
Hsueh YL, Zimmermann R, Ku WS. Efficient location updates for continuous queries over moving objects. JOURNAL OF

COMPUTER SCIENCE AND TECHNOLOGY 25(3): 415–430 May 2010

Efficient Location Updates for Continuous Queries over Moving Objects

Yu-Ling Hsueh1 (薛幼苓), Roger Zimmermann2, Member, ACM, Senior Member, IEEE
and Wei-Shinn Ku3 (顾维信), Member, ACM, IEEE

1Department of Computer Science, University of Southern California, Los Angeles, LA 90089-0781, U.S.A.
2Department of Computer Science, National University of Singapore, 117417 Singapore
3Department of Computer Science and Software Engineering, Auburn University, Auburn, AL 36849, U.S.A.

E-mail: hsueh@usc.edu; rogerz@comp.nus.edu.sg; weishinn@auburn.edu

Received November 3, 2009; revised December 9, 2009.

Abstract The significant overhead related to frequent location updates from moving objects often results in poor per-
formance. As most of the location updates do not affect the query results, the network bandwidth and the battery life
of moving objects are wasted. Existing solutions propose lazy updates, but such techniques generally avoid only a small
fraction of all unnecessary location updates because of their basic approach (e.g., safe regions, time or distance thresholds).
Furthermore, most prior work focuses on a simplified scenario where queries are either static or rarely change their positions.
In this study, two novel efficient location update strategies are proposed in a trajectory movement model and an arbitrary
movement model, respectively. The first strategy for a trajectory movement environment is the Adaptive Safe Region (ASR)
technique that retrieves an adjustable safe region which is continuously reconciled with the surrounding dynamic queries.
The communication overhead is reduced in a highly dynamic environment where both queries and data objects change their
positions frequently. In addition, we design a framework that supports multiple query types (e.g., range and c-kNN queries).
In this framework, our query re-evaluation algorithms take advantage of ASRs and issue location probes only to the affected
data objects, without flooding the system with many unnecessary location update requests. The second proposed strategy
for an arbitrary movement environment is the Partition-based Lazy Update (PLU, for short) algorithm that elevates this
idea further by adopting Location Information Tables (LITs) which (a) allow each moving object to estimate possible query
movements and issue a location update only when it may affect any query results and (b) enable smart server probing that
results in fewer messages. We first define the data structure of an LIT which is essentially packed with a set of surrounding
query locations across the terrain and discuss the mobile-side and server-side processes in correspondence to the utilization
of LITs. Simulation results confirm that both the ASR and PLU concepts improve scalability and efficiency over existing
methods.

Keywords location updates, continuous queries, location-based services

1 Introduction

The impressive advancement of mobile communi-
cation technologies, such as IEEE 802.11 and cellular
networks, together with ever more capable handheld
devices with GPS sensors has sparked intense interest
in location-aware services. The efficient evaluation of
continuous spatial queries is a fundamental capability
needed in many practical applications. An example
range query launched from a fire engine while battling
flames might be to “continuously locate other fire en-
gines within two miles of my current location.” Since
all units (i.e., users) are constantly moving, frequent
location updates often result in high server re-indexing

costs and immense communication overhead. With the
mobility introduced by portable and handheld devices,
the performance bottleneck for continuous spatial query
processing is often concentrated in the handling of the
frequent location updates at the server and the utiliza-
tion of the communication channel between the mov-
ing client objects (also called mobiles) and the server.
Wireless bandwidth is generally still much more scarce
than wired bandwidth and — adding to the challenge
— the movement dynamics of such an environment
require frequent mobile-server message exchanges that
contain location information for the database engine to
maintain an up-to-date view of the world.

Many existing techniques[1-5] have proposed

Regular Paper
This work is supported by NSF of USA under Grant Nos. IIS-0534761, CNS-0831502, CNS-0855251, and NUS AcRF under Grant

No. WBS R-252-050-280-101/133.
©2010 Springer Science +Business Media, LLC & Science Press, China



416 J. Comput. Sci. & Technol., May 2010, Vol.25, No.3

continuous monitoring approaches without consider-
ing the cost of the communication overhead involved.
Some prior work[6-8] has provided significant insight
into these issues by assuming a set of computationally
capable moving objects that cache query-aware infor-
mation (e.g., thresholds or safe regions) and locally
determine a mobile-initiated location update. In the
simplest case, whenever an object moves it sends its
new location to the server. Obviously this can be very
wasteful, for example if the moving object is located
in an area where it does not affect any query results.
Making informed decisions when to communicate up-
date messages becomes a key design issue to improve
scalability. The message count can be reduced through
the following optimizations. The mobile client may
be equipped with computation capabilities to main-
tain a safe region[9] with the purpose that movements
within the safe region will not affect any query results
(hence no location updates must be sent to the server).
Safe regions are bounded by the nearest query rectan-
gles around a mobile client and must be recomputed
when certain events take place such as a new query
is inserted or a moving object moves beyond its safe
region boundary. In some cases (e.g., query insertion)
a moving object is initially unaware of the event and
the server must probe its current location. However,
the focus of these solutions is mainly on static queries
or simple types of queries (e.g., range queries). Fur-
thermore, because of the usually simple shape of safe
regions (e.g., rectangles or spheres) they can only help
to avoid a fraction of unnecessary location updates.
If query movements are frequent, such systems suffer
from repeated location detections to resolve location
ambiguity (incurred on the objects that might become
result points) and numerous down-link messages sent
to refresh the query-aware information on those mobile
objects.

In this paper, two novel efficient location update
strategies are proposed for a trajectory movement
model and an arbitrary movement model, respectively.
Based on the nature of the object movement, we first
present the ASR approach which utilizes adaptive safe
regions to reduce the downlink messages of location
probes due to query movements for a trajectory move-
ment model. To further reduce the downlink messages,
the ASR approach only probes a set of objects that
might become part of the query results. Addition-
ally, ASR allows for decoupled, query-aware informa-
tion locally maintained by each moving object until
the movement affects the query results. In an arbi-
trary movement environment, since moving objects
can freely move to any positions, the ASR can no
longer efficiently handle query requests. We propose

another strategy termed PLU (Partition-based Lazy
Update) algorithm. Its main contribution lies in the
development of “smarter” safe regions represented via
location information tables that enable enhanced (i.e.,
more independent) mobile-side decision making for lo-
cation updates. We provide a comprehensive study and
present the details of the algorithms in the following
sections. The remainder of this paper is organized as
follows. Section 2 describes the background and related
work. Section 3 provides the system overview and as-
sumptions. Section 4 and Section 5 provide the details
of the ASR and PLU algorithms, respectively. Finally,
we conclude in Section 6.

2 Related Work

Cai et al.[10] proposed the Monitoring Query Mana-
gement (MQM) approach to leverage the computational
capabilities of moving objects for efficient processing of
continuous range queries. SINA[2] has been introduced
as centralized solution to process continuous range and
k nearest neighbor (kNN) queries over moving objects.
Yu et al.[11] proposed an algorithm that computes the
query results by defining a search region based on the
maximum distance between the query point and the
current locations of previous kNNs. However, the algo-
rithm results in high re-computation costs when the
query point is highly dynamic. Similarly, Xiong et
al.[5] suggested the SEA-CNN framework which uses
the concept of shared execution. SEA-CNN continu-
ously maintains the search radius of the query point to
avoid rebuilding the query result once the query point
changes its location. As an enhancement, Mouratidis et
al.[3] presented a technique called CPM that defines a
conceptual partitioning of the space by organizing grid
cells into rectangles. Location updates are handled only
when objects fall into the vicinity of queries, hence im-
proving system throughput.

In the moving object environments, the challenge
of frequent updates issuing from moving objects has
been addressed when the first continuous spatial queries
were studied. The existing work has proposed different
strategies to reduce locations updates and these ap-
proaches can be classified into the following categories.

2.1 Object Movement Prediction

Predicting the movement of objects (i.e., their mo-
tion functions or trajectory) has been used with R-
tree-based structures (e.g., the TPR-tree[12] and its
variants[4]) and B-tree-based structures (e.g., the Bx

tree[1]). The most common motion function is a lin-
ear function and it describes an object’s movement by
f(Y ) = Xref +(tcur−tref)V , where Xref is the reference



Yu-Ling Hsueh et al.: Efficient Location Updates for Continuous Queries over Moving Objects 417

position or the last updated position to the server and
V is a velocity vector. However, the linear motion func-
tion severely limits the applicability, since in practice
an object may have drastic motion patterns. Tao et
al.[13] introduced a general framework for monitoring
and indexing moving objects. A recursive motion func-
tion is proposed to support non-linear motion patterns.
However, this method incurs extensive location updates
due to the arbitrary movements of the moving objects.
These techniques require location updates from the ob-
jects when the parameters (e.g., moving direction, or
speed) of the motion function change.

2.2 Periodic (Time-Based) Updates

In order to handle arbitrary object movements,
periodic (time-based) position updates are widely
used[2-3,11,14]. However, with such a paradigm tree-
based indices suffer from excessive node reconstructions
when tracking object locations. Cheng et al.[15] pro-
posed a time-based location update mechanism with
low communication costs to improve the temporal data
inconsistency for the relevant objects to queries. Data
objects with significance to the correctness of query re-
sults are required to send location updates more fre-
quently. The main drawback of these methods is that
an object will repeatedly send location updates to the
server when it is enclosed by a query, which consumes
a large amount of bandwidth when the query density is
high.

2.3 Safe-Region Updates

A number of pioneering techniques have been de-
signed for processing of continuous queries over mov-
ing objects. Prabhakar et al.[9] first proposed two ele-
mentary techniques called Query Indexing and Velocity
Constrained Indexing (VCI) and also introduced the
important concept of safe regions. Subsequently, Hu
et al.[6] proposed a generic framework to handle conti-
nuous queries by leveraging the concept of safe regions
through which the location updates from mobile clients
can be further reduced. However, these methods only
address part of the mobility challenge since they are
based on the assumption that queries are static. Nowa-
days, an extensive number of spatial applications re-
quire the capability to process moving objects in con-
junction with dynamic continuous queries.

2.4 Threshold-Based Updates

A threshold-based algorithm is presented in [7] which
assumes that moving objects have some computa-
tional capabilities and aims to minimize the network
cost when handling c-kNN queries. A threshold is

transmitted to each moving object and when its mov-
ing distance exceeds the threshold, the moving object
issues an update. However, the system suffers from
many downlink message transmissions for refreshing the
thresholds of the entire moving object population due
to frequent query movements. Cheng et al.[16] proposed
a time-based location update mechanism to improve
the temporal data inconsistency for the objects rele-
vant to queries. Data objects with significance to the
correctness of query results are required to send loca-
tion updates more frequently. The main drawback of
this method is that an object will repeatedly send lo-
cation updates to the server when it is enclosed by a
query region.

In contrast, our proposed techniques for efficient lo-
cation updates aim to reduce the communication cost of
dynamic queries over moving objects. The first strategy
for a trajectory movement environment is the Adap-
tive Safe Region (ASR) technique that leverages the
trajectory information and retrieves an adjustable safe
region for each data object. The second mythology for
an arbitrary movement model is the partition-based lazy
update approach that significantly reduces unnecessary
location updates by maintaining a Location Informa-
tion Table (LIT) on each moving object. Because of
the different movement models, the query-aware infor-
mation (e.g., ASR vs. LIT) are formatted differently.
These two techniques do not deteriorate when faced
with high mobility rates as demonstrated by our simu-
lation results and surpass the aforementioned solutions
with higher scalability and lower communication cost.

3 System Overview and Assumptions

To enable a focused discussion we make some ex-
plicit assumptions. The communication between the
centralized server and the mobile units is through cel-
lular phone or WiMAX networks. A centralized server
is assumed in the environment to process continuous
queries. We assume an ideal network environment,
that is, no communication delay between the server and
moving objects. The mobile units such as vehicles or
handheld devices (e.g., cell phones) consist of a set of
dynamic query objects Q and a set of moving objects
P . Both queries and moving objects are identified by a
unique identifier to distinguish their types. The mobile
units are able to provide the server with their positions
from a GPS chip built into the devices and we assume
that each mobile unit has enough computational capa-
bilities and memory to carry out the required tasks. We
assume no power constraints and virtually unlimited
life time of devices. A main-memory grid G is used
as the underlying structure to index moving objects
because of its simplicity and ease-of-maintenance in a



418 J. Comput. Sci. & Technol., May 2010, Vol.25, No.3

highly dynamic environment. For high performance an
event-driven approach is adopted to evaluate continu-
ous queries. To maintain the correctness of the query
results, the server monitors registered query objects.
Thus, the server can evaluate the queries based on their
new locations. The details of the ASR and PLU ap-
proaches are described in Section 4 and Section 5, re-
spectively.

4 Trajectory Movement Model for Moving
Objects

We propose a framework to support multiple types
of dynamic, continuous queries in the ASR approach.
Our goal is to minimize the communication overhead
in a highly dynamic environment where both queries
and objects change their locations frequently. When
a new query enters the system we leverage the trajec-
tory information that it can provide by registering its
starting and destination points as a movement segment
for continuous monitoring. For example, a policeman
might request the following query “send me the closest
5 police cars on the road as I am moving from point
A to point B.” For simplicity, we assume a straight
movement segment between two points. This assump-
tion can be easily extended to a more realistic sce-
nario which may approximate a curved road segment
with several straight-line sub-segments. We propose
an adaptive safe region that reconciles the surrounding
queries based on their movement trajectories such that
the system can avoid unnecessary location probes to
the objects in the vicinity (i.e., the ones which overlap
with the current query region). Furthermore, our in-
cremental result update mechanisms allow a query to
issue location probes only to a minimum area where
the query answers are guaranteed to be fulfilled. In
particular, to lower the amortized communication cost
for c-kNN queries, we obtain extra nearest neighbors
(n more NNs) which are buffered and reused later to
update the query results. Thus, the number of location
updates incurred from the query region expansion due

to query movement is reduced. An example is shown
in Fig.1(a). The ASR of p3 is determined based on the
closest query q1, since p3 has a high probability of being
covered by the query region of q1 when q1 moves in the
future. The safe region of p3 is adjusted to a reasonable
size according to the segment information of q1. The
safe region for p8 is simply set to the maximum non-
overlapping area with the query region of q2, because q2

(due to its opposing moving direction) will never cover
p8. We buffer one extra NN for q2 (a c-3NN query).
When q2 moves to q′2, and since the number of NNs is
equal to 3, the query region remains unchanged. In the
traditional approach (as shown in Fig.1(b)), the query
region is expanded to cover p5 (the first closest object
outside the query region) such that the additional loca-
tion probes to p7, p9, and p10 are issued. Therefore, our
approach reduces the number of query expansions to
find sufficient NNs and the number of location probes.

In this approach, each query object registers its
movement trajectory with the server by uploading its
starting and ending points (denoted by qj = [qs

j , q
e
j ]).

Furthermore, all the data objects can move in a non-
restricted fashion that allows them to move arbitrarily.
The location updates of a query result point (result
point for short) and a non-result point (data point for
short) are handled with two different mechanisms. An
Adaptive Safe Region (ASR) is computed for each data
point. A mobile-initiated voluntary location update is
issued when any data point moves out of its safe re-
gion. An example (p8) is shown in Fig.1(a). To cap-
ture the possible movement of a result point, we use
a Moving Region (MR) whose boundary increases by
the maximum moving distance per time unit. For the
result points, the location updates are requested only
when the server sends server-initiated location probes
triggered when the moving regions of the result points
overlap with some query regions.

Fig.2 shows the system framework. When a request
arrives from a data point (A) or from a query point (B)
(e.g., a location update, insertion or deletion), the ASR

Fig.1. The overview of the ASR approach. (a) An example of ASRs. (b) A query expansion.



Yu-Ling Hsueh et al.: Efficient Location Updates for Continuous Queries over Moving Objects 419

Fig.2. ASR approach overview.

Table 1. Symbols and Functions for the ASR Approach

Symbol Description

Q A set of query objects

P A set of moving objects

G A w × w object grid where objects are hashed to
the grid cells based on their locations

δ Maximum speed for any object

pi.ASR Adaptive safe region of object pi

pi.MR Moving region of object pi

qj .QR Query region of query qj (the radius is denoted by
qj .QR.radius)

qj Movement trajectory of qj

qs
j Staring point of the movement trajectory for qj

qe
j Ending point of the movement trajectory for qj

query processor checks whether the point is part of a
query result in modules (C) and (D). To incrementally
update a query result, prior query results (E) are con-
sidered. For a c-kNN query, an NN order check (F) is
performed during the query evaluation process. While
there are less than k NNs in the result set, a query re-
gion expansion (G) is executed. Some server-initiated
location probes might be needed to resolve location am-
biguities. The points in the result set are monitored

(H) through a passive mechanism — this result set is
different from the non-result points that voluntarily is-
sue location updates locally determined by the objects.
Finally, an updated data point is assigned a new ASR
based on the current query information in module (I).
Detailed descriptions of the functionality of each com-
ponent will be given in the following sections. Table 1
summarizes the symbols and functions we use through-
out the following sections.

4.1 Adaptive Safe Region Computation

The existing work adopts safe regions to reduce un-
necessary location updates such that the communica-
tion cost between the server and moving objects is re-
duced. A safe region in a traditional system is simply
an area of maximal size around an object such that no
query regions overlap. Fig.3(a) shows an example of
two such safe region types (a safe sphere and a safe
rectangle) for object p1. However, this approach suf-
fers from many location updates as a result of frequent
query movements. When a query moves, the server ini-
tiates location probes to the data objects whose safe
regions overlap with the query region to ensure the cor-
rectness of the query answers. In this paper, we propose
a novel approach to retrieve an adaptive safe region
(ASR), which is often smaller than a maximum non-
overlapping region and yet is very effective in reducing
the amortized communication cost in a highly dynamic
mobile environment. The key observation lies in the
consideration of some important factors (e.g., the ve-
locity or orientation of the query objects) to reconcile
the size of the safe regions. Fig.3(b) illustrates the con-
cept of an ASR. The on-demand location probes are not
issued as soon as any surrounding queries (q1, q2, or q3)
move. In this example, the distance z is the ASR radius
of p1, because in the worst case, after both q3 and p1

move by distance z and p1 moves directly toward q3, p1

may become a result point of q3. The following lemma
establishes the ASR radius based on this observation.

Fig.3. Traditional safe region vs. ASR. (a) A traditional safe region. (b) An adaptive safe region.



420 J. Comput. Sci. & Technol., May 2010, Vol.25, No.3

Lemma 1. pi.ASR.radius = min(CDist(pi, qj) −
qj .QR.radius), ∀qj ∈ Q, where

CDist(pi, qj) =





pif ′ if θj 6 π

2
and ∃f ′, or

piqs
j if θj >

π

2
or @f ′.

As an illustration of Lemma 1 (and to explain the sym-
bol notation), consider Fig.4, where the set of queries
Q = {qj , qk} are visited for retrieving the adaptive safe
region (the dashed circle) of the data point pi. We mea-
sure the Euclidian distance between a query and a data
point (CDist in Lemma 1) and then deduct the query
range. Lemma 1 captures two cases of CDist. The first
case (CDist(pi, qj)) computes a distance pif ′ = qs

jf in
the worst-case scenario where both pi and qj move to-
ward each other (under the constraint of the maximum
speed). f ′ represents the border point (on the border
of qj .QR while qj arrives at f on its movement seg-
ment), after which pi would possibly enter the query
region of qj . f is the closest point to qs

j on the tra-
jectory of qj , which satisfies the condition that the
distance from pi to f is equal to pif ′ + f ′f , where
f ′f = qj .QR.radius = rj . Let pif ′ = x for short. We
can obtain the f and f ′ points by computing x first,
which is considered the safe distance for pi with respect
to qj . x can be easily computed with the trajectory
information of qj by solving the quadratic equation:
(x + rj)2 = h2 + (qs

jm− x)2 (h is the height of triangle
4piq

s
jm). f on qj exists only when θj (∠piq

s
jq

e
j ) is less

or equal to π
2 and (piqe

j−qj .QR.radius) < qs
jq

e
j (triangle

inequality). If the first case is not satisfied, we consider
the second case (CDist(pi, qk)), which finds the maxi-
mum non-overlapping area with qj .QR. Since θ > π

2 in
the second case, the query range of qj can never cover pi

due to the opposing movement of qj . In this example,
the safe distance x (with respect to qj) is smaller than y
(with respect to qk), so x is chosen as the radius of the
adaptive safe region of pi. In our system, since a c-kNN
query can be considered an order-sensitive range query,
we use the same principle to compute safe regions for

Fig.4. An adaptive safe region.

for each data object with respect to range queries and
c-kNN queries. In case of a query insertion or query
region expansion of a c-kNN query, the adaptive safe
regions of the affected data objects must be reassigned
according to current queries to avoid any missing loca-
tion updates.

4.2 Query Evaluation with Location Probes

The initial query results of the range and c-kNN
queries are obtained using CPM [6], and later the query
results are updated in an event-driven fashion. Such
events include the insertion or update of a query. In
the following subsections, we propose our incremen-
tal query re-evaluation algorithms for both range and
c-kNN queries. While updating the query answers,
on-demand server-initiated location probes are issued
whenever any location ambiguity exists. Specifically,
the cost of updating c-kNN queries is usually higher
than updating range queries. The reason is that a c-
kNN search is an order-sensitive query. The system ex-
ecutes more location updates to ensure the order of the
result points. Furthermore, to make sure that at least
k result points are found for a c-kNN query, the query
region often needs to be enlarged in a situation where
both query and data objects are moving, which leads
to more location probes. In our approach, the strategy
to handle such increasing unnecessary location updates
incurred from a c-kNN query is that the query proces-
sor computes (k +n) NNs for a c-kNN query instead of
evaluating exactly k NNs. This approach helps to re-
duce the number of future query region expansions to
retrieve sufficient NNs for the queries. Since a c-kNN
query is treated as an order-sensitive range query, we
adopt the same principle that is used for a range query
to find the new answer set in the current query regions
first. A query region is expanded only when there are
less than k NNs in the result set. Finally, an order-
checking procedure is performed to examine the order
of the result points and determine necessary location
probes.

4.2.1 Query Result Updates for Range Queries

The query processor re-evaluates the range queries
based on their current positions by the same princi-
ples as evaluating the initial query results. The tradi-
tional approach adopts the query region itself as the
safe region for all the result points in the region to
reduce the number of location updates. However, the
approach incurs more network messages when a range
query changes its position frequently, because the sys-
tem needs to inform the result points of the new po-
sition of the query region to avoid missing location
updates. An alternative approach basically monitors



Yu-Ling Hsueh et al.: Efficient Location Updates for Continuous Queries over Moving Objects 421

Fig.5. Query result updates in the ASR approach. (a) Result updates of a range query. (b) Result updates of a c-kNN query.

the entire set of result points to obtain the new cor-
rect results. However, such an approach is not scalable
when there are large numbers of range queries. We
use a Moving Region (MR) for each result point to es-
timate the possible movement at the server side. The
query processor sends the on-demand location probes to
those result points that might move out of the current
query regions. An MR is indexed on the grid and the
boundary increases at each time step by the maximum
moving distance until the result point is probed by the
server. Since the number of result points are relatively
small, indexing MRs does not significantly increase the
overall server workload. In Fig.5(a), when q1 moves to
q′1, the query processor checks p1 and p5, since their
MRs intersect with q′1.QR.

For a data point, in addition to its adaptive safe
region, we also consider the current possible moving
boundary to serve as an additional indicator for the
server to determine a necessary location probe. Con-
tinuing the example in Fig.5(a), the gray circle sur-
rounding p4 is its ASR, and the dashed circles represent
the possible moving boundaries (the radius is equal to
the maximum moving distance since the last update of
p4) for different time steps. p4 is checked because its
p4.ASR overlaps with q′1.QR. However, the server does
not need to issue a location probe since the current
moving boundary does not overlap with q′1.QR. p′6 is a
newly updated (p6 moves out of its ASR) data point.
The system also needs to check whether its current po-
sition is in the query region of q′1. Algorithm 1 shows
the pseudo code of the range query evaluation, where q′j
is the updated query of qj . Lines 1∼7 remove previous
result points that are not in the current query region
q′j .QR. Lines 2 and 4 compute the mindist and maxdist
between a query point and a result point, respectively.
If a result point with an MR is completely contained in
the query range, a location probe is ignored. In line 10,
if pi is a data point, the server uses the radius of ASR
or the maximum moving distance since the last update,

which ever is less to estimate its possible moving dis-
tance.
Algorithm 1. RangeQuery-Update(q′j)

1: for (each d ∈ qj .RangeNN ) do

2: if (dist(d, q′j)−d.MR.radius) > q′j .QR.radius) then

3: remove d

4: else if (dist(d, q′j) + d.MR.radius) > q′j .QR.radius)
then

5: probe d and remove d if its current position is
outside of q′j .QR

6: end if

7: end for

8: for (each c ∈ G, which overlaps with the q′j .QR) do

9: for (each object pi which resides in c or whose 1)
ASR, or 2) MR overlaps with it) do

10: let r = pi.MR.radius, if pi is a result point; else
let r = min(pi.ASR.radius, δ∆t)

11: if (dist(pi, q
′
j)− r < q′j .QR.radius) then

12: if (dist(pi, q
′
j)+r < q′j .QR.radius), insert pi into

q′j .RangeNN

13: else probe the position of pi and insert pi into
q′j .RangeNN , if pi is within q′j .QR.

14: end if

15: end for

16: end for

4.2.2 Query Result Updates for c-kNN Queries

A c-kNN query is more complicated since it is order-
sensitive. An intuitive solution enlarges a query region
that covers at least all the previous result points (first
k NNs) to retrieve new result points. This approach
greatly increases the number of location updates since
such an expansion (the query region is expanded by the
moving distance of the query and result points) often
results in more location probes, even though in real-
ity only a small fraction of queries and data objects
move. Therefore, in our design for the c-kNN queries,
we propose a server-initiated update strategy with an



422 J. Comput. Sci. & Technol., May 2010, Vol.25, No.3

event-triggered update mechanism. Furthermore, the
query processor retrieves (n + k) NNs to avoid imme-
diate and successive query region expansions. We relax
the definition of the query region, that is, a query re-
gion does not necessary include exact k NNs only. The
query region remains unchanged until a c-kNN query
does not contain enough NNs in the region. We sum-
marize the following steps to update a c-kNN query
result incrementally.

Step 1. Assume that q′j is a c-kNN query after it
moves from qj position. Initially, set q′j .QR.radius =
qj .QR.radius. Perform a range query update (as de-
scribed in the previous subsection) to update result
points in q′j .QR. If the number of NNs in q′j .QR is
equal to or larger than k, proceed to Step 3. Other-
wise, continue to Step 2.

Step 2. Expand q′j .QR until there are (k + n) NNs.
Update q′j .QR.radius to the distance between q′j to the
(k + n)-th NN.

Step 3. Sort the order of the result points and issue
the necessary location probes.

Step 1 ensures that q′j .QR covers at least k result
points. Note that during the process, some discarded
objects that are not in q′j .QR might be useful in Step 2,
because these objects are often very close to q′j .QR and
might be already probed by the server. Finding new
NNs from these points first in Step 2 helps the query
processor to avoid expanding the safe region to a far-
ther level of cells. In Step 2, while expanding the query
region to cover (k + n) result points, a location update
is required from any data object pi whose safe region
overlaps with the query region of q′j . A new ASR is
computed for the updated pi, if pi is still a data object.
We use the same approach (query region expansion) to
handle a query insertion. In Step 3, sorting the order of
the result points does not require the current positions
of the entire result points. The processor performs an
OrderCheck procedure that examines the possible ac-
tual moving distance of two consecutive NNs to deter-
mine the order of the NNs, and issues a location probe
only if there is a location ambiguity.

Fig.5(b) shows a query region expansion where k = 3
and n = 1. In Step 1, since p1 and p5 (probed dur-
ing the process) are not in q′1.QR, they are removed
from the answer set and inserted into a buffer for “re-
cycling” later. Step 2 is performed since there are only
two result points in q′1.QR. The query processor checks
the data points in the buffer first, so the first two ob-
jects (sorted by the mindist to q′1) are considered. The
new q′1.QR.radius (the blue area) is set to the distance
between q′1 and p1 to include at least 4 (k + n) ob-
jects. p4 is checked later since the safe region overlaps
with q′1.QR. Algorithm 2 shows the detailed process of

a c-kNN query update. In line 2, the RangeQuery-
Update procedure inserts the discarded objects into
buffer B sorted by mindist in the ascending order. Line
4 computes the number (v) of NNs missing in the cur-
rent query region. Line 12 executes CPM to further
expand the query region by checking the surrounding
cells only when the buffer is empty. The OrderCheck
procedure in line 16 is performed after all the sufficient
NNs are found. In the OrderCheck procedure, to deter-
mine a necessary location probe for kNN result points,
we observe the following lemma. A proof of correctness
is presented subsequently.

Algorithm 2. c-kNN-Update(q′j)

1: let B = φ be a buffer

2: perform RangeQuery-Update(q′j), which finds new
NNs in the current query region and inserts discarded
objects into B, if any

3: if (q′j .KNN .size < k) then

4: v = k + n− q′j .KNN .size

5: while (v > 0) do

6: if (B.size > 0) then

7: set q′j .QR.radius = dist(q′j , V ), where V is the
v-th NN in B, if B.size > v. Otherwise, set
dist(q′j , L), where L is the last object in B.

8: empty B

9: perform RangeQuery-Update(q′j) that inserts
un-visited, discarded objects into B, if any

10: v = k + n− q′j .KNN .size

11: else

12: perform CPM (q′j) that checks the objects in
the surrounding cells of q′j .QR, until (k + n)
objects are fulfilled, and terminate the loop.

13: end if

14: end while

15: end if

16: sort q′j .KNN by performing OrderCheck(q′j .KNN ) that
issues necessary location probes.

Lemma 2. Let q′j be the last reported position of the
query object qj, and let ` = δ∆t be the maximum mov-
ing distance since the last update of qj, where δ is the
maximum speed and ∆t is the time period from the last
update time to the current time. ∀i = 1 to k, a result
point pi (the i-th result point sorted by the mindist to
q′j) needs to issue a location update when the following
condition is satisfied:

` > (mindist(q′j , pi+1)−mindist(q′j , pi))× 1
2
.

Proof. The proof is straightforward, since when
the order of pi and pi+1 changes, mindist(pi, q

′
j) >

mindist(pi+1, q
′
j). When considering the worst case

that pi moves in an opposing direction from q′j and pi+1



Yu-Ling Hsueh et al.: Efficient Location Updates for Continuous Queries over Moving Objects 423

moves toward q′j directly, the following inequality holds
true:

mindist(pi, q
′
j) + ` > mindist(pi+1, q

′
j)− `.

Therefore, we conclude that the order of pi and
pi+1 must change, when ` > (mindist(q′j , pi+1) −
mindist(q′j , pi)) × 1

2 . It is necessary for the server to
probe both locations of pi and pi+1. ¤

Fig.6. The order checks of a c-kNN query.

In Fig.6, the result set of q′1 is {p2, p1, p3} sorted
by the distance between q′1 and their positions at the
server since the last updates. The OrderCheck proce-
dure first checks p2 and p1. Since dist(q′1, p2) + r2 >
dist(q′1, p1) − r1, the order of p2 and p1 might need to
be switched. The system needs to probe p2 and p1. Af-
ter the location probes, the order of the NNs becomes
{p′1, p′2, p3}. Thus, the procedure checks the next pair
of p′2 and p3. Since dist(q′1, p

′
2) < dist(q′1, p3) − r3, the

location probe of p3 is not necessary.

4.3 Experimental Evaluation

We evaluated the performance of the proposed
framework that utilizes ASRs and compared it with the
traditional safe region approach[6,8] and a periodic up-
date approach (PER). The periodic technique functions
as a baseline algorithm where each object issues a lo-
cation update (only uplink messages are issued in this
approach) every time it moves to a new position. We
extended the safe region approach (SR*) to handle dy-
namic range and c-kNN queries where the result points
are monitored the same way as in ASR. We preserve
the traditional safe region calculations (maximum non-
overlapping area) for the SR* approach. The simulation
steps and the detailed simulation results are described
in the following subsections.

4.3.1 Simulation Steps

We use a main memory grid as the underlying index
structure for all the three approaches. Our datasets are
generated on a terrain service space of [0, 1024]2. We
assume a maximum speed for any moving object in the
range of [0.48, 1.25]. The mobility (the percentage of
objects that move from time step to time step) for the

objects is set in a range from 10% to 50%. The length
qlen of a range query is set in the range of [1, 10] and
k for a kNN query is set from 5 to 20. In the simula-
tions, the main measurement is the cost of the commu-
nication overhead which includes uplink messages (e.g.,
a mobile-initiated location update) and downlink mes-
sages (e.g., a server-initiated location probe). The com-
munication cost is measured by assuming that the cost
of an uplink message (cup = 2) is twice as costly as a
downlink message (cdown = 1). Table 2 summarizes the
default parameter settings in the following simulations.

Table 2. Simulation Parameters for the ASR Approach

Parameter Default Range

Number of objects (P ) 100K 50K, 100K, 150 K, 200K

Number of queries (Q) 100 50, 100, 150, 200

Mobility rate 50% 10%, 20%, 30%, 40%, 50%

Number of NNs (K) 10 5, 10, 15, 20

Query length for range 5 1, 5, 10

queries (qlen)

4.3.2 Number of Extra NNs

First, we test the efficiency of using extra NNs (n)
for c-kNN queries by varying the number of n, since this
factor greatly affects the number of downlink messages.
The choice of the number of extra NNs is a trade-off. If
n is too large, the query processor evaluates more NNs
for a query and the system is more likely to issue more
location probes since a larger query region might over-
lap with more data objects for location probes. If n is
too small, there are more query expansions which might
also cause location probes. Fig.7 shows the number of
overall communication cost (measured in thousands of
messages) as a function of the number of extra NNs
ranging from 0 to 20. When n is set to bigger than
10, the performance of ASR is degraded in terms of
the communication cost. Therefore, we chose n = 10
for the rest of our experiments as this setting results in
reduced communication cost.

Fig.7. Extra NNs vs. communication cost.



424 J. Comput. Sci. & Technol., May 2010, Vol.25, No.3

4.3.3 Cardinality

We examined the effect of the query and object car-
dinality assuming that all query and object sets move
with a mobility rate of 50%. Fig.8(a) shows the commu-
nication overhead of ASR, SR* and PER with respect
to the object cardinality. ASR outperforms SR* and
PER. The difference increases as the number of objects
grows. Since an ASR reconciles the surrounding mov-
ing queries, a query movement does not incur many
unnecessary location probes from the surrounding ob-
jects. SR* on the other hand, triggers many location
probes from the objects whose safe regions overlap with
a query region once the query changes its position. As
the density of objects increases, there are more objects
in the vicinity area of a query region. Hence SR* in-
curs an increasing number of location updates as the
cardinality increases. Fig.8(b) shows the impact of the
number of queries. Our algorithm achieves about 50%
reduction compared with SR* and 90% reduction com-
pared with PER.

4.3.4 Query Coverage

The query coverage varies with the number of
queries, number of NNs (for kNN queries) and the
query length (for range queries). Fig.9(a) shows the

communication cost as a function of the number of NNs
and Fig.9(b) illustrates the effect of the query length.
Overall, the communication cost increases as a function
of k and qlen. However, since ASR and PER utilize the
OrderCheck procedure to reduce the number of location
probes from the objects which do not violate the or-
der of result sets, the communication overhead remains
stable when k increases. This confirms the feasibility of
the OrderCheck procedure as well as the c-kNN update
mechanisms of our approach. The PER approach ba-
sically monitors all the moving objects. Therefore, the
number of k is irrelevant to the communication cost;
however, PER is not scalable when there is high query
coverage.

4.3.5 Mobility

Finally, we evaluated the impact of the mobility rate.
Figs. 10(a) and 10(b) show the communication cost as a
function of the object and query mobility, respectively.
The ASR approach achieves a reduced location update
rate compared to the other two approaches for all mo-
bility rates. PER and SR* have worse performance in
terms of communication cost when the mobility rate is
high. The degradation is caused by the location probes
due to query movements.

Fig.8. Object and query cardinality. (a)

P vs. communication cost. (b) Q vs.

communication cost.

Fig.9. Effect of query coverage with k

and qlen. (a) k vs. communication cost.

(b) qlen vs. communication cost.

Fig.10. Object and query mobility. (a)

Object mobility vs. communication cost.

(b) Query mobility vs. communication

cost.



Yu-Ling Hsueh et al.: Efficient Location Updates for Continuous Queries over Moving Objects 425

5 Arbitrary Movement Model for Moving
Objects

As the ASR can no longer work efficiently in an un-
constraint, arbitrary movement environment, we pro-
pose the PLU approach to cover more real-world sce-
narios. To describe what motivates this approach, let
us first illustrate how the traditional techniques ope-
rate with Fig.11 serving as an example. The gray areas
represent the safe regions of two moving objects p1 and
p2. A traditional safe region is either a rectangle or a
sphere which is determined by the set of surrounding
queries[9]. When an object moves outside of its safe
region, it incurs a location update. From the exam-
ple we can observe that, as p1 or p2 moves out of its
safe region (in the direction of the arrow), it issues an
unnecessary update because of the limited safe region
information. Furthermore, the safe region of a mov-
ing object is determined based on its current location.
When a query moves to a new location or a new query
is inserted, the server triggers a location probe to the
affected moving objects and re-calculates new safe re-
gions for them. When receiving the location probes
(downstream) from the server, the moving objects need
to send their locations (upstream) back to the server.
Once the server completes the safe region computations,
it sends the safe regions (downstream) to those moving
objects. Hence a total of three network messages are
sent back and forth between the server and each mobile
client. As illustrated, the safe region approach incurs
significant network traffic in this scenario.

In contrast, we propose a partition-based technique
by defining a grid-like LIT (also shown in Fig.11) which
provides a moving object with a detailed view of the
surrounding query locations across the terrain. As an
additional advantage, an LIT is determined without
referring to the locations of moving objects. If a query
is inserted, the server can send the new LIT with the
added query information (downstream) to the affected
moving objects directly, and only a fraction of the
mobile clients that receive the updated LIT must issue

Fig.11. Illustration of concepts for the PLU approach.

location updates (upstream) back to the server (namely
if they are part of the new query result). Therefore, the
number of network messages is reduced to at most two.
The overall PLU process is discussed in detail in the
subsequent sections.

5.1 LIT Details

An LIT serv is generated initially at the server and
updated when one of the following two events happen:
1) an existing query changes its location or 2) a new
query is registered with the system. The general at-
tributes described in this subsection for the sever-side
LIT are also applicable to the mobile-side LITs ex-
tracted from it. A mobile-side LIT (LITmob) assigned
to a moving object is a subset table of the server-side
LIT due to memory limitations of moving objects and
to reduce communication costs and it simply inherits
all the attributes and query boundary information from
the server-side LIT. However, each moving object main-
tains (i.e., updates) the mobile-side LIT locally after
receiving it from the server based on a specific event.
An LIT .value for LIT serv(i, j) stores an integer num-
ber that represents a safe distance. The safe distance
for LIT serv(i, j) is defined as the minimal linear dis-
tance in cells from the LIT serv(i, j) cell to the near-
est query boundary. We distinguish two cases when
assigning a value to LIT serv(i, j): LIT .value > 0, if
LIT serv(i, j) does not overlap a query boundary; and
LIT .value = −1, if LIT serv(i, j) is covered by a query
boundary. Fig.12(a) shows an object grid with a set of
registered queries and moving objects on the terrain at
time t0. The corresponding server-side LIT created at
t0 is illustrated in Fig.12(b).

In this example we assume that the server-side LIT
size is the same as the object grid. The LIT values of
the cells that overlap with the boundaries of queries q1

and q2 are set to −1. We define two types of cell zones:
a border zone (LIT value = −1) and a zero zone (LIT

Fig.12. The object grid and a server-side LIT example. (a) P vs.

communication cost. (b) Q vs. communication cost.



426 J. Comput. Sci. & Technol., May 2010, Vol.25, No.3

value = 0). A border zone consists of cells that overlap
with the boundaries of some queries. A zero zone is es-
sentially a prediction zone which might be covered by
nearby moving queries as time proceeds. Since a zero
zone has a safe distance equal to zero, it is more likely
to be covered by a moving query, say q1, soon. Both
border and zero zones are important indicators for a
moving object to decide on a location update. In order
to predict the moving query locations, each moving ob-
ject updates its local LIT and marks the new prediction
cells as zero zones. The detailed update mechanism for
mobile-side LITs will be described later.

5.2 Mobile-Side Processing

Each moving object independently performs the fol-
lowing two major tasks to achieve the desired loca-
tion update traffic reduction: progressive revision of
the mobile-side LIT and determination of when to send
location updates. Each time a moving object trans-
mits its location to the server, an up-to-date mobile-
side LIT will be sent to the moving object. However,
since we consider dynamic queries, the LITs are subject
to change whenever the queries change their locations
during the course of the execution. Instead of sending
a new mobile-side LIT with the latest query locations
to each moving object repeatedly, we propose a peri-
odic LIT update method to independently adjust the
mobile-side LIT to reflect all the possible query move-
ments while ensuring the correctness of the query re-
sults. We first discuss how a moving object updates its
local LIT and then describe the mechanisms for trig-
gering a location update based on the mobile-side LIT.

Mobile-Side LIT Updates. Under the maximum
speed λ constraint, we can estimate the possible query
locations in the mobile-side LIT. Continuing the ex-
ample shown in Fig.12, each moving object p is given
a mobile-side LIT by the server at t0 as shown in
Fig.12(b). Fig.13(a) illustrates the current locations of
mobile units at time t1 and Fig.13(b) shows the mobile-
side LIT updated by p at t1. One can observe that in

the worst case, by considering that a query may move to
its surrounding cells in any direction, the area between
two dashed rectangles shows all the possible coverage of
the query boundary with such movements. Since a bor-
der zone may overlap with more than one query bound-
ary anywhere within the zone, the two solid rectangles
represent the outermost query boundaries of the zone.
For simplicity, we draw two dashed rectangles inwardly
(shrunk) and outwardly (expanded) by extending the
solid rectangle by the length of the maximum moving
distance χ (= λ × ∆t) for every time instance. The
cells that are newly covered by the area between the
dashed rectangles become zero zones. As a final step,
the LIT values of the remaining cells need to be up-
dated by decrementing the LIT values by one when the
surrounding cells become new zero zones.

Location Update Check. The event-driven procedure
for deciding on a location update is performed by the
moving object only when it moves to a new location.
We continue with the example of Fig.13(a) that shows
the new locations of queries and moving objects at time
t1. Referring to the mobile-side LIT in Fig.13(b), p2 in
LITmob(3, 3) steps into a zero zone in LITmob(4, 2), so
p2 might overlap with a query at this moment. p4 was
in a border zone and it changed its location since the
latest update to the server, so it may exit or enter a
query boundary. Therefore, both p2 and p4 have to is-
sue a location update at t1. Fig.13(c) shows a one-level
3 × 3 LITmob for p3 and after some time instances at
t3, p3 moves out of the LIT boundary to LITmob(4, 3),
and therefore it must issue a location update at t3.

5.3 Server-Side Processing

When a new query q is inserted, instead of inform-
ing the entire registered moving objects population
(that lack this new query boundary information) of the
changes, the server performs the QurInsert procedure
to determine a set of moving objects O that may enter
the new query boundary. Then it sends the latest

Fig.13. The object grid and mobile-side LITs. (a) Moving objects at t1. (b) Mobile-side LIT at t1. (c) One-level LITmob.



Yu-Ling Hsueh et al.: Efficient Location Updates for Continuous Queries over Moving Objects 427

mobile-side LIT to these objects only. First, QurInsert
checks each moving object p in the set of LIT cells C,
where the objects have the mobile-side LIT overlapping
with R (the set of LIT cells covered by the new query
boundary). Let cr ∈ R be the nearest LIT cell of p.
The procedure computes the minimum distance x be-
tween p and cr and the distance y between cr and the
nearest border zone to R (denoted by ci). If x > y, the
server does not have to inform p of the query insertion.
This is because through the mobile-side LIT updates on
p, the area covered by R will become zero zones before
p moves into that area. Therefore, the query insertion
will not cause any missed location updates. To estimate
the distance y for object p on the server side, the proce-
dure checks the LIT value of cr (which is p.LIT .value),
because it represents the nearest distance (in cells) to
the border zone. Since we consider the worst case to
ensure the correctness of query results, the distance y
is set to p.LIT .value + k, where k is the maximum dis-
tance in cells between cp and cr.

Consider the following example. A new query q re-
gisters with the system at t1. Assume that each mov-
ing object is assigned a 3 × 3 (level ` = 1) mobile-side
LIT. Fig.14 shows an object p in C with its LITmob.
The new query q covers the gray area R. Since a one-
level mobile-side LIT is assigned to each moving ob-
ject, the area C is one-level larger than R. Assume
that p.LIT .value = 1, so the estimated LIT value of
the closest cell cr at (2, 3) is 2, which is the value of y.
Since x < y, p may reach cr before cr becomes a zero
zone through p’s mobile-side LIT updates. Therefore,
the server needs to inform p of the new insertion.

Fig.14. A query insertion example.

5.4 Spatial Data Compression for Mobile-Side
LITs

While a mobile-side LIT provides more detailed
query boundary information than a safe region, the
data transmission of a potentially large LIT needs to
be broken into more packets which may adversely affect

performance. We use the Internet standard for the
largest data packet payload size (MTU) equal to 1500
bytes. We apply three consecutive lossless data com-
pression methods: delta encoding, Run-Length En-
coding (RLE) and Huffman encoding. First, we de-
correlate the LIT values by subtracting pairs of adja-
cent LIT numbers. Second, RLE is utilized to take
advantage of the large amount of spatial redundancy in
an LIT and we use a Hilbert curve as the data scan-
ning path along which we count repeated numbers. Fi-
nally, we perform Huffman encoding which is based on
the frequency of occurrence of a data item and uses a
lower number of bits to encode the data that occur more
frequently. Overall, our experimental result shows the
combination of these methods can reduce the size of an
LIT by up to 79% from its original size.

5.5 Experimental Evaluation

We implement the extended safe region approach[6,8]

with safe rectangles (SR*-Rec) and safe spheres (SR*-
SP) in addition to a periodic update approach (PER)
as our compared work.

5.5.1 Simulation Steps

We use similar simulation settings used in the ASR
approach. We select an optimal size n for the sever-side
LIT from [64, 512] per side and choose the level ` from
[1, 10] for a mobile-side LIT. The main measurement
in the following simulations is the number of network
messages sent between the server and moving objects.
We count the number of messages (downstream) from
probing an object’s location and sending an LIT to a
mobile unit and the number of messages (upstream)
from issuing a location update to the server. Table 3
summarizes the default parameter settings in the fol-
lowing simulations.

Table 3. Simulation Parameters for the PLU Approach

Parameter Default Range

P 100K -

Q 1000 300, 500, 700, 1000

fmove 50% 10%, 30%, 50%, 70%, 100%

λ 1.25 0.48 (35mph)∼1.25 (90mph)

qlen 5 1, 5, 10

n 256 64, 128, 256, 512

` 5 1, 5, 10

5.5.2 LIT Size

First, we measure the overall number of network
messages including upstream and downstream direc-
tions of the PLU algorithm by varying the server-side



428 J. Comput. Sci. & Technol., May 2010, Vol.25, No.3

LIT size. The choice of the server-side LIT size is
a trade-off between the number of network messages
and the server performance. Figs. 15(a) and 15(b)
show the number of overall network messages and CPU
overheads vs. the LIT sizes ranging from 64 × 64 to
512 × 512, respectively. When the LIT size is set to
more than 512 per side, the performance of PLU is de-
graded in terms of the number of network messages and
CPU time because it incurs more LIT value calculations
for all the LIT cells. The LIT size 256×256 constitutes
a good tradeoff between the number of network mes-
sages and CPU time. Therefore, 256× 256 is chosen as
the server-side LIT size for the rest of our experiments.

Next we examine the size for a mobile-side LIT.
Fig.15(c) measures the effect of varying the size of the
mobile-side LIT from level 1 (3×3) to level 10 (21×21)
in terms of network messages. The size of a mobile-
side LIT significantly affects the number of network
messages. When a mobile-side LIT is small, a mov-
ing object issues more network messages because it has
more chance to move out of the LIT boundary. When
a mobile-side LIT is large, it also incurs more network
messages from the query insertion process since the pro-
cedure needs to check more objects from a larger area
where the moving objects have the mobile-side LITs
overlapping with the new query boundary. We choose
` = 5 as the mobile-side LIT size for the remaining
experiments, because it achieves better performance in

terms of the network messages.

5.5.3 Query Coverage

The query coverage on the terrain is a crucial fac-
tor in the performance of continuous query algorithms.
The query coverage varies with the number and side
length of the queries. Fig.16(a) shows the network
messages as a function of the number of queries and
Fig.16(b) illustrates the corresponding communication
cost. Overall, the number of network messages and
communication cost increase as a function of the num-
ber of queries, because the chance of moving into the
query boundaries for a moving object is high. PLU
achieves a significant reduction in the number of up-
dates compared to the other techniques. For the PER
approach, since the server does not perform any com-
putations regarding the location update reduction, we
only count the number of network messages sent from
the mobile clients. PER approach is independent of
the query coverage, because the number of updates de-
pends on the mobility only in PER approach. There-
fore, the network messages remain the same in this sim-
ulation. In Fig.16(c), we evaluate the side length of
queries with the values [1, 5, 10]. Obviously, when the
length of queries increases, SR*-Rec and SR*-SP incur
more updates, because SR*-Rec and SR*-SP perform
server-side probes to those objects which have the safe

Fig.15. Performance vs. LIT size. (a) and (b) Server-side LIT size (n). (c) Mobile-side LIT size (`).

Fig.16. Effect of query coverage with Q and qlen. (a) Q vs. network messages. (b) Q vs. communication cost. (c) qlen with Q = 1000.



Yu-Ling Hsueh et al.: Efficient Location Updates for Continuous Queries over Moving Objects 429

Fig.17. Performance vs. object mobility. (a) fmove vs. network messages. (b) fmove vs. communication cost. (c) fmove vs. CPU time.

regions overlapping with the queries. When the length
of the queries increases, the server needs to probe more
moving objects when queries change to new locations or
when new queries are inserted. The simulation results
confirm the importance of adopting the PLU approach
which significantly reduces the network messages and
hence decreases the communication cost.

5.5.4 Mobility

Finally, we evaluate the impact of the mobility rate.
Fig.17(a) shows the number of network messages as a
function of the object mobility and the communication
cost is also shown in Fig.17(b). The PLU approach
achieves a higher location update reduction than the
other three approaches for all mobility rates. Fig.17(c)
illustrates the CPU time vs. the object mobility. Al-
though PLU applies more server-side procedures (e.g.,
QurIns) to reduce the network messages. PLU still has
a competitive CPU performance with SR*-SP. How-
ever, SR*-Rec has the worst performance in terms of
network messages/communication cost and CPU over-
heads. The degradation is caused by the expensive cal-
culations of safe rectangles. SR*-Rec in general com-
putes larger safe regions for moving objects than SR*-
SP, so SR*-Rec incurs many server-side probes to the
moving objects when queries change their locations.

6 Conclusions

We address two challenging issues in efficient query
evaluation and low communication cost related to fre-
quent location updates. We propose the ASR and PLU
algorithms to reduce the number of location updates
for different movement models. We have designed an
ASR-based framework for trajectory movement envi-
ronments. The novel concept of an adaptive safe re-
gion is introduced to provide a mobile object with a
reasonable-sized safe region that adapts to the sur-
rounding queries. Hence, the communication overhead
resulting from the query movements is greatly reduced.
To further decrease network traffic caused by c-kNN

query region expansions to cover sufficient NNs for the
result sets, our approach caches extra NNs. The PLU
approach is designed for arbitrary movement environ-
ment where mobile units may freely change their loca-
tions to any positions. The novel concept of an LIT
table is introduced to provide a mobile object with in-
formation about queries, hence enabling it to estimate
query movements and transmit a location update to the
server only when it affects the query results. To further
reduce network traffic the server uses smart on-demand
location probes. Finally, the proposed mechanism effi-
ciently determines the set of objects that are affected by
a query insertion, improving scalability. Experimental
results demonstrate that both approaches scale better
than existing techniques in terms of the communication
cost and the outcome confirms their feasibility.

References

[1] Jensen C S, Lin D, Ooi B C. Query and update efficient
B+-tree based indexing of moving objects. In Proc. VLDB,
Toronto, Canada, Aug. 31-Sept. 3, 2004, pp.768-779.

[2] Mokbel M F, Xiong X, Aref W G. SINA: Scalable incremental
processing of continuous queries in spatio-temporal databases.
In Proc. SIGMOD Int. Conf. Management of Data, Paris,
France, June 13-18, 2004, pp.623-634.

[3] Mouratidis K, Hadjieleftheriou M, Papadias D. Conceptual
partitioning: An efficient method for continuous nearest
neighbor monitoring. In Proc. SIGMOD Int. Conf. Manage-
ment of Data, Baltimore, USA, Jun. 14-16, 2005, pp.634-645.

[4] Tao Y, Papadias D, Sun J. The TPR*-tree: An optimized
spatio-temporal access method for predictive queries. In Proc.
VLDB, Berlin, Germany, Sept. 9-12, 2003, pp.790-801.

[5] Xiong X, Mokbel M F, Aref W G. SEA-CNN: Scalable pro-
cessing of continuous k-nearest neighbor queries in spatio-
temporal databases. In Proc. ICDE, Tokyo, Japan, Apr. 5-8,
2005, pp.643-654.

[6] Hu H, Xu J, Lee D L. A generic framework for monitoring con-
tinuous spatial queries over moving objects. In Proc. SIG-
MOD Int. Conf. Management of Data, Baltimore, USA,
Jun. 14-16, 2005, pp.479-490.

[7] Mouratidis K, Papadias D, Bakiras S, Tao Y. A threshold-
based algorithm for continuous monitoring of k nearest neigh-
bors. IEEE Transactions on Knowledge and Data Engineer-
ing, 2005, 17(11): 1451-1464.

[8] Prabhakar S, Xia Y, Kalashnikov D V, Aref W G, Hambr-
usch S E. Query indexing and velocity constrained indexing:



430 J. Comput. Sci. & Technol., May 2010, Vol.25, No.3

Scalable techniques for continuous queries on moving objects.
IEEE Transactions on Computers, 2002, 51(10): 1124-1140.

[9] Prabhakar S, Xia Y, Kalashnikov D V, Aref W G, Hambr-
usch S E. Query indexing and velocity constrained indexing:
Scalable techniques for continuous queries on moving objects.
IEEE Transactions on Computers, 2002, 51(10): 1124-1140.

[10] Cai Y, Hua K, Cao G. Processing range-monitoring queries
on heterogeneous mobile objects. In Proc. MDM, Berkeley,
USA, Jan. 19-22, 2004, p.27.

[11] Yuu X, Pu K Q,Koudas N. Monitoring k-nearest neighbor
queries over moving objects. In Proc. ICDE, Tokyo, Japan,
Apr. 5-8, 2005, pp.631-642.

[12] Saltenis S, Jensen C S, Leutenegger S T, Lopez M A. Indexing
the positions of continuously moving objects. In Proc. ACM
SIGMOD Int. Conf. Management of Data, Dallas, USA,
May 15-18, 2000, pp.331-342.

[13] Tao Y, Faloutsos C, Papadias D, Liu B. Prediction and in-
dexing of moving objects with unknown motion patterns. In
Proc. SIGMOD Int. Conf. Management of Data, Paris,
France, June 13-18, 2004, pp.611-622.

[14] Mokbel M F and Aref W G. GPAC: Generic and progres-
sive processing of mobile queries over mobile data. In Proc.
MDM, Ayia Napa, Cyprus, May 9-13, 2005, pp.155-163.

[15] Cheng R, Lam K Y, Prabhakar S, Liang B. An efficient lo-
cation update mechanism for continuous queries over moving
objects. Information Systems, 2007, 32(4): 593-620.

[16] Cheng R, Lam K Y, Prabhakar S, Liang B. An efficient lo-
cation update mechanism for continuous queries over moving
objects. Information Systems, 2007, 32(4): 593-620.

Yu-Ling Hsueh received her
Ph.D. and M.S. degrees in computer
science from University of Southern
California (USC) in 2009 and 2003,
respectively. Her research inter-
ests are temporal/spatial databases,
moving object processing, scalable
continuous query processing and spa-
tial data indexing. She is currently
working for Teradata Corporation.

Roger Zimmermann is an asso-
ciate professor with the Department
of Computer Science at the National
University of Singapore (NUS) where
he is also an investigator with the In-
teractive and Digital Media Institute
(IDMI). Prior to joining NUS he held
the position of research area director
with the Integrated Media Systems
Center (IMSC) at the University of

Southern California (USC). He received his Ph.D. degree
from USC in 1998. His research interests are in the areas
of distributed and peer-to-peer systems, collaborative en-
vironments, streaming media architectures, georeferenced
video search, and mobile location-based services. He has
co-authored a book, four patents and more than a hundred
conference publications, journal articles and book chapters
in the areas of multimedia and information management. He
is an associate editor of the ACM Computers in Entertain-
ment magazine and the ACM Transactions on Multimedia
Computing, Communications and Applications journal. He
is a senior member of the IEEE and a member of ACM.

Wei-Shinn Ku received his
Ph.D. degree in computer science
from the University of Southern Cal-
ifornia (USC) in 2007. He also ob-
tained both the M.S. degree in com-
puter science and the M.S. degree in
electrical engineering from USC in
2003 and 2006 respectively. He is an
assistant professor with the Depart-
ment of Computer Science and Soft-

ware Engineering at Auburn University. His research inter-
ests include spatial and temporal data management, mobile
data management, geographic information systems, and se-
curity and privacy. He has published more than 40 research
papers in refereed international journals and conference pro-
ceedings. He is a member of the ACM and the IEEE.


