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Abstract Data prefetching is an effective data access latency hiding technique to mask the CPU stall caused by cache
misses and to bridge the performance gap between processor and memory. With hardware and/or software support, data
prefetching brings data closer to a processor before it is actually needed. Many prefetching techniques have been developed
for single-core processors. Recent developments in processor technology have brought multicore processors into mainstream.
While some of the single-core prefetching techniques are directly applicable to multicore processors, numerous novel strategies
have been proposed in the past few years to take advantage of multiple cores. This paper aims to provide a comprehensive
review of the state-of-the-art prefetching techniques, and proposes a taxonomy that classifies various design concerns in
developing a prefetching strategy, especially for multicore processors. We compare various existing methods through analysis
as well.

Keywords taxonomy of prefetching strategies, multicore processors, data prefetching, memory hierarchy

1 Introduction

The advances in computing and memory technolo-
gies have been unbalanced. Processor performance has
been increasing much faster than memory performance
over the past three decades. This imbalance has been
causing an increasing gap and making memory perfor-
mance a formidable bottleneck. Since 2004, multicore
chips have emerged into mainstream to offer a signifi-
cant boost in processing capabilities while consuming
lower power. Chip multiprocessing (CMP) technology
with the help of thread-level parallelism (TLP) and
data-level parallelism (DLP) has been the driving pro-
cessor technology in increasing computing power fur-
ther. However, the data access problem is getting worse
with multiple cores contending for accessing data from
memory that is typically shared by these cores.

Data prefetching, which decouples and overlaps data
transfer and computation, is widely considered as an ef-
fective memory latency hiding technique. Cache misses
are a common cause of CPU stalls. Using cache mem-
ories effectively enables bridging the performance gap
between the processor and memory. To achieve this
goal, data prefetching predicts future data accesses of
a processor, initiates to fetch data early, and brings
the data closer to the processor before the processor

requests for the data.
Numerous prefetching strategies have been proposed

in the research literature for single-core processors.
These strategies predict future data accesses by using
recent history of data accesses from which pattern of
accesses can be recognized[1−6], by using compiler or
user provided hints[7,8], by analyzing traces of past ex-
ecution of applications or loops[9]. With the emergence
of multi-threaded and multicore processors, computing
power became abundant. A number of methods have
been proposed to utilize this extra computing power for
prefetching. Many of these methods run a helper thread
ahead of actual execution of an application to predict
cache misses[10−15]. Another set of methods employ
run-ahead execution at hardware level[16,17], where idle
or dedicated cycles are used for prefetching. We pro-
posed to utilize a dedicated server to push data closer
to CPU by selecting future data access prediction meth-
ods dynamically[18].

Among various strategies mentioned above, ques-
tions arise such as what the best prefetching method
is to achieve the goal of crossing the data access wall
in the multicore era, and what design issues have to
be taken into consideration. To address these ques-
tions, in this paper, we provide a comprehensive taxo-
nomy of prefetching strategies that primarily captures

Survey
This research was supported in part by the National Science Foundation of USA under Grant Nos. EIA-0224377, CNS-0406328,

CNS-0509118, and CCF-0621435.



406 J. Comput. Sci. & Technol., May 2009, Vol.24, No.3

design issues of prefetching strategies. VanderWiel
et al.[19] presented a history of prefetching, discussed
the general idea of prefetching, and compared various
prefetching strategies in the context of single-core pro-
cessors. Their survey provides a taxonomy address-
ing what, when, and where (destination of prefetch-
ing) questions for hardware prefetching and software
prefetching. Oren[20] conducted a survey with a simi-
lar classification of hardware and software prefetching
methods. With the emergence of multi-thread and
multicore architectures, new opportunities and chal-
lenges arise in designing prefetching strategies. We pro-
pose a complete taxonomy of prefetching mechanisms
based on a comprehensive study of hardware and soft-
ware prefetching, prediction and pre-execution-based
prefetching, and more importantly, prefetching strate-
gies that are novel to multicore processors. This taxo-
nomy aims to provide insightful guidelines for making
prefetching design and improving performance and pro-
ductivity of software development.

The rest of the paper is organized as follows. Section
2 presents the taxonomy that classifies data prefetching
strategies. In Section 3, we provide a comparison of the
pros and cons of existing prefetching methods with ex-
amples. We discuss various challenges in implementing
prefetching on multicore processors and possible solu-
tions in Section 4 and conclude in Section 5 with a
summary.

2 Taxonomy

A data prefetching strategy, whether on single-core
or multicore processors, has to consider various issues in
order to mask data access latency efficiently. Prefetch-
ing strategies should consider both aspects of what to
prefetch and when to prefetch. A strategy should be
able to predict future data requirements of an applica-
tion accurately and to move the predicted data from its
source to destination in time. Fetching data too early
might replace data that would be used by processor in
the near future, which causes cache pollution[21]. Fetch-
ing data too late wastes bandwidth since a cache miss
stall may have already occurred. At the same time, the
complexity of executing prefetching methods should be
kept low in order not to block the actual processing of
an application.

Fig.1 shows three representative scenarios of

prefetching strategies. In Scenario A, a prefetch
engine (PE) observes history of L1 cache misses and
initiates prefetch operations. In multi-threaded or
multicore processors, pre-execution-based approaches
employ a separate thread to speculate future ac-
cesses. In this approach (Scenario B in Fig.1), a com-
piler or application developer generates computation-
thread and prefetching-thread for an application. The
prefetching-thread pre-executes slices of code of the
main computation-thread and initiates prefetching data
into a shared cache memory (L2 cache in Fig.1) ear-
lier than the computation-thread requests. In memory-
side prefetching strategy (Scenario C in Fig.1), the
prefetching-thread is executed on a memory processor
within an intelligent main memory. The predicted data
is pushed towards the processor. From these scenarios,
it is evident that, in addition to predicting what and
when to prefetch, choosing the source, the destination,
and the initiator of prefetching plays a primary role in
designing an effective prefetching strategy.

Fig.1. Prefetching scenarios.

We take a top-down approach to characterizing and
classifying various design issues, and present a taxono-
my of prefetching strategies. Fig.2 shows the top layer
of the taxonomy, which consists of the five most fun-
damental issues that any prefetching strategy has to
address: what data to prefetch, when to prefetch, what
is the prefetching source, what is the prefetching des-
tination, and who initiates a prefetch. In this section,
we examine each element and its taxonomy in detail.

Fig.2. Five fundamental issues in designing a prefetching strategy.
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2.1 What to Prefetch?

Predicting what data to prefetch is the most im-
portant requirement of prefetching design. In current
multi-level memory hierarchies, data that has been re-
cently and frequently used (read/written) by an appli-
cation is stored at a cache level closer to CPU. When
data is not in a cache closer to a processor, a raw cache
miss occurs, which sends a demand request to a lower
level cache memory or main memory. Raw cache misses
typically cause CPU stalls, and thus the computing
power is wasted. If a prefetching strategy can predict
the occurrence of such raw misses ahead of time, then
a prefetch instruction can be issued early to bring that
data by the time it is required to avoid cache misses.

To effectively mask the stall time caused by raw
cache misses, the accuracy of predicting what to
prefetch must be high. Predicting future data references
accurately is critical to a data prefetching strategy. If
the prediction accuracy is low, useless data blocks are
fetched into the upper levels of cache, which might re-
place data blocks that would be used in the near future.
This mis-prediction leads to cache pollution, which in
turn causes poor cache performance and overall per-
formance degradation. Intuitively, data prefetching is
effective when application requests follow regular pat-
terns. Execution of code in loops is usually a target
by various prefetching strategies, where regular data
access patterns are common.

Fig.3 shows further classification of various meth-
ods that are used in predicting what data to prefetch.
Hardware-controlled strategies predict future accesses
using history or run-ahead execution or offline anal-
ysis. Software-controlled strategies utilize compiler or
user inserted prefetching instructions, or post-execution
analysis. Hybrid-controlled strategies also use history-
based approaches or pre-execute slices of code.

2.1.1 Hardware-Controlled Strategies

In a hardware-controlled strategy, prefetching is

entirely managed by hardware. Various methods sup-
port hardware-controlled prefetching. Online history-
based prediction approach observes history of accesses
and analyzes them to find regular patterns among the
accesses. Instead of relying on history of data accesses,
run-ahead execution[22,23] approach pre-executes future
instructions while data cache misses are outstanding.
Offline analysis uses history of previous execution of
an application in prefetching for a future execution.

Online history-based prediction is the most com-
monly used hardware controlled data prefetching stra-
tegy. In this strategy, a prefetch engine (PE) predicts
future data references and issues prefetching instruc-
tions. The prefetching logic is completely implemented
within a processor, and this strategy does not require
any user interference. PE observes either the history
of data accesses or the history of cache misses to pre-
dict future accesses. For instance, Intel Core micro-
architecture uses a Smart Memory Access[24] approach,
where an instruction-pointer-based prefetcher tags the
history of each load instruction, and if a constant stride
is found, the next address is calculated. Data at the cal-
culated address is prefetched into L1 cache. Numerous
prediction algorithms have been proposed to find pat-
terns among history of accesses or cache misses. We
elaborate prediction algorithms and data access pat-
terns in Subsection 2.1.4 that all history-based pre-
diction strategies try to predict. Online history-based
analysis is beneficial to applications with regular data
access patterns. If there are no regular patterns, the
overhead in predicting future accesses may not be bene-
ficial. In some cases, with the added cost in finding
patterns, there may be no gain, especially when data
accesses are completely random.

Runahead execution exploits idle cycles or cores to
run instructions speculatively. The main idea behind
this approach is to utilize the power of multicore pro-
cessors, when they are not busy. Zhou[17] and Ganusov
et al.[16] proposed to utilize idle cores of a Chip Multi-
processor (CMP) to speed up single threaded programs.

Fig.3. Predicting what data to prefetch.
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Zhou’s dual-core execution (DCE) approach takes ad-
vantage of idle cores to construct a large, distributed
instruction window, and Ganusov et al.’s future exe-
cution (FE) approach uses an idle core to pre-execute
future loop iterations using value prediction.

Runahead execution is beneficial to applications
with regular or random accesses. Exploiting idle cycles
of unused resources in processors improves their utiliza-
tion and application performance. However, runahead
execution requires special hardware implementation to
pre-execute instructions. Also, the dependence of these
methods on availability of idle cycles may be a hurdle in
broadly applying these methods. This problem can be
solved with dedicated hardware to provide prefetching
support.

Offline analysis strategy is another hardware-
controlled prefetching approach. Kim et al.[9] proposed
such a method to analyze data access patterns for
hotspots of code that are frequently executed. After
a hotspot executes for the first time, its data accesses
are analyzed and the result, the pattern information, is
stored. This pattern information is used for future runs
of that hotspot. This approach works well for applica-
tions that refer to similar data access patterns or that
call a function repeatedly. Obtaining address traces
needs availability of special hardware or profiling in ap-
plication.

While hardware-controlled strategies are widely
used, a significant drawback is that software developers
have limited control over prefetching, typically to turn
prefetching on and off. In addition, poor prediction ac-
curacy of hardware PE may result in cache pollution
and limited performance speedup.

2.1.2 Software-Controlled Strategies

Software-controlled prefetching[25,26] strategies en-
able a programmer or a compiler to insert prefetch in-
structions into programs. The motivation behind these
strategies is the higher possibility of a compiler or de-
velopers having better knowledge of the application’s
data requirements, which makes it promising to gain
more from software prefetching. Software-controlled
prefetching can use compiler-controlled prefetch in-
structions, or inserting prefetching function calls in
the source code or inserting prefetching instructions
based on post-execution analysis. Many proces-
sors provide support for such prefetch instructions
in their instruction set. Compilers or developers
can insert prefetch instructions or routines provided
by compilers (e.g., builtin prefetch() in gcc and
sparc prefetch read once() in Sun cc on SPARC pro-
cessors). Post-execution analysis can also be used as

software-controlled prefetching approach, where traces
of data accesses are analyzed offline for finding patterns.
This pattern information is used to prefetch data at
runtime.

A considerable disadvantage of software-controlled
prefetching is that it imposes a heavy burden on de-
velopers and compilers, and is less effective in over-
lapping memory access stall time on ILP (Instruction
Level Parallelism)-based processors due to potential
late prefetches and resource contention[13]. Having an
automated toolkit or an advanced compiler optimiza-
tion for converting the knowledge of pattern analysis
into prefetching function calls reduces burden on deve-
lopers.

2.1.3 Hybrid Hardware/Software-Controlled
Strategies

Hybrid hardware/software-controlled strategies are
gaining popularity on processors with multi-thread sup-
port. On these processors, threads can be used to run
complex algorithms to predict future accesses. These
methods require hardware support to run threads that
are specifically executed to prefetch data. They also
require software support to synchronize the prefetching
thread with the actual computation thread. The hybrid
hardware/software-controlled prefetching strategies can
be further categorized into methods that analyze his-
tory of data accesses of computation threads and that
pre-execute data intensive parts of the computation
thread to warm up a shared cache memory by the time
raw cache misses occur.

History-based hybrid prediction strategies usually
employ a hardware-supported multi-threading mecha-
nism to analyze history of accesses to predict future
accesses, and to prefetch data. For instance, Solihin
et al.[13] proposed memory-side prefetching, where an
intelligent memory processor resides within the main
memory, and a thread running on the memory pro-
cessor analyzes data access history of data accesses to
predict future references. This scheme observes stride-
based and pair-based correlations among past L2 cache
misses and pushes predicted data to L2 cache. Similar
to hardware-controlled history-based prefetching me-
thods, history-based hybrid strategies are not highly
beneficial with random access patterns.

Pre-execution-based methods use a thread to exe-
cute slices of code ahead of main computation thread.
Many such prefetching strategies have been pro-
posed to utilize hardware-supported multithreading.
A small list of various proposals includes Luk et
al.’s software-controlled pre-execution[27], Liao et al.’s
software-based speculative pre-computation[28], Zilles
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et al.’s speculative slices[15], Roth et al.’s data-
driven multithreading[29], Annavaram et al.’s data
graph pre-computation[10], and Hassanein et al.’s data
forwarding[30]. Many of these methods rely on com-
piler support to select slices of code to pre-execute and
to trigger execution of speculative code. In contrast,
Collins et al.[31,32] suggest using hardware to select in-
structions for pre-computation.

Pre-execution-based methods are useful in predict-
ing regular and random accesses. However, develop-
ers or compiler have to separate pre-execution threads
in order to run ahead. Synchronization to run pre-
execution thread early enough to prefetch is a challeng-
ing task as well.

2.1.4 Classification of Data Access Patterns

Hardware-controlled, software-controlled, and hy-
brid hardware/software-controlled approaches largely
use prediction algorithms based on history of data ac-
cesses or cache misses. These prediction algorithms
search for regular patterns among history of data ac-
cesses. Fig.4 shows a classification of data access pat-
terns based on spatial distance between accesses, the re-
peating behavior, and the request size. Spatial patterns
are further divided, based on the number of bytes (also
called strides) between successive accesses, as contigu-
ous, non-contiguous, and combinations of both. Non-
contiguous patterns can be further classified by the
property of strides between accesses. These data ac-
cess patterns may occur multiple times when loops or
functions are executed repeatedly. We classify these
patterns as either single occurrence or repeating pat-
terns. The request size of accesses in each pattern may
be fixed or variable. This classification captures a wide
range of data accesses.

Fig.4. Classification of data access patterns.

Several prediction algorithms have been proposed to

find various patterns that are shown in Fig.4. Sequen-
tial prefetching[3,4] fetches consecutive cache blocks by
taking advantage of locality. One-block-look-ahead
(OBL) approach automatically prefetches the next
block when an access of a block is initiated. However,
the drawback of OBL prefetching is that the prefetch
may not be initiated early enough prior to processor’s
demand for the data to avoid a processor stall. To
solve this issue, a variation of OBL prefetching, which
fetches k blocks (called prefetching degree) instead of
one block, was proposed. Another variation, called
adaptive sequential prefetching, varies prefetching de-
gree k based on the prefetching efficiency. The prefetch-
ing efficiency is a metric defined to characterize a pro-
gram’s spatial locality at runtime. Stride prefetching
approach[2,3,24] predicts future accesses based on strides
of the recent history. Various strategies have been pro-
posed based on stride prefetching, and these strategies
maintain a Reference Prediction Table (RPT) to keep
track of recent data accesses. RPT acts like a sepa-
rate cache and holds data access information of the
recent memory instructions. RPT provides an effec-
tive method to implement stride prefetching, but it
can only capture constant strides. To capture repet-
itiveness of data accesses, Markov prefetching[5] was
proposed. This strategy assumes that history might
repeat itself among data accesses and builds a state
transition diagram with states denoting accessed data
blocks. The probability of each state transition is main-
tained, and data accesses repeating with high probabil-
ity are selected as prefetching candidates. The k-th
order Markov predictor uses the last k requests from
the sequence to make predictions of the next data ac-
cesses. Distance prefetching[6] uses Markov chains to
build and maintain probability transition diagram of
strides (or distances) among data accesses. Multi-Level
Difference Table (MLDT)[33] uses time-series analysis
method to predict future accesses in a sequence, by
finding the differences in a sequence to multiple levels.
Nesbit et al.[34] proposed a Global History Buffer in or-
der to combine multiple prediction algorithms. Chen
et al.[35] suggested a buffer called Data Access History
Cache (DAHC) to enable multiple history-based pre-
diction algorithms to find patterns among applications’
memory accesses.

2.2 When to Prefetch?

The timing to issue a prefetch instruction has sig-
nificant effect on the overall performance of prefetch-
ing. Prefetched data should arrive at its destina-
tion before a raw cache miss occurs. The efficiency
of timely prefetching depends on total prefetching
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overhead (i.e., the overhead of predicting future ac-
cesses plus the overhead in moving data) and the time
window for the occurence of next cache miss. If the to-
tal prefetching overhead exceeds the time window, ad-
justing prefetching distance can avoid late prefetches.
Fig.5 shows a classification of various methods used in
deciding when to prefetch, namely event-based, looka-
head program-counter-based, software-controlled syn-
chronization, and prediction-based.

Fig.5. Methods of deciding when to prefetch.

Event-based mechanism issues a prefetch instruction
upon occurrence of some event, such as a memory
reference, or a cache miss, or a branch, or accessing
a previously prefetched data block for the first time.
Prefetching on each memory reference is also called
Always prefetch. The prefetching decision is straight-
forward, however, the possibility of useless prefetches
is high for this approach. Prefetch on a miss is a
common implementation on existing processors as it is
simple to implement. Tagged prefetching[36] initiates
a prefetch instruction when a data access hits previ-
ously prefetched data block for the first time. Branch-
directed prefetching[36] suggests that, since branch in-
structions determine which instruction path is followed,
data access patterns are also dependent upon branch
instructions.

Chen et al.[2] proposed using a lookahead pro-
gram counter (LA-PC) to decide on when to initiate
prefetches. In loop codes, hiding the memory latency
by prefetching depends on the execution time of one
loop iteration. If the loop execution time is too little,
the prefetching overhead may be higher. To solve this
problem, instead of prefetching one iteration ahead, the
lookahead prediction adjusts prefetching distance using
a pseudo counter, called LA-PC that remains a few cy-
cles ahead of actual PC.

Software-controlled prefetching approaches require
either compiler or application developers to make deci-
sion to insert prefetch functions to prefetch data early
enough. Mowry et al.[26] provide an algorithm to calcu-
late the prefetching distance[25]. According to this al-
gorithm, prefetching instructions are called strictly for
the data references that would cause cache misses. The

innermost loop is unrolled for all the references that do
not cause a cache miss, i.e., the degree of loop unrolling
is equal to the cache block reuse. This algorithm avoids
unnecessary prefetch instructions and reduces the over-
head. The number of loop iterations needed to fully
overlap a prefetching access is called the prefetching
distance. Assuming memory access latency is l, and
the work per loop iteration is w, the right prefetch dis-
tance can be calculated as dl/we. An epilogue loop is
called without prefetching to execute the last few itera-
tions that do not fit in the main loop. In helper-thread-
based approaches, periodic synchronization of compu-
tation thread with helper-thread is required to prevent
late prefetches or too early prefetches. Compilers or
application developers define how earlier the prefetch-
ing thread should run than the computation thread to
initiate prefetching. A sample-based or dynamic trig-
gering mechanism controls a helper-thread to execute a
limited number of iterations ahead of the computation
thread. This synchronization mechanism also targets
at preventing helper-thread execution lagging behind
the computation thread[12,14].

In many applications, data access bursts follow cer-
tain patterns. By analyzing the time intervals, future
data bursts can be predicted, and decided when to
start prefetching. Prediction-based decision of when to
prefetch has been applied in I/O prefetching[37], but has
not been researched much for memory level prefetch-
ing due to the cost of prediction. Server-based push
prefetching[38] proposed using prediction of when to
prefetch since the cost of prediction is moved to a dedi-
cated server.

2.3 Source of Prefetching

Memory hierarchy contains multiple levels including
cache memories, main memory, secondary storage, and
tertiary storage. Data prefetching can be implemented
at various levels of memory hierarchy (Fig.6). Data
can be prefetched between cache memories and main
memory, or between main memory and storage. To de-
sign a prefetching strategy, it is necessary to consider
where the latest copy of data is. In existing deep memo-
ry hierarchies with write-back policy, data can reside
at any level of memory hierarchy. In single-core proces-
sors, prefetching source is usually the main memory or a

Fig.6. Source of prefetching.
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lower level cache memory. In multi-core processors,
memory hierarchy contains local cache memories that
are private to each core and cache memories that are
shared by multiple cores. Designing a prefetching
strategy considering multiple copies of a data in lo-
cal cache memories may lead to data coherence con-
cerns, which is a challenging task. When data is shared,
finding the source with the latest copy of data is neces-
sary.

2.4 Destination of Prefetching

Destination of prefetching should be designed more
carefully to deal with cache thrashing and cache
congruence[39]. Prefetching destination should be closer
to CPU than to a prefetching source in order to ob-
tain performance benefits. As shown in Fig.7, data can
be prefetched either into a cache memory that is local
to a processor, or into a cache memory that is shared
by multiple processing cores, or to a separate prefetch
cache. A separate prefetch cache can be either private
to a core or shared by multiple cores.

Fig.7. Destination of prefetching.

While the best destination of prefetching is the cache
level closet to the processor, there are various issues
that affect such prefetch decision. One of them is the
limited size of the cache memory. Prefetching data into
the top level cache hierarchy may have more impact
on polluting the cache and replacing useful cache lines.
Cache thrashing is a problem for cache memories that
have low associativity. Multiple blocks of data try to
occupy the same cache lines causing eviction of previ-
ously occupied data blocks from the cache that is be-
ing actively used. Prefetching can increase the severity
of cache thrashing, where prefetched data replaces ac-
tive cache lines. Improving prefetching accuracy can
reduce replacing useful cache lines and effectively de-
crease the possibility of cache thrashing. A dedicated
buffer called prefetch cache[40] was thus proposed to
achieve this goal. In multicore processors, prefetch-
ing destination varies. Each core may prefetch data
to its private cache or its private prefetch cache. Ano-
ther scenario is that one of the cores prefetches data

into a shared cache[11] (e.g., helper-thread based pre-
execution). A prefetching strategy should consider the
destination of the prefetching carefully in order to mini-
mize the effect of cache pollution and to maintain coher-
ence of prefetched data. On the other hand, a provision
of prefetch cache requires modification to conventional
memory hierarchy to lookup in this cache as well before
proceeding to lookup in the next level of the hierarchy.

Replacement algorithms in selecting victim lines in
a cache congruence class (set) should also be designed
carefully. When prefetched lines are placed in the re-
gular cache, high frequency of prefetching can increase
replacing useful cache lines. Casmira et al.[21] proposed
Prefetch Buffer Filter (PBF), a small fully associative
buffer, to reduce the effect of cache pollution. This
buffer holds a prefetched cache line in PBF until it is ac-
cessed for the first time. Then, the prefetched cache line
is moved into cache. Jain et al.[41] suggested using soft-
ware instructions to augment LRU replacement policy.
These instructions allow a program to evict a cache ele-
ment by making it the least recently used element or to
keep a cache element in the cache. Replacement poli-
cies that select victims based on both frequency and re-
cency of accesses, such as Adaptive Replacement Cache
(ARC)[42] can also reduce cache pollution.

2.5 Who Initiates Prefetch Instructions?

Prefetch instructions can be issued either by a pro-
cessor that requires data or by a processor that pro-
vides such a prefetching service. The first method is
generally called client-initiated or pull-based prefetch-
ing, while the latter is called push-based prefetching.
Fig.8 shows a further classification of pull-based and
push-based strategies depending on where the initiator
is located.

Fig.8. Initiator of prefetching.

Pull-based prefetching has been a common approach
of prefetching in single-core processors. In this method,
prefetching logic (prediction and initiation) resides
within the processor. Multi-threaded processors enable
decoupling of data access from computing. Helper-
thread-based prefetching[27,29] is a representative stra-
tegy that pulls data closer to a processor from main
memory.
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Table 1. Summary of the Pros and Cons of Prefetching Strategies

Prefetching Method Pros Cons Examples∗

Hardware-Contro-
lled Prefetching

• No need of user intervention

• Good for applications with
simple strided patterns

• Generates more unneces-
sary prefetches than softwa-
re controlled prefetching[20]

• Needs special hardware su-
pport

One-block lookahead, sequential prefetchi-
ng[3,4], strided prefetching[2], Markov prefe-
tching[5], distance prefetching[6], multi-level dif-
ference table[33], off-line training of Marko-
vian predictors[9], dual-core execution[17], fu-
ture execution[16], run-ahead execution[22]

History-Based Pre-
diction

• Useful in hardware-contro-
lled, software-controlled
and in hybrid-controlled
strategies

• Good for applications with
regular patterns

• Prediction complexity high
for complex patterns

• Useless for random data ac-
cesses

One-block lookahead, sequential prefe-
tching[3,4], strided prefetching[2], Markov
prefetching[5], distance prefetching[6], multi-
level difference table[33], user-level memory
thread[13], IO prefetching with signatures[1]

Run-Ahead Executi-
on Based

• No need of history of ac-
cesses

• Uses idle cycles of single-
core processors or a sepa-
rate core of multi-core pro-
cessors

• Good for applications with
regular or irregular pat-
terns

• Special hardware to pre-
execute instruction is
needed

Dual-core execution[17], future execution[16],
run-ahead execution[22]

Offline Analysis • Good for applications with
repeating function calls
with loops or for those
with same access patterns
repeating in each run of an
application

• Hard to capture variable
patterns and pointer refer-
ences.

• May need special hardware
or a tool to modify source
code at software level after
offline analysis to include
prefetching instructions

Off-line training of Markovian predictors[9]

Software-Controlled
Prefetching

• Better accuracy of what to
prefetch

• Good for applications with
loop code, when there
is enough computation to
overlap with prefetching
data

• Compiler or application
developer has to insert
prefetching functions in
source code

• Prefetching distance must
be adjusted and loops have
to be unrolled accordingly

Software-controlled prefetching in shared-
memory multiprocessors[26], software-controlled
pre-execution[27], software-based speculative
pre-computation[28]

Pre-Execution-
Based Prefetching

• Can predict data accesses
by running ahead of com-
putation thread

• Promising on multi-core
processors

• Good for applications with
regular or irregular pat-
terns

• Compiler or application de-
veloper has to create pre-
execution thread

• Synchronization of helper-
thread and computation
thread is challenging

Software-controlled pre-execution[27], software-
based speculative pre-computation, speculative
slices[15], data-driven multithreading[29], data
graph pre-computation[1], data forwarding[30],
IO prefetching with pre-execution[11]

Pull-Based
Prefetching

• Easier to monitor cache
misses on processor side

• Pre-execution on multi-
core processors show
promise

• Good for applications with
simple regular patterns

• Predicting complex pat-
terns or running pre-
execution threads may
compete for cycles with
original computing

One-block lookahead, sequential prefe-
tching[3,4], strided prefetching[2], Markov
prefetching[5], distance prefetching[6], software-
controlled pre-execution[27], software-based
speculative precomputation[28], speculative
slices[15], data-driven multithreading[29],
dual-core execution[17], future execution[16]

Push-Based
Prefetching

• Data transfer can be de-
coupled from computation
effectively

• Possible to run aggressive
prediction algorithms

• Good for applications with
complex regular patterns
or irregular patterns

• Needs special hardware to
monitor data accesses at
processor cores

• May become a bottleneck
if too many processor cores
request service from the
same memory processor

User-level memory thread[13], multi-level dif-
ference table[38], push prefetching for pointer-
intensive applications[43], data forwarding[30]

∗These examples are only representative proposed prefetching methods in an exhaustive list.
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In push-based prefetching, a core other than the
actual computation core fetches data. Run-ahead
execution[16,17] strategies are such examples. Helper-
thread-based prefetching[27,29] can also be placed on
a separate core on processor side to push data into a
shared cache that is used by the computation core as
well.

Memory-side prefetching is relatively a new idea,
where a processor residing in the main memory pushes
predicted data closer to the processor[43]. Server-based
strategy pushes data from its source to destination
without waiting for requests from processor side. Data
Push Server (DPS)[33] uses a dedicated server to initi-
ate and proactively pushes data closer to the client in
time.

Both pull-based and push-based methods have the
pros and cons. The efficiency of pull-based prefetch-
ing is largely limited by the complexity of prediction
algorithms. In pre-execution-based prefetching, with
the use of helper-threads, synchronization is needed to
initiate pre-execution. Intuitively, with the assump-
tion of the same prediction overhead and same accu-
racy as those of client-initiated prefetching, push-based
prefetching with a dedicated hardware support is better
than pull-based prefetching methods since push-based
prefetching moves the complexity of prefetching outside
the processor. Another benefit of push-based prefetch-
ing is that it can be faster as main memory does not
have to wait for a prefetching request from the proces-
sor. However, the scalability of the memory processor
can become an issue when a large number of process-
ing cores have to be served in memory-side prefetching.
Server-based push prefetching solves this problem by
using dedicated server cores.

2.6 Summary

Table 1 provides a summary of broad categories of
various prefetching strategies and their pros and cons
with examples of various published literature.

3 Comparison of Existing Prefetching
Mechanisms

Table 2 presents a detailed comparison of selected
prefetching strategies that are published in research
literature and their categorization based on the taxono-
my we present in the previous section. While there are
many other published researches in prefetching, the se-
lected set of strategies for comparison is representative

of others.
The first four strategies shown in the table were

originally designed for single-core processors. How-
ever, the prediction methods of these strategies can
be used in identifying future accesses of multicore pro-
cessors as well. In addition, they were proposed for
hardware-controlled prefetching, but their prediction
algorithms can be used for software-controlled prefetch-
ing as well. Kandiraju et al.[6] proposed their method
for translation look-aside buffer (TLB), but their pre-
diction method can also be applied to regular caches.

There are many processor-side initiated prefetching
methods. Among them, dependence graph generator-
based prefetching method is a hardware-controlled
strategy that scans the pre-decoded instructions and
load/store instructions that are deemed likely to cause
cache misses marked for prefetching in [1]. Zhou[17]

and Ganusov et al.[16] use idle cycles of a core in a dual-
core processor to perform prefetching for the other core.
Prefetching is initiated on the processor side and data
is fetched into a shared L2 cache from main memory.

Among memory-side initiated prefetching strategies,
Solihin et al.[13] use a helper-thread on the memory-
side to push data into L2 cache. The prefetching
method proposed by Luk et al.[27] is also a memory-
side initiated and helper-thread-based approach, but
uses software-controlled synchronization for the compu-
tation thread and the pre-execution thread. Hardware
support can improve the efficiency of the synchroniza-
tion of these threads even further. Speculative Slices
method is a memory-side initiated approach as well,
but uses hybrid (hardware/software)-controlled helper-
threads. Data forwarding[30] is a hybrid-controlled
memory-side prefetching approach that pushes data
from main memory to L1 cache and registers with
software-based synchronization.

Sun et al. proposed a prefetching method that uti-
lizes a dedicated core for prefetching in a multicore
processor[18]. This core is the prefetching server for
other client computing nodes. It employs a hardware-
controlled prefetching engine and multi-level difference-
table-based prediction to identify future accesses, which
can be implemented at software level as well with a
thread. This method can be implemented at lower level
cache or at main memory level and prefetches data into
a special private prefetch cache. This method is a push-
based prefetching strategy, where the server proactively
pushes data into the private prefetch cache.
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Table 2. Comparison of Prefetching Strategies Based on the Taxonomy

Publication What? When? Source Destination Initiator

Dahlgren et al.[3,4] Hardware-controlled/software-
controlled, next k blocks,
(sequential prefetching)

Event-based Lower level cache/
main memory

Private, L1 cache/
L2 cache

Processor side

Chen et al.[2] Hardware-controlled/software-
controlled, constant regular
strides, (strided prefetching)

Event-based/looka-
head counter-based

Lower level cache/
main memory

Private, L1 cache/
L2 cache

Processor side/
memory side

Joseph et al.[5] Hardware-controlled/software-
controlled, repeating data
accesses, (Markov chain based
prediction)

Event-based Lower level cache/
main memory

Private, L1 cache/
L2 cache

Processor side/
memory side

Kandiraju et al.[6] Hardware-controlled/Software-
controlled, repeating strides,
(Markov chain based distance
prediction)

Event-based Lower level cache/
main memory

Private TLB, Pri-
vate L1 cache/ L2
cache

Processor side/
memory side

Annavaram et al.[10]Hardware, precomputation-ba-
sed (data graph pre-computa-
tion)

Event-based Main memory L1/L2 cache Processor side

Ganusov et al.[16] Hardware-controlled, run-ahe-
ad execution-based

Event-based Main memory Shared L2 cache Processor side

Kim et al.[9] Hardware-controlled, offline
analysis

Event-based L2 cache/main me-
mory

L1 cache/L2 cache Processor side

Luk et al.[27] Software-controlled, helper-
thread

Software-controlled
synchronization

Main memory L1/L2 cache Memory side

Zilles et al.[15] Hybrid-controlled, helper thre-
ad-based

Software-controlled
synchronization

Main memory L1/L2 cache Memory side

Solihin et al.[13] Hybrid-controlled, history-ba-
sed prediction for pair-wise cor-
relation

Event-based Main memory L2 cache Memory side

Hassanein et al.[30] Hybrid-control, helper-thread-
based

Software-controlled
synchronization

Main memory Private, L1 cache
and CPU registers

Memory side

Byna et al.[33] Hardware-controlled/software-
controlled, complex and nested
regular patterns, (multi level
difference table-based predic-
tion)

Prediction-based Lower level cache/
main memory

Private prefetch
cache

Memory side

4 Challenges in Prefetching for Multicore
Processors

In addition to the design considerations mentioned
in Section 2, prefetching strategies for multicore pro-
cessors include more challenges. These challenges in-
clude resolving multiple computing cores’ competi-
tion for memory bandwidth, maintaining coherency of
prefetched data, and balancing usage of idle cycles for
prefetching vs. using them to do extra computing.

Resolving potential competition for memory band-
width from multiple cores is a challenging task and a
highly probable performance bottleneck. In single-core
processors, main memory accepts prefetching requests
for only one core. In multicore processors without
prefetching, data access requests from multiple cores
can potentially cause severe contention at shared cache
memory or main memory, when too many requests
overwhelm the bandwidth of that level of memory

hierarchy. If prefetching is not performed properly,
prefetching requests from multiple cores may impose
even more pressure on main memory. For example, the
memory-processor-based solutions[13,30] are not scal-
able to monitor data access history or to pre-execute
threads and predict future references for multiple cores.
One way to solve this problem is to decouple data
prefetching accesses from raw cache misses from com-
puting cores. In addition, prefetching accuracy has to
be high to avoid useless prefetching requests. A high
accuracy of predicting future accesses can be achieved
with dynamic selection of prediction algorithms based
on different data access patterns. Moreover, prefetch
requests have to be scheduled in a way to avoid com-
petition.

Another challenge of multicore processor prefetching
is maintaining cache coherence. Multicore processors
access the main memory, which is shared by multiple
cores, and hence, at some level in the memory hierarchy
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(multiple levels of cache memories), they have to re-
solve conflicting accesses to memory. Cache coherence
in multicore processors is typically dealt with either by
using directory-based approach or by using snooping
cache accesses. With prefetching, the probability of
having stale copies of data is higher if prefetching is
performed too early and other cores are modifying that
data. Prefetching in a timely manner reduces the risk
to some extent. The coherence problem can also be
solved by looking into directory and dropping prefetch-
ing requests if a data block is shared by multiple cores.
If a data block is modified by another core after it is
prefetched, then the prefetched block has to be invali-
dated or updated to maintain coherence.

Usage of aggressive prediction algorithms on single-
core processors has long been discouraged as their com-
plexity may become counter-productive. With large
amount of computing capability available on multicore
processors, complex prediction algorithms can be run
to identify future data accesses. However, there should
be a balance between performance gains obtained with
prefetching by using computational resources, and the
performance that would have been obtained if those re-
sources were spent on doing actual computation.

One may argue that more computation might have
been finished if the resources were used to do actual
computation. In the era of multicore processors and
being able to keep billions of transistors on single chip,
special hardware cores, whose purpose is prefetching for
other cores, can be implemented. It is time to use com-
plex prediction algorithms by transferring their com-
plexity to dedicated cores as we proposed in the server-
based push prefetching architecture[18]. We proposed to
use a dedicated server core to provide data access sup-
port by predicting and prefetching data for computing
cores. This server core adaptively chooses prediction
and scheduling strategies based on data access patterns
and supports data access for multiple cores.

5 Conclusions

The performance gain of a prefetching strategy de-
pends on various criteria. With the emergence of multi-
core and multi-threaded processors, new challenges and
issues need to be considered in designing and develop-
ing an effective prefetching strategy. In this paper, we
provide a comprehensive taxonomy of data prefetching
strategies based on the five fundamental issues (what,
when, destination, source, and initiator) of a prefetch-
ing strategy design. We discuss each of these issues
and how they impact the design of a prefetching strat-
egy using a systematic study of various existing strate-
gies. Based on the taxonomy, we compare a set of

representative existing prefetching strategies.
We also discuss challenges of prefetching strategies

in multicore processors and present potential solution
in this study. In addition to the five fundamental issues,
prefetching in multicore processors should also consider
maintaining cache coherence, reducing the amount of
bandwidth contention due to prefetching requests, and
utilizing extra computing power offered by multicore
processors for running complex prediction algorithms.
A prefetching strategy for multicore processing envi-
ronments has to be adaptive to choose among multiple
methods to predict future data accesses. When a data
access pattern is easy to be found, prefetching strategy
can choose history-based prediction algorithms to pre-
dict future data accesses. If data accesses are random,
using pre-execution-based approach would be benefi-
cial. In server-based push prefetching, we base our
prefetching strategies considering these challenges.
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