from the set V to a set of colors, such that adjacent nodes take colors at distance at least h, and nodes at distance 2 take colors at distance at least k. The aim of the L(h, k)-labeling problem is to minimize the greatest used color. Since the decisional version of this problem is NP-complete, it is important to investigate particular classes of graphs for which the problem can be efficiently solved. It is well known that the most common interconnection topologies, such as Butterfly-like, Bene·s, CCC, Trivalent Cayley networks, are all characterized by a similar structure: they have nodes organized as a matrix and connections are divided into layers. So we naturally introduce a new class of graphs, called (l × n)-multistage graphs, containing the most common interconnection topologies, on which we study the L(h, k)-labeling. A general algorithm for L(h, k)-labeling these graphs is presented, and from this method an efficient L(2, 1)-labeling for Butterfly and CCC networks is derived. Finally we describe a possible generalization of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Roberts F S. From Garbage to Rainbows: Generalizations of Graph Coloring and Their Applications. Graph Theory, Combinatorics, and Applications, 2, Alavi Y, Chartrand G, Oellermann O R, Schwenk A J (eds.), 2, New York: Wiley, 1991, pp.1031–1052.

    Google Scholar 

  2. Jensen T R, Toft B. Graph Coloring Problems. New York: John Wiley & Sons, 1995.

    MATH  Google Scholar 

  3. Griggs J R, Yeh R K. Labeling graphs with a condition at distance 2. SIAM Journal on Discrete Mathematics 1992, 5(4): 586–595.

    Article  MATH  MathSciNet  Google Scholar 

  4. Georges J P, Mauro D W. Generalized vertex labelings with a condition at distance two. Congressus Numerantium, 1995, 109: 141–159.

    MATH  MathSciNet  Google Scholar 

  5. Calamoneri T. Exact solution of a class of frequency assignment problems in cellular networks. Discrete Mathematics & Theoretical Computer Science, 2006, 8: 141–158.

    MATH  MathSciNet  Google Scholar 

  6. Calamoneri T, Pelc A, Petreschi R: Labeling trees with a condition at distance two. Discrete Mathematics, 2006, 306(14): 1534–1539.

    Article  MATH  MathSciNet  Google Scholar 

  7. Georges J P, Mauro D W. Labeling trees with a condition at distance two. Discrete Mathematics, 2003, 269(1–3): 127–148.

    Article  MATH  MathSciNet  Google Scholar 

  8. Georges J P, Mauro D W, Stein M I. Labeling products of complete graphs with a condition at distance two. SIAM Journal on Discrete Mathematics, 2001, 14(1): 28–35.

    Article  MathSciNet  Google Scholar 

  9. J van den Heuvel, R A Leese, M A Shepherd. Graph labelling and radio channel assignment. Journal of Graph Theory, 1998, 29(4): 263–283.

    Article  MATH  MathSciNet  Google Scholar 

  10. Agnarsson G, Halldórsson M M. Coloring powers of planar graphs. SIAM Journal on Discrete Mathematics, 2003, 16(4): 651–662.

    Article  MATH  MathSciNet  Google Scholar 

  11. Hale W K. Frequency assignment: Theory and application. Proceedings of the IEEE, 1980, 68(12): 1487–1514.

    Article  Google Scholar 

  12. K I Aardal, S P M van Hoesel, A M C A Koster, C Mannino, A Sassano. Models and solution techniques for frequency assignment problems. ZIB-Report 01-40, Konrad-Zuse-Zentrum fur Informationstechnik Berlin, 2001.

  13. H L Bodlaender, T Kloks, R B Tan, J van Leeuwen. Lambda coloring of graphs. In Proc. 17th Annual Symposium on Theoretical Aspects of Computer Science (STACS 2000), Lille, France, LNCS 1770, Feb. 2000, pp.395–406.

  14. Calamoneri T, Petreschi R. L(2, 1)-labeling of planar graphs. Journal on Parallel and Distributed Computing, 2004, 64(3): 414–426.

    Article  MATH  Google Scholar 

  15. Calamoneri T, Petreschi R. λ-coloring matrogenic graphs. Discrete Applied Mathematics, 2006, 154: 2445–2457.

    Article  MATH  MathSciNet  Google Scholar 

  16. Chang G J, Kuo D. The L(2, 1)-labeling problem on graphs. SIAM Journal on Discrete Mathematics, 1996, 9: 309–316.

    Article  MATH  MathSciNet  Google Scholar 

  17. Fiala J, Kloks T, Kratochvíl J. Fixed-parameter complexity of λ-colorings. In Proc. Graph Theoretic Concepts in Computer Science (WG’99), LNCS 1665, 1999, pp.350–363.

  18. Murphey R A, Pardalos P M, Resende M G C. Frequency Assignment Problems. Handbook of Combinatorial Optimization, Du D-Z, Pardalos P M (eds.), Kluwer Academic Publishers, 1999, pp.295–377.

  19. Sakai D. Labeling chordal graphs: Distance 2 condition. SIAM Journal on Discrete Mathematics, 1994, 7(1): 133–140.

    Article  MATH  MathSciNet  Google Scholar 

  20. Shepherd M. Radio channel assignment [Dissertation]. Merton College, Oxford, 1998.

  21. Whittlesey M A, Georges J P, Mauro D W. On the λ number of Q n and related graphs. SIAM Journal on Discrete Mathematics, 1995, 8(4): 499–506.

    Article  MATH  MathSciNet  Google Scholar 

  22. Calamoneri T. The L(h, k)-labelling problem: A survey and annotated bibliography. The Computer Journal, 2006, 49(5): 585–608, http://www.dsi.uniroma1.it/∼calamo/survey.html.

    Article  Google Scholar 

  23. Leighton F T. Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes. Morgan Kaufmann, 1992.

  24. Preparata F P, Vuillemin J. The cube-connected cycles: A versatile network for parallel computation. Communications of ACM, 1981, 24(5): 300–309.

    Article  MathSciNet  Google Scholar 

  25. Calamoneri T, Massini A. Efficient algorithms for checking the equivalence of multistage interconnection networks. Journal on Parallel and Distributed Computing, 2004, 64(1): 135–150.

    Article  MATH  Google Scholar 

  26. Calamoneri T, Petreschi R. A new 3D representation of trivalent Cayley networks. Information Processing Letters, 1997, 61(5): 247–252.

    Article  MathSciNet  Google Scholar 

  27. Vadapalli P, Srimani P K. Trivalent Cayley graphs for interconnection networks. Information Processing Letters, 1995, 54(6): 329–335.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiziana Calamoneri.

Additional information

Work supported in part by Sapienza University of Rome (project “Parallel and Distributed Codes”).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calamoneri, T., Caminiti, S. & Petreschi, R. A General Approach to L(h,k)-Label Interconnection Networks. J. Comput. Sci. Technol. 23, 652–659 (2008). https://doi.org/10.1007/s11390-008-9161-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11390-008-9161-8

Keywords

Navigation