Skip to main content
Log in

Genome-Wide Analysis of Epigenetic Modifications

  • Survey
  • Published:
Journal of Computer Science and Technology Aims and scope Submit manuscript

Abstract

In plants and animals, gene expression can be altered by changes that do not alter the sequence of nucleotides in DNA but rather modify the chemical structure of either the DNA or the histones that interact with the DNA. These so-called epigenetic modifications are not transient, but persist through cell divisions. Rapidly advancing technologies, such as next-generation DNA sequencing, have dramatically increased our ability to survey epigenetic markers throughout an entire genome. These techniques are revealing in great detail that the many forms and stages of cancer are characterized by a massive number of epigenetic changes. Interpreting such epigenetic marks in cell differentiation and in carcinogenesis is computationally challenging. We review several examples of epigenetic data analysis and discuss the need for computational methods that will enable us to learn from the data the relationships between different kinds of histone modifications and DNA methylation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Taverna S D, Li H, Ruthenburg A J, Allis C D, Patel D J. How chromatin-binding modules interpret histone modifications: Lessons from professional pocket pickers. Nat. Struct. Mol. Biol., 2007, 14(11): 1025-1040.

    Article  Google Scholar 

  2. Barski A, Cuddapah S, Cui K, Roh T Y, Schones D E, Wang Z, Wei G, Chepelev I, Zhao K. High-resolution profiling of histone methylations in the human genome. Cell, 2007, 129(4): 823-837.

    Article  Google Scholar 

  3. Wang Z, Zang C, Rosenfeld J A, Schones D E, Barski A, Cuddapah S, Cui K, Roh T Y, Peng W, Zhang MQ, Zhao K. Combinatorial patterns of histone acetylations and methylations in the human genome. Nat. Genet., 2008, 40(7): 897-903.

    Article  Google Scholar 

  4. Chesnokov I N, Schmid C W. Specific Alu binding protein from human sperm chromatin prevents DNA methylation. J. Biol. Chem., 1995, 270(31): 18539-18542.

    Article  Google Scholar 

  5. Vaquerizas J M, Kummerfeld S K, Teichmann S A, Luscombe N M. A census of human transcription factors: Function, expression and evolution. Nature Rev. Genet., 2009, 10(4): 252-263.

    Article  Google Scholar 

  6. Guelen L, Pagie L, Brasset E, Meuleman W, Faza M B, Talhout W, Eussen B H, de Klein A, Wessels L, de Laat W, van Steensel B. Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature, 2008, 453(7197): 948-951.

    Article  Google Scholar 

  7. Lee T I, Rinaldi N J, Robert F, Odom D T, Bar-Joseph Z, Gerber G K, Hannett N M, Harbison C T, Thompson C M, Simon I, Zeitlinger J, Jennings E G, Murray H L, Gordon D B, Ren B, Wyrick J J, Tagne J B, Volkert T L, Fraenkel E, Gifford D K, Young R A. Transcriptional regulatory networks in Saccharomyces cerevisiae. Science, 2002, 298(5594): 799-804.

    Article  Google Scholar 

  8. Harbison C T, Gordon D B, Lee T I, Rinaldi N J, Macisaac K D, Danford T W, Hannett N M, Tagne J B, Reynolds D B, Yoo J, Jennings E G, Zeitlinger J, Pokholok D K, Kellis M, Rolfe P A, Takusagawa K T, Lander E S, Gifford D K, Fraenkel E, Young R A. Transcriptional regulatory code of a eukaryotic genome. Nature, 2004, 431(7004): 99-104.

    Article  Google Scholar 

  9. Birney E, Stamatoyannopoulos J A, Dutta A et al. Identification and analysis of functional elements in 1% of the human genome by the encode pilot project. Nature, 2007, 447(7146): 799-816.

    Article  Google Scholar 

  10. Jones P A, Takai D. The role of DNA methylation in mammalian epigenetics. Science, 2001, 293(5532): 1068-1070.

    Article  Google Scholar 

  11. Bird A. DNA methylation patterns and epigenetic memory. Genes Dev., 2002, 16(1): 6-21.

    Article  MathSciNet  Google Scholar 

  12. Razin A, Cedar H. DNA methylation and gene expression. Microbiol. Rev., 1991, 55(3): 451-458.

    Google Scholar 

  13. Kass S U, Pruss D, Wolffe A P. How does DNA methylation repress transcription? Trends Genet., 1997, 13(11): 444-449.

    Article  Google Scholar 

  14. Weber M, Davies J J, Wittig D, Oakeley E J, Haase M, Lam W L, Schubeler D. Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat. Genet., 2005, 37(8): 853-862.

    Article  Google Scholar 

  15. Eckhardt F, Lewin J, Cortese R et al. DNAmethylation profiling of human chromosomes 6, 20 and 22. Nat. Genet., 2006, 38(12): 1378-1385.

    Article  Google Scholar 

  16. Lander E S, Linton L W, Birren B et al. Initial sequencing and analysis of the human genome. Nature, 2001, 409(6822): 860-921.

    Article  Google Scholar 

  17. Cooper D N, Taggart M H, Bird A P. Unmethylated domains in vertebrate DNA. Nucleic Acids Res., 1983, 11(3): 647-658.

    Article  Google Scholar 

  18. Bird A, Taggart M, Frommer M, Miller O J, Macleod D. A fraction of the mouse genome that is derived from islands of nonmethylated, CpG-rich DNA. Cell, 1985, 40(1): 91-99.

    Google Scholar 

  19. Gardiner-Garden M, Frommer M. CpG islands in vertebrate genomes. J. Mol. Biol., 1987, 196(2): 261-282.

    Article  Google Scholar 

  20. Takai D, Jones P A. Comprehensive analysis of CpG islands in human chromosomes 21 and 22. Proc. Natl. Acad. Sci. USA, 2002, 99(6): 3740-3745.

    Article  Google Scholar 

  21. Saxonov S, Berg P, Brutlag D L. A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters. Proc. Natl. Acad. Sci. USA, 2006, 103(5): 1412-1417.

    Article  Google Scholar 

  22. Roth S Y, Denu J M, Allis C D. Histone acetyltransferases. Annu. Rev. Biochem., 2001, 70: 81-120.

    Article  Google Scholar 

  23. Berger S L. An embarrassment of niches: The many covalent modifications of histones in transcriptional regulation. Oncogene, 2001, 20(24): 3007-3013.

    Article  Google Scholar 

  24. Jenuwein T, Allis C D. Translating the histone code. Science, 2001, 293(5532): 1074-1080.

    Article  Google Scholar 

  25. Lehrmann H, Pritchard L L, Harel-Bellan A. Histone acetyltransferases and deacetylases in the control of cell proliferation and differentiation. Adv. Cancer Res., 2002, 86: 41-65.

    Google Scholar 

  26. Armstrong S A, Golub T R, Korsmeyer S J. Mll-rearranged leukemias: Insights from gene expression profiling. Semin Hematol, 2003, 40(4): 268-273.

    Article  Google Scholar 

  27. Issa J P. DNA methylation as a therapeutic target in cancer. Clin. Cancer Res., 2007, 13(6): 1634-1637.

    Article  Google Scholar 

  28. Lister R, Pelizzola M, Dowen R H, Hawkins R D, Hon G, Tonti-Filippini J, Nery JR, Lee L, Ye Z, Ngo Q M, Edsall L, Antosiewicz-Bourget J, Stewart R, Ruotti V, Millar A H, Thomson J A, Ren B, Ecker J R. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature, 2009, 462(7271): 315-322.

    Article  Google Scholar 

  29. Zilberman D, Henikoff S. Genome-wide analysis of DNA methylation patterns. Development, 2007, 134(22):3959-3965.

    Article  Google Scholar 

  30. Zhang Y, Liu T, Meyer C A, Eeckhoute J, Johnson D S, Bernstein B E, Nussbaum C, Myers R M, Brown M, Li W, Liu X.S Model-based analysis of chIP-seq (MACS). Genome. Biol., 2008, 9(9): R137.

    Article  Google Scholar 

  31. Ji H, Jiang H, Ma W, Johnson D S, Myers R M, Wong W H. An integrated software system for analyzing chIP-chip and chIP-seq data. Nat. Biotechnol., 2008, 26(11): 1293-1300.

    Article  Google Scholar 

  32. Rozowsky J, Euskirchen G, Auerbach R K, Zhang Z D, Gibson T, Bjornson R, Carriero N, Snyder M, Gerstein M B. PeakSeq enables systematic scoring of ChIP-seq experiments relative to controls. Nat. Biotechnol., 2009, 27(1): 66-75.

    Article  Google Scholar 

  33. Frohman M A, Dush M K, Martin G R. Rapid production of full-length cDNAs from rare transcripts: Amplification using a single gene-specific oligonucleotide primer. Proc. Natl. Acad. Sci. USA, 1988, 85(23): 8998-9002.

    Article  Google Scholar 

  34. Heintzman N D, Stuart R K, Hon G, Fu Y, Ching C W, Hawkins R D, Barrera L O, Van Calcar S, Qu C, Ching K A, Wang W, Weng Z, Green R D, Crawford G E, Ren B. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat. Genet., 2007, 39(3): 311-318.

    Article  Google Scholar 

  35. Heintzman N D, Hon G C, Hawkins R D, Kheradpour P, Stark A, Harp L F, Ye Z, Lee L K, Stuart R K, Ching C W, Ching K A, Antosiewicz-Bourget J E, Liu H, Zhang X, Green R D, Lobanenkov V V, Stewart R, Thomson J A, Crawford G E, Kellis M, Ren B. Histone modifications at human enhancers reflect global cell-type-specific gene expression. Nature, 2009, 459(7243): 108-112.

    Article  Google Scholar 

  36. Visel A, Blow M J, Li Z, Zhang T, Akiyama J A, Holt A, Plajzer-Frick I, Shoukry M, Wright C, Chen F, Afzal V, Ren B, Rubin E M, Pennacchio L A. ChIP-seq accurately predicts tissue-specific activity of enhancers. Nature, 2009, 457(7231): 854-858.

    Article  Google Scholar 

  37. Yu H, Zhu S, Zhou B, Xue H, Han J D. Inferring causal relationships among different histone modifications and gene expression. Genome Res., 2008, 18(8): 1314-1324.

    Article  Google Scholar 

  38. Goll M G, Bestor T H. Eukaryotic cytosine methyltransferases. Annu. Rev. Biochem., 2005, 74: 481-514.

    Article  Google Scholar 

  39. Wigler M, Levy D, Perucho M. The somatic replication of DNA methylation. Cell, 1981, 24(1): 33-40.

    Article  Google Scholar 

  40. Dodd IB, Micheelsen MA, Sneppen K, Thon G. Theoretical analysis of epigenetic cell memory by nucleosome modification. Cell, May 18, 2007, 129(4): 813-822.

    Article  Google Scholar 

  41. Liang J, Qian H. Computational cellular dynamics based on the chemical master equation: A challenge for understanding complexity. J. Comput. Sci. & Technol., 2010, 25(1): 154-168.

    Article  Google Scholar 

  42. Irizarry R A, Ladd-Acosta C, Carvalho B, Wu H, Brandenburg S A, Jeddeloh J A,Wen B, Feinberg A P. Comprehensive high-throughput arrays for relative methylation (CHARM). Genome. Res., 2008, 18(5): 780–790.

    Article  Google Scholar 

  43. Irizarry R A, Ladd-Acosta C, Wen B, Wu Z, Montano C, Onyango P, Cui H, Gabo K, Rongione M, Webster M, Ji H, Potash J B, Sabunciyan S, Feinberg A P. The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat. Genet., 2009, 41(2): 178-186.

    Article  Google Scholar 

  44. Doi A, Park IH, Wen B, Murakami P, Aryee MJ, Irizarry R, Herb B, Ladd-Acosta C, Rho J, Loewer S, Miller J, Schlaeger T, Daley GQ, Feinberg AP. Differential methylation of tissueand cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts. Nat. Genet., Nov. 1, 2009, PubMed PMID: 19881528. (Epub ahead of print)

  45. Widschwendter M, Fiegl H, Egle D, Mueller-Holzner E, Spizzo G, Marth C, Weisenberger D J, Campan M, Young J, Jacobs I, Laird P W. Epigenetic stem cell signature in cancer. Nat. Genet., 2007, 39(2): 157-158.

    Article  Google Scholar 

  46. Schlesinger Y, Straussman R, Keshet I, Farkash S, Hecht M, Zimmerman J, Eden E, Yakhini Z, Ben-Shushan E, Reubinoff B E, Bergman Y, Simon I, Cedar H. Polycomb-mediated methylation on Lys27 of histone H3 pre-marks genes for de novo methylation in cancer. Nat. Genet., 2007, 39(2): 232-236.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shoudan Liang.

Additional information

This work is supported by US NIH/NCI under Grant No. 5 K25CA123344-02.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, S. Genome-Wide Analysis of Epigenetic Modifications. J. Comput. Sci. Technol. 25, 35–41 (2010). https://doi.org/10.1007/s11390-010-9303-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11390-010-9303-7

Keywords

Navigation