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Abstract

Modern molecular biology has always been a great source of inspiration for computational

science. Half a century ago, the challenge from understanding macromolecular dynamics has led

the way for computations to be part of the tool set to study molecular biology. Twenty-five years

ago, the demand from genome science has inspired an entire generation of computer scientists

with an interest in discrete mathematics to join the field that is now called bioinformatics. In this

paper, we shall lay out a new mathematical theory for dynamics of biochemical reaction systems

in a small volume (i.e., mesoscopic) in terms of a stochastic, discrete-state continuous-time

formulation, called the chemical master equation (CME). Similar to the wavefunction in quantum

mechanics, the dynamically changing probability landscape associated with the state space

provides a fundamental characterization of the biochemical reaction system. The stochastic

trajectories of the dynamics are best known through the simulations using the Gillespie algorithm.

In contrast to the Metropolis algorithm, this Monte Carlo sampling technique does not follow a

process with detailed balance. We shall show several examples how CMEs are used to model

cellular biochemical systems. We shall also illustrate the computational challenges involved:

multiscale phenomena, the interplay between stochasticity and nonlinearity, and how macroscopic

determinism arises from mesoscopic dynamics. We point out recent advances in computing

solutions to the CME, including exact solution of the steady state landscape and stochastic

differential equations that offer alternatives to the Gilespie algorithm. We argue that the CME is

an ideal system from which one can learn to understand “complex behavior” and complexity

theory, and from which important biological insight can be gained.

Keywords

biochemical networks; cellular signaling; epigenetics; master equation; nonlinear reactions;
stochastic modeling

NIH Public Access
Author Manuscript
J Comput Sci Technol. Author manuscript; available in PMC 2014 July 02.

Published in final edited form as:
J Comput Sci Technol. 2010 January ; 25(1): 154–168. doi:10.1007/s11390-010-9312-6.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



1 Introduction

Cellular biology has two important foundations: genomics focuses on DNA sequences and

their evolutionary dynamics; and biochemistry studies molecular reaction kinetics that

involve both small metabolites and large macromolecules. Computational science has been

an essential component of genomics. In recent years, cellular biochemistry is also

increasingly relying on mathematical models for biochemical reaction networks. Two

approaches have been particularly prominent: the Law of Mass Action for deterministic

nonlinear chemical reactions in terms of the concentrations of chemical species, and the

Chemical Master Equation (CME) for stochastic reactions in terms of the numbers of

reaction species.

The Law of Mass Action and the CME are two parts of a single mathematical theory of

chemical reaction systems, with the latter being fundamental. When the number of

molecules in a reaction system are large, stochasticity in the CME disappears and the Law of

Mass Action can be shown, mathematically, to arise as the limit[1–2].

In this article, we shall introduce the CME approach to biochemical reaction kinetics. We

use simply examples to illustrate some of the salient features of this yet to be fully

developed theory. We then discuss the challenges one faces in applying this theory to

computational cellular biology. There have been several recent texts which cover some of

the materials we discuss. See [2–3].

2 A System of Nonlinear Reactions

To illustrate the theory of the CME and the Law of Mass Action, let us first consider a

simple system of nonlinear chemical reactions first proposed by Schlögl[4]

(1)

in which species A, B and C are at fixed concentrations a, b and c, respectively. The

traditional, macroscopic kinetics of the system (1), according to the Law of Mass Action, is

described by a deterministic ordinary differential equation (ODE)[5]

(2)

where x represents the concentration of X. It is straightforward to show that (2) exhibits

bistability (via the so called pitchfork bifurcation) when α2β1b/(α1a)2 = 1/3[4–5]: that is, the

polynomial on the right-hand-side switches from having only one positive root to have three

positive roots. The system also shows another bifurcations when varying another lumped

parameter  (this time via the so called saddle-node bifurcation).

We now turn to the CME approach to this reaction system (1). If in a small volume such as

that of a cell, the number of X is sufficiently small, its concentration fluctuations become
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significant[6]. The dynamics of reaction (1) then is stochastic, which should be described in

terms of a master equation, also known as a birth-death process in the theory of Markov

processes[7].

The system is represented by a discrete random variable nX(t): the number of X at time t (0 ≤

nX < ∞). Let P(k, t) = Pr{nX(t) = k}, and we have

(3)

where

and

Here V is the volume of the reaction system. It is a very important parameter of the model.

The basic rule is still the Law of Mass Action: the rate of one step reaction ,

when there are k + 1 number of X molecules, is β1b(k + 1)/V. This gives the above last term.

Similarly, the rate of one step reaction , when there are k number of X

molecules, is α1ak(k − 1)/V2.

For complex biochemical reactions, master equation like this in general cannot be solved

analytically. Various algorithms exist for simulating its stochastic trajectories[8]. For the

above specific example, however, the exact stationary probability distribution to (3), i.e.,

after the system reaches stationarity, can be found as [9–10]:

(4)

where C0 is a normalization constant such that . The number of X molecules

still fluctuates in the steady state. We note that for large V,

in which
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μ = α2β1b/(α1a)2, , and C1 = ln C0. Therefore in terms of the concentration

x = k/V, we have the probability distribution f(x) = V P(Vx):

(5)

(6)

Therefore, the stationary probability distribution of the concentration of X:

(7)

where

(8)

is independent of V. It is easy to verify that φ(x) is at its extrema exactly when the ODE (2)

is at its fixed points. The function φ(x) can be thought as a “landscape” for the nonlinear

chemical reaction system.

Closed System, Detailed Balance and Chemical Equilibrium

A chemical equilibrium is reached in the reaction system (1) when

(9)

This leads to the equilibrium condition that

(10)

In term of the two model parameters μ and σ introduced above, this equilibrium (also called

detailed balance) condition is expressed as

(11)
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This equation has a very strong thermodynamic meaning: the term ln(σ/μ) = ΔG/(kBT) is the

chemical potential difference between A + B and C. If one considers A + B and C as two

nodes in a circuit, then ΔG is the potential between them. When ΔG ≠ 0, there exists a

nonequilibrium chemical driving force exerted on the reaction system.

Mathematically, the ODE (2) can be simplified. Let u = α2x/(α1a) and τ = (α1a)2t/α2, then

(2) becomes

(12)

in which μ, σ > 0. If σ = μ, the right-hand-side of (12) becomes −(u2+μ)(u−1). There is only

one unique fixed point, i.e., ueq = 1, the equilibrium point. This result is general. For

equilibrium system, the steady state distribution obtained from the CME is always uni-

modal, corresponding to the unique fixed point obtained from the Law of Mass Action

ODE[9,11].

Nonequilibrium Steady State, Gaussian Approximation, and Multiscale Dynamics

When σ ≠ μ, the chemical reaction system is not in detailed balance. In this case, there is a

continuous conversion of chemical energy to heat, even in the steady state. Therefore, there

is a continuous production of entropy due to the conversion of more useful chemical energy

to less useful heat. The entropy production rate

(13)

The nonequilibrium steady-state (NESS) has a net flux in the overall reaction A + B → C:

(14)

It is easy to show that the epr in (13) is always positive in the NESS. This result should be

compared with “power = current × voltage” being always positive in a stationary electrical

circuit.

For certain parameter values, say μ = 0.25 and σ = 0.01, the landscape function φ(x) in (8)

has two minima and one maximum in-between:

(15)

It is easy to see that the root of u3 + μu = u2 + σ is precisely the extrema of φ(x) where

(16)
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Therefore, the nonlinear chemical reaction system is bistable. The dynamics of the system

exhibits multiple time scale: the relaxation within each “well” and transitions between the

two wells. The former can be accurately described by a Gaussian (linear) random process.

The latter, as two-state transitions, is on a much longer time scale.

It can be shown, according to the CME, that for a closed nonlinear chemical reaction

system, its stationary distribution has a unique peak, the equilibrium[9,11]. Furthermore, the

fluctuating dynamics, i.e., the stationary stochastic process in equilibrium is statistically time

reversible[12]. These theoretical results indicate that complex behavior such as chemical

bistability indeed can only occur in a “living system” with dissipation, i.e., useful chemical

energy is converted into heat, and the process sustains a self-organizing complex dynamical

system[13–14].

Multiscale Dynamics and the Keizer’s Paradox

Every CME model contains the parameter V, the volume of the reaction system. When the

number of molecules, N, and V → ∞, the mathematical solution to the CME agrees with

that from the Law of Mass Action which describes concentration x = N/V[1–2]. For most

biochemical models, one might also be interested in the stationary behavior of the solution

to the CME. This represents all the numbers of molecules in a reaction system, which are

statistically independent of time, with stationary number fluctuations due to the biochemical

reactions. One naturally identifies this with the homeostasis of a cell. Mathematically, this

means one is interested in the limit of t → ∞. Hänggi et al.[15] and Baras et al.[16]

correctly pointed out, however, there is a delicate computational issue of V (and N) → ∞

and t → ∞ and changing the order of the limits can lead to different mathematical

predictions. This non-exchangability between V → ∞ and t → ∞ has been named Keizer’s

paradox. One needs to be extra careful in dealing with the steady state behavior of a CME

model.

This issue has been re-examined recently[11,17] in more details. It is shown to be intimately

related to the multiple time scales of the bistability. The transition rates between the two

states of a bistable system are exponentially small with increasing V: ∝ e−αV where α is a

positive constant.

One naturally would like to approximate the CME in terms of a Fokker-Planck equation

(second order PDE). The Fokker-Planck approximation of the CME has been discussed in

several treatises (e.g., p. 116 of [18]). The approach is similar to the diffusion approximation

theory for Boltzmann equation (Subsections 3.2 and 3.3 of [18]). Keizer also discussed

multiple steady-states in biochemical reaction systems. However, the consequence of the

multi-stability with diffusion approximation has not been fully discussed. van Kampen has

repeatedly emphasized that the Fokker-Planck approximation can be obtained for master

equations only with small individual jumps. A more sophisticated treatment of the Fokker-

Planck approximation for master equation was given in terms of the Ω-expansion (Ch. 10 of

[10]). This theory provides a more satisfying approximation for the stochastic relaxation in

the limit of large V. However, it does not address how to obtain the stationary distribution

with multistability. Computing such a stationary distribution is a major challenge.
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3 Stochastic Bistability in the CME

In the previous section we stated that for sufficiently large V, the CME gives a stationary

probability distribution for the numbers of all the dynamical species, which is in complete

agreement with the prediction from the Law of Mass Action. A bistable system according to

the Law of Mass Action, thus, corresponds to a bimodal distribution in the CME. The

converse is not true, however. In recent years, there have been increasingly more examples

showing that nonlinear biochemical reaction systems with macroscopic unistability can

exhibit bistable behavior in a small volume. These results have important implications to

cellular biochemistry. We shall give one example: the phosphorylation-dephosphorylation

cycle (PdPC) with autocatalytic kinase[19]:

(17)

If we use x to denote the fraction of the phosphorylated E*, then according to the Law of

Mass Action:

(18)

where k̃
1 = k1EtcT, k̃

−1 = k−1EtcD, Et is the total concentration of E and E*, cT and cD are

ATP and ADP concentrations. (18) has two steady states, only one is positive and

chemically meaningful. Hence there is no bistability in macroscopic size reaction system,

with any parameters.

However, if the exactly same nonlinear PdPC is in a small reaction volume such as a cell,

then according to the CME, the stationary probability distribution for the number of E* is

(19)

where k̂
i = k̃

i/V, i = ±1. C is a normalization factor.

It is easy to check that the distribution in (19) has two peaks, one at  and the other at

:

(20)

It is usually not an integer. Hence it exhibits stochastic bistability in a small volume.
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4 Biochemical Bistability in a Cell and Epigenetic Inheritance with a

Distributive Code

Since the discovery of DNA double helix, it has been well understood that DNA replication

is the molecular basis of biological inheritance. However, in addition to DNA based

inheritance, epigenetic inheritance has become an increasingly important concept in cell

differentiation, stem cell research, as well as bacterial persistence[20]. Current research has

been focusing on several specific molecular processes as the possible “code” for epigenetics,

e.g., histone acetylation[21] and DNA methylation[22–23]. One of the key issues is that the

code has to be sufficiently stable. This leads researchers to look for specific covalent

modifications of transcriptional regulation apparatus.

However, specific covalent modifications might not be necessary in some cases. According

to the theory of the CME, the stability of a state of a biochemical reaction system, i.e., the

peak in the stationary distribution, is due to the biochemical reaction network[24]. In other

words, the epigenetic code could be distributive, namely, properties such as state stabilities

are the outcome of the collective behavior of many components of a biochemical

network[23]. Therefore, detailed molecular mechanism(s) aside, the nonlinear biochemical

reaction network(s) as the foundation of cellular epigenetics has to be valid.

Ptashne has recently re-emphasized the importance of heritability in the term of

“epigenetics”[25]. We shall point out that the states of bi- or multistable nonlinear

biochemical reaction systems, as defined above, naturally give rise to heritability. It is

important to recall that the function φ(x) above is independent of V, and the variable x is the

concentration. Hence, assuming there is no specific mechanism of regulating the production

of molecule X, if the system’s volume is increased, the concentration x will go down.

However, the nonlinear dynamic nature of the network automatically regulates the system

and the steady state concentration of X is regained. Thus, as long as the volume of the

system is slowly increasing in the synthesis phase of the cell cycle, the concentrations of all

the key biochemical species (i.e., transcriptional regulators) are always maintained at its

steady state value. Only when the volume change occurs in short time period and the amount

of change is sufficiently large, there would be a chance that the system “jumps” into another

basin of attraction (Fig. 1). If the basins of attraction of states are broad, then a daughter cell

will still be in the same state as the parent cell without the need for any additional signal and

regulation.

5 Computational Challenges from the Chemical Master Equation

In the theory of the CME, the dynamics of a biochemical reaction system, in a small volume,

is represented by a multi-dimensional, integer-valued stochastic jump process in . The

process is a discrete-state, continuous-time Markov process. As any Markov process, it can

be mathematically characterized either in terms of its ensemble of stochastic trajectories, or

by its probability distribution as function of time. These correspond to the stochastic

differential equation and the Fokker-Planck equation representations of a Brownian

dynamics. The CME is the differential equation for the probability distribution; the
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stochastic trajectory is defined by the well-known Gillespie algorithm. In analyzing a CME

model, these two approach complement to each other.

One type of chemical reaction systems, the single molecules or uni-molecular reaction

system, has been extensively studied in the past. It is important to note that such systems are

linear chemical reaction systems. Since all the molecules in uni-molecular reaction systems

are statistically independent, it can be represented by either the particle-state-tracking (PST)

algorithm or particle-number-tracking (PNT) algorithm[26]. The simulation can also be

carried out approximately, but satisfactorily, by a continuous model of Langevin

dynamics[27]. There is no multistability in such systems; nor complex dynamics.

The difference between PST and PNT is as follows: one either considers the discrete states

of the particles in the simulation, or considers the number of particles in a particular state.

These two approaches correspond precisely to the Lagrangian and Euler descriptions of fluid

particles — in terms of trajectories of particles and in terms of the density[28]. In the current

research on stochastic simulation of biochemical reaction systems, these correspond to the

StochSim/MCell[29] and the StochKit, respectively. The Langevin approximated algorithm

is closely related to the linear noise approximation (LNA)[30]. The LNA can be only valid

within each “peak” region, i.e., a basin of attraction, of the CME. For nonlinear reaction

systems with multi-stability, the Keizer’s paradox can occur which invalidates the Langevin

approximation for the longer time scale dynamics.

On more general terms, there are many reasons to seek accurate solution to the CME

directly, although much has been learned about the overall probabilistic landscape of many

biochemical networks through stochastic simulations (Gillespie, StochSim/MCell, and

StochKit) and approximated continuous models based on stochastic differential equations.

First, details of the topological features and their quantification such as the existence and

location of basins of attraction, craters, peaks, and saddle points of various dimensions, their

widths, breadth, and depths on the probabilistic landscape, as well as their possible

biological implications such as the inheritable epigenetic state arising from the properties of

the network are largely unexplored. This is true even for simple reaction systems such as the

2-dimensional Schnakenberg model[31], which is only slightly more complex than the 1-

dimensional Schlögl model discussed above, as there are no general exact probabilistic

solutions available yet. Second, accurate solution to the CME problems can facilitate

development of approximation methods that are capable of solving large-size problems.

There is a large body of studies on theoretical approaches approximating the CME through

the Fokker-Planck, and equivalently Langevin, equations. For effective design of these

models and efficient computations of accurate solutions to large biochemical systems, it is

essential to have some a priori knowledge of the ground truth. Third, perhaps most

importantly, an accurate solution to the CME of simpler model systems can reveal important

insights into basic principles on how biological networks function and how they respond to

various environmental perturbations. A shining example of studying complex systems using

manageably simple models is the study of protein folding. Models such as two- and three-

dimensional lattice self-avoiding walks with only hydrophobic and polar (HP) interactions

allow complete enumeration of all feasible conformations and calculation of exact

thermodynamic parameters for molecules with short chain lengths. They have played
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important roles in elucidating the principles of protein folding[32], including collapse and

folding transitions[33–40], influence of packing on secondary structure and void

formation[41–44], the evolution of protein function[45–46], nascent chain folding[47], and

the effects of chirality and side chains[44].

6 State Space of the Chemical Master Equation and Exact Calculation of

Steady State Probability Landscape

The state space of the CME is that of M-dimensional vectors with non-negative integers,

which represents the copy numbers of molecular species in a network; M is the number of

dynamic species. These states are microscopic in nature, as they provide a detailed, chemical

amount of each and every molecular species. An important advantage of treating these

microscopic states of copy numbers explicitly is that both linear and nonlinear reactions

(such as synthesis, degradation, bimolecular association, and polymerization) can be

modeled as Markovian transitions between two microstates, one reaction at a time. Here the

transition rates between states are determined by the intrinsic propensities of the reaction,

and the copy numbers of molecules involved.

For any biochemical systems beyond the simplest toy problems, a challenging issue in

obtaining an accurate solution to the CME is the characterization of the state space. That is,

what are all the possible combinations of concentrations (or copy numbers) of the molecular

species for a given set of reactions represented by a network? An accurate description of the

state space is a prerequisite for computationally obtaining solutions to the CME. In

principle, the size of the state space grows exponentially with the number of molecular

species and the copy numbers of molecules in the system. For example, if there are 16

molecular species in a network, and there are only a total of 33 copies of molecules in the

whole system, one can estimate somewhat naively the upper bound of the state space as (33

+ 1)16 = 3.19 × 1024. Note the +1 counts the zero copy as a state. This is an astronomic

number that is well beyond what can be computed with current and for-seeable future

computing technology.

Below we discuss the enumeration of the state space of CME and exam how to obtain exact

steady state solutions to the CME for biochemical systems with small and moderate sizes.

Optimal Enumeration of State Space

Although in principle the size of the state space grows exponentially with the number of

molecular species and the copy numbers of molecules in the system, all is not lost. There are

two important observations about general biochemical networks. First, the Markovian

transition matrix is very sparse. For any given microstate, the number of reactions that could

occur in a short time interval is small, which could be bounded by the total number of

possible reactions in a biochemical network. Second, as an open system, molecules are

synthesized and degraded constantly. However, the number of molecules that can be

synthesized is never infinite, as synthesis is constrained by the time and resources required.

With these two considerations, an algorithm to enumerate the state space of CME has

recently been developed[48]. The algorithm is optimal in memory requirement, as it allows
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the enumeration of all states that can be reached from a given initial state, without including

any irrelevant states. In addition, all possible transitions are recorded, and no infeasible

transitions are attempted. The resulting transition matrix based on the enumerated state

space is compact without redundant information, and is minimal in size. In addition, its

computational time is also optimal[48].

Exact Calculation of Probability Distribution of the Steady State

Once the states reachable from a given initial state are enumerated, the rates of chemical

reactions connecting two of these states can be computed. For example, we can study a

simplified model of protein-DNA interaction. For the process of two protein monomer

(ProteinA) dimerize and bind to a segment of DNA (GeneB), we can use the simplified

model below. If we denote the rate of the reaction that brings the before-state i to the after-

state j as aj,i, we have for the third order reaction:

with the following reaction rate coefficient aj,i:

where b is the intrinsic reaction rate which contains hidden systems volume V, npA, i is the

copy number of protein A in state i, and ngB, i is the copy number of unbound gene B. Here

the combination number of the protein for this second order reaction is

. Note that in addition to the volume V, there is a factor of 2

difference between the intrinsic reaction rate here and the macroscopic rate constant

discussed in Section 2.

Once the full reaction rate matrix A = {aj,i} ∈ ℝn×n is filled with computed rates, the

chemical master equation can be written in a matrix-vector form as:

(21)

Here the matrix A represents the infinitesimal generator of a continuous time Markov

process. The diagonal elements aii is set as: aii = − Σi≠j aj,i, and all off-diagonal elements are

nonnegative. The analytical solution at time t to (21) can be written as a matrix exponential:

(22)

The matrix eAt is the Markovian state transition probability matrix with time duration t. We

can also obtain its discrete equivalent M as[40]:

(23)
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where I is the identity matrix, Δt is a small time interval during which one reaction occurs.

When the system has reached the steady state, the probability landscape over the enumerated

states P can be computed by solving the equation:

Here P can be obtained with an iterative solver such as that based on the successive over-

relaxation (SOR) technique[49]. Alternatively, since P for the steady state corresponds to

the eigenvector of M with eigenvalue 1.0, one can obtain P by using eigenvector method

such as the Arnoldi method[50], as done in [48].

By examining computationally the stochastic behavior of genetic circuits for wild type and

mutant networks, and by studying the probabilities of rare events, one can gain further

understanding of the regulation mechanism of genetic circuits, its system stability against

perturbation (such as fluctuations in nutritional conditions), and its robustness against

genetic mutations (such as those due to DNA damage)[51].

7 Two Examples of Stochastic Biochemical Systems and Their CMEs

In this section we give two examples on how exact stationary probability landscapes of a

biochemical network can be computed from its CME. The CME, of course, gives more than

just a stationary distribution, but solving the steady state is almost obligatory in any analysis

of mathematical models.

Toggle Switch

In Section 3, we already discussed how bistability arises from stochasticity. Another

example is the well studied genetic toggle-switch system. This is a small network consisting

of two genes, A and B, each inhibits the other (Fig. 2). It was the first synthetic network

constructed in a wet lab from two repressible promoters arranged in a mutually inhibitory

network in Escherichia coli by Gardner et al.[52]. It is flippable between two stable states

by chemical or thermal induction and exhibits an ideal switching threshold. This toggle

switch forms a synthetic cellular memory unit[52]. Although this is the simplest network

with bistability that can already be identified from ODE models based on the Law of Mass

Action, important questions such as switching probability between the “on” and “off” states

requires a treatment of the stochasticity. Although there have been great recent progresses in

deriving analytical solutions[53–56], they are applicable under special conditions, such as

fast transition between the on- and off-states, or overall small noise associated with high

concentrations. With the algorithm for state enumeration, the steady state landscape

probability of the toggle-switch can be solved exactly for models with arbitrary parameter

specifications.

Epigenetic Switch in Phage Lambda

Exact solution of the CME can also be obtained for larger systems in which biological

phenomenon are modeled more realistically. An example is the epigenetic switch of phage

lambda. Phage lambda is a virus that infects E. coli bacteria. It is the system in which gene
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regulation was first studied. Upon infection, phage lambda can choose two different life

styles. In the lysogenic pathway, the DNA of phage lambda becomes integrated into the

chromosome of the host, and can replicate for many generations along with the host. Upon

adverse environmental perturbations such as UV irradiation, phage lambda switches from

the lysogenic pathway to the lytic pathway, in which it uses the protein synthesis machinery

of the host, and replicate to 100s of copies, which leads to the burst of the host cell. The lytic

pathway offers critical evolutionary advantage for phage lambda to survive, as it allows

phage to escape from hopelessly distressed E. coli host cells. In phage lambda, a gene

regulatory circuit controls the switching between the maintenance of the lysogenic state and

the induction of the lytic state. The CME model analysis clearly demonstrates the idea of a

distributive epigenetic code. As a paradigm for understanding cell development, phage

lambda has been extensively studied, with the molecular components and reaction rates well

characterized (see the seminal book by Ptashne[57]). The key components of the switch of

the genetic circuits and their wirings can be summarized in Fig. 3. There are three operators

(OR1, OR2, and OR3) and two promoters (Pr and Prm). These are used to control the

transcription of CI and Cro proteins, which dimerize and bind to the operator sites with

different affinity and inhibit the expression of each other[57].

The importance of stochasticity in the genetic circuit of lambda phage is well recognized,

and its effects have been studied using stochastic simulations[58] and stochastic differential

equations[24,59]. The steady state probability landscape of the CME model based on the

network depicted in Fig. 3 can be solved directly[51]. Fig. 4 shows the probability landscape

under several physiological conditions when the system is in the lysogenic state, in

transitory switching state, and in lytic state[51]. Fig. 5 shows the phase diagram of

concentrations of CI and Cro at different CI synthesis rate.

By examining computationally the stochastic behavior of genetic circuits for wild type and

mutant network, and by studying the probabilities of rare events, one can gain further

understanding of the regulation mechanism of genetic circuits, its system stability against

perturbation (such as fluctuations in nutritional conditions), and its robustness against

genetic mutations (such as those due to DNA damage)[51].

8 Methods for State Space Simplification

For large systems in which enumeration is no longer feasible, one approach for numerical

computation is to reduce the large number of microstates to a smaller finite number[60].

Finite State Projection

Munsky and Khammash made two key observations about projecting the high dimensional

state space to a lower dimensional finite space by including only a subset of the original

states. Denote two sets of indice of the states being chosen as J1 and J2, and assume J1 ⊆ J2.

The reduced rate matrix obtained by selecting states in J1 and J2 are AJ1 and AJ2,

respectively. The first observation is:

(24)
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This relation implies that by increasing the size of the selected subset of states, the

approximation improves monotonically. Second, if one obtains a reduced state space by

selecting states contained in the index set J and if 1T etAJPJ (0) ≥ 1 − ε for ε > 0 and t ≥0,

then:

(25)

That is, starting with the initial probability of the reduced vector PJ(0), compute the

probability vector in the reduced space etAJPJ(0) at time t using the reduced rate matrix AJ.

If the inner-product of this vector for time t with 1 is no less than 1 − ε, then the error of this

vector with the projected true vector PJ(t) from the true probability P(t) is no more than εI.

This inequality guarantees that the approximation obtained with reduced state space will

never exceed the actual solution, and its error is bounded by ε[60].

These key observations led to the Finite State Project Algorithm, which iteratively adds new

states to an initial reduced state space, until the approximation error is within a prescribed

bound[60]. Munsky and Khammash further extended the original Finite State Projection

method[61], and recommends running a few steps of stochastic simulation to obtain the

initial probability vector P(0) that is non-sparse. However, there are no generally applicable

strategies as to what states to add to a finite projection to most efficiently improve the

approximation accuracy.

Krylov Subspace Method

The analytical solution to the CME can be expressed in the form of a matrix exponential P(t)

= eAtP(0). As discussed before, the rate matrix A has a very large dimension but is sparse.

An alternative approach to reduced the state space is to convert the problem of

exponentiating a large sparse matrix to that of exponentiating a small dense matrix in the

Krylov subspace [62]:

(26)

The idea is that the Krylov subspace used is of a very small dimension of m = 30–60.

Denoting ||·||2 as the 2-norm of a vector or matrix, the approximation then becomes P(t) ≈ ||

P(0)||2Vm+1 exp(tH̄
m+1)e1, where e1 is the first unit basis vector, Vm+1 is a (m +1)×(m +1)

matrix formed by the orthonormal basis of the Krylov subspace, and H̄
m+1 the upper

Hessenberg matrix, both computed from an Arnoldi algorithm[63]. The error can be

bounded by
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One only needs to compute explicitly exp(H̄
m+1t). This is a simpler problem as m is much

smaller. A special form of the well-known Padé rational of polynomials instead of Taylor

expansion is used[64–65]:

where  and . The Expokit software by

Sidje provides an excellent implementation of this method[65]. This approach has been

shown to be very effective in studying large dynamic system (n = 8.0 × 105) such as protein

folding[40] and signaling transmission in macro-molecular assembly of GroEL-GroES[66].

The Krylov subspace method concurrently evaluate the matrix exponential. The overall

scheme can be expressed as follows:

(27)

in which the evaluation is from right to left. Here {τi} are size of time steps, and K is the

total number of time steps[62].

MacNamara et al. further extends the Krylov subspace method by splitting the rate matrix A.

Based on the reachability criteria, one can divide the states into the “fast partition” and the

“slow partition”[67]. Here the condition is that two states belong to the same subset of the

fast partition if and only if one can be reached from the other via a sequence of finite fast

reactions[67]. Correspondingly, the matrix can be splitted into two:

where Af corresponds to the fast CME, and As corresponds to the slow CME, and one has:

and

With this deliberate separation, both Af and As maintain the important property of being

infinitesimal generators of continuous time Markov processes by themselves[67]. With more

elaborated splitting scheme for aggregation of Markov processes, the Krylov subspace

projection method have been shown to be computationally very efficient[62].
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Approximation by Continuous Stochastic Differential Equation

An effective approach to study biochemical networks whose chemical master equations

cannot be solved directly is to approximate them with stochastic differential equations. One

widely used approach is that of the Fokker-Planck-Langevin model[10]. The Langevin

equation for concentration flux consists of a drift term and a diffusion term. The drift term

models the macroscopic deterministic component of the system. It reflects the time-

dependent evolution of the mean concentrations of the molecular species. The diffusion term

models the intrinsic stochasticity of the system. The basic form of a Langevin, stochastic

differential equation is:

(28)

Here X is the vector of concentrations of molecular species in the reaction system, μ(X) the

drift term, and the second term is the diffusion term. Here (0, 1/dt) is a vector of one-

dimensional Gaussians, with zero mean and 1/dt variance. The coefficient σ(X) controls the

amplitude of the Gaussian noise. It can be either a function of X or a constant. The key issue

in developing Langevin models for biochemical networks is to determine μ(X) and σ(X).

When σ(X) is a vector of constants, one adjusts its values so the variance of the Gaussian

noise produce the correct fluctuations in the system[10].

One of the most important issues to keep in mind when developing Fokker-Planck-Langevin

approximations for a CME is the Keizer’s paradox previously discussed. For dynamical

system with a single, globally attracting attractor, however, this is not an issue. We shall use

the Schnakenberg model to demonstrate how well the Langevin approach works. Originally

developed for studying the limit cycle behavior in a simple chemical reaction system[31,69],

the Schnakenberg model is a simple system with two reacting components and three

reversible reactions:

(29)

where X and Y are reacting species of the system, and A and B are external reactants whose

concentrations (or copy numbers) are fixed constants. Each reaction has a corresponding

microscopic reaction rate. The fixed copy numbers or concentrations of A and B can be

adjusted, which lead to different behavior of the system. This simple system already

produces complex behavior such as oscillation and has a single stable limit cycle (see [6, 70]

for recent examples).

The macroscopic concentration obtained by solving the corresponding ODE model, the

approximated steady state probability distribution obtained by integrating the Langevin

model, and the exact probability distributions obtained by solving the chemical master

equation[48] are shown in Fig. 6. At the parameter values of A = 10 and B = 50, the well-

known oscillating limit cycle behavior of the Schnakenberg model can be seen in Fig. 6(a).

At A = 20 and B = 40, the behavior of the system converges towards a fixed point (Fig.

6(b)). The landscapes of the steady state probability distributions obtained from solving the
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Langevin equation (Fig. 6(c)) and the chemical master equation (Fig. 6(e)) all show a crater,

or a basin surrounded by a mountainous ridge for the parameter set of A = 10 and B = 50

(details not shown). This corresponds well with the limit cycle behavior observed in the

ODE model. At A = 20 and B = 40, the landscapes show a single peak (Figs. 6(c) and 6(d)),

which again corresponds well with the fixed-point behavior observed in the ODE model.

As can be seen in Figs. 6, and 7, the model of Langevin equation approximates well the true

probability landscape of the chemical master equation. This demonstrates that the diffusion

term models the intrinsic stochasticity of the Schnakenberg model well.

Alternative models account for the stochasticity by replacing the diffusion term with a term

for the variance-covariance between pairs of the molecular reactions[71], or between

concentrations of different molecular species, without the explicit inclusion of a random

process[72]. The magnitude of the covariance is determined by the Hessian matrix of the

second-order partial derivative of the propensity functions of the reactions[71–72]. This

inclusion of the second moments to account for the stochasticity is the basis of the stochastic

kinetic model[71] and the mass fluctuation kinetic model (MFK)[72]. These models can

model reactions involving one or two molecules well[71–72]. They are similar in spirit to

the Fokker-Planck equation model of the CME as described in [73] by including a second

moment term for better approximation, but are different from that of [73] as they are

macroscopic in nature and do not involve any random processes.

Yet another approach is to directly model explicitly the stochastic coupling of the

macroscopic concentrations of molecular species, in addition to the Gaussian noise of the

original Langevin model[68]. The steady state probability landscape of the Schnakenberg

model resulting from this approach is shown in Fig. 7. Significant improvement after

incorporating the coupling term can be seen in Fig. 7.

Remark—The complex nature of the stochastic dynamics arising from biochemical

networks bears much resemblance to another complex system, namely, that of protein

folding. Both have very large space of micro-states, and both can be modeled by transitions

between micro-states using master equations (for master equation approach in protein

folding studies, see [37, 39–40]). However, these two systems differ in several important

aspects. First, while protein folding can be modeled as a relaxation process towards the

equilibrium state, biochemical networks are intrinsically open, with synthesis and

degradation of molecules an integral part of the system, hence there are no equilibrium

states. Instead, one frequently seeks to study the non-equilibrium steady state. Second, once

the energy of a protein conformation is known, the relative probability of its sequence

adopting this conformation in the equilibrium state can be calculated from the Boltzmann

distribution, without the need of knowing all other possible conformations and their

associated probabilities. In other words, the protein folding problem is local in the energy

landscape. In contrast, it is not possible to calculate the relative probability of a specific

microstate of copy numbers a priori without solving the entire CME, as the probability

distribution of network states do not generally follow any specific analytical forms (no

detailed balance and the existence of cycle fluxes). Third, transitions between microstates

are clearly defined in biochemical networks by the reactions, whereas transitions between
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different protein conformations often technically depend on specific move sets, which are

different in terms of allowable transitions between states and transition rates, although all

such move-sets are developed with the goal to mimic physical movement of molecules.

9 Discussions and Outlooks

In this review, we have discussed the significance of the chemical master equation (CME) as

a theoretical framework for modeling nonlinear, biochemical reaction networks inside cells,

and the possible mechanism of cellular states, or attractors, as the inheritable phenotypes

with a distributive epigenetic code. The validity of such a grand theory requires close

comparisons between theoretical predictions with experiments. Solving a given CME,

however, is a computationally challenging task at the present time. We have outlined several

key difficulties, as well as some of the progresses that have been made so far.

In addition to the subject of studying algorithmic complexity, complex system, in a broady

sense, is a major scientific problem of computer science and computational science[74]. One

needs not to be reminded of the complex phenomena exhibited in the natural world of

her/his surroundings. How to characterize and quantify such complex behavior is of great

interests for understanding our physical and biological worlds. But what is complexity and

how to define complex behaviors? Through studies of the CME, one seems to be able to

gain some deeper understanding of the issues involved through concrete physical and

biology examples. Recently, one of us has suggested that a key to mesoscopic

complexity[75] is in the multi-stability with multiple time scale dynamics[76]. Nonlinear

biochemical reaction systems in a cell-size volume can be a prototype for studying

complexity.
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Fig. 1.
Schematics showing how two biochemical states of a nonlinear biochemical reaction system

can be inheritable if the volume of the reaction system is increased, and then divided into

two. Note that the abscissa is concentration, not number of molecules. In the figure, an

increase in volume with a factor of 2, corresponding to a decrease of concentration to one

half, will still maintain the system in its original attractors. Division does not change the

concentration.
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Fig. 2.
Model of a toggle switch. (a) The network model and the reaction rates. Single copies of

gene A and gene B encode protein products. Two protein monomers can repress the

transcription of the other gene. The synthesis of protein product of gene A and gene B

depends on the bound or unbound state of the gene. (b) The chemical reactions of the 8

stochastic processes involved in the toggle-switch system. The reaction rates include s for

protein synthesis, d for protein degradation, b for protein-gene binding, and u for protein-

gene unbinding (adapted from [48]).
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Fig. 3.
Phage λ switching network. Reactions including binding and unbinding, synthesis and

degradation, dimerization are labeled as arrows, along with the corresponding kinetic

constants (adapted from [51]).
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Fig. 4.
Lysogenic and lytic states and CI synthesis rate. (a) Lysogenic state, Ks CI=0.045/s. (b) The

switching state, Ks CI=0.0245/s. (c) Lytic state, Ks CI=0.0077/s. X and Y axes are copy

numbers of CI and Cro dimers; and Z axis is the marginal probability (adapted from [51]).
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Fig. 5.
Relative CI and Cro dimer levels for wild type and mutant lambda phage. The lysogenic

state has high CI (solid line) concentration, and the lytic state has high Cro (dashed line)

concentration. Wild type lambda phage has a well-behaving switch, while mutants are all

leaky (adapted from [51]).
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Fig. 6.
Calculated steady state probability distributions over different copy numbers of X and Y and

the trajectories of evolving concentrations of X and Y of the Schnakenberg model. (a) and

(b): Trajectories of evolving concentrations of X and Y according to the deterministic

ordinary differential equation (ODE). Here (a) shows the well-known oscillating limit cycle

behavior of the Schnakenberg model, and (b) shows the convergence towards a fixed point.

The concentrations of A and B are set at values equivalent to the copy numbers used in

stochastic models. (c) and (d): Reconstructed probability distributions over X and Y obtained

from 200 000 simulations of the Langevin equation (LE). (e) and (f): Exact probability

distributions over copy numbers X and Y obtained by solving the chemical master equation

(CME). Two sets of copy numbers of (A, B) at (10, 50) and (20, 40) are used for the fixed

parameters A and B (adapted from [68]).
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Fig. 7.
Comparison of errors between different steady state solutions of the Schnakenberg model.

(a) Difference between the probability landscapes of the Langevin equation and that of the

chemical master equation. This represents errors in the Langevin model. (b) The amount of

the errors in (a) that are corrected by introducing explicitly a coupling term between X and Y

(adapted from [68]).
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