Skip to main content
Log in

Novel Geometrical Voxelization Approach with Application to Streamlines

  • Regular Paper
  • Published:
Journal of Computer Science and Technology Aims and scope Submit manuscript

Abstract

This paper presents a novel geometrical voxelization algorithm for polygonal models. First, distance computation is performed slice by slice on graphics processing units (GPUs) between geometrical primitives and voxels for line/surface voxelization. A novel solid filling process is then proposed to assist surface voxelization and achieve solid voxelization. Furthermore, using the proposed transfer functions, both binary and anti-aliasing voxelizations are achievable. Finally, the proposed approach can be applied to voxelize streamlines for 3D vector fields using line voxelization. The proposed approach obtains desired experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Kaufman A. An algorithm for 3D scan-conversion of polygons. In Proc. EUROGRAPHICS 1987, Amsterdam, The Neitherlands, Aug. 24-28, 1987, pp.197–208.

  2. Jones M W, Baerentzen J A, Sramek M. 3D distance fields: A survey of techniques and applications. IEEE Transactions on Visualization and Computer Graphics, 2006, 12(4): 581–599.

    Article  Google Scholar 

  3. Huang J, Yagel R, Filippov V, Kurzion Y. An accurate method for voxelizing polygon meshes. In Proc. IEEE Symposium on Volume Visualization, Durham, USA, Oct. 19–20, 1998, pp.119–126.

  4. Widjaya H, Mueller T, Entezari A. Voxelization in common sampling lattices. In Proc. Pacific Graphics 2003, Canmore, Canada, Oct. 8–10, 2003, pp.497–501.

  5. Cohen-Or D, Kaufman A. 3D line voxelization and connectivity control. IEEE Computer Graphics and Applications, 1997, 17(6): 80–87.

    Article  Google Scholar 

  6. Haumont D, Warzee N. Complete polygonal scene voxelization. Journal of Graphics Tools, 2002, 7(3): 27–41.

    MATH  Google Scholar 

  7. Nooruddin F S, Turk G. Simplification and repair of polygonal models using volumetric techniques. IEEE Transactions on Visualization and Computer Graphics, 2003, 9(2): 191–205.

    Article  Google Scholar 

  8. Ju T. Robust repair of polygonal models. ACM Transactions on Graphics, 2004, 23(3): 888–895.

    Article  Google Scholar 

  9. S W, Kaufman A E. Volume sampled voxelization of geometric primitives. In Proc. IEEE Visualization, 1993, pp.78–84.

  10. Schroeder W J, Lorensen W E, Linthicum S. Implicit modeling of swept surfaces and volumes. In Proc. IEEE Visualization, Washington DC, USA, Oct. 17-21, 1994, pp.40–45.

  11. Sramek M, Kaufman A. Alias-free voxelization of geometric objects. IEEE Transactions on Visualization and Computer Graphics, 1999, 5(3): 251–267.

    Article  Google Scholar 

  12. Dachille F, Kaufman A E. Incremental triangle voxelization. In Proc. Graphics Interface, Montreal, Canada, May 15-17, 2000, pp.205–212.

  13. Frisken S F, Perry R N, Rockwood A P, Jones T R. Adaptively sampled distance fields: A general representation of shape for computer graphics. In Proc. ACM SIGGRAPH 2000, New Orleans, USA, Jul. 23-28, 2000, pp.249–254.

  14. Chen H, Fang S. Hardware accelerated voxelization. Computers & Graphics, 2000, 24(3): 433–442.

    Article  Google Scholar 

  15. Karabassi G P E A, Theoharis T. A fast depth-buffer based voxelization algorithm. Journal of Graphics Tools, 1999, 4(4): 5–10.

    Google Scholar 

  16. Sigg C, Peikert R, Gross M. Signed distance transform using graphics hardware. In Proc. IEEE Visualization, Seattle, USA, Oct. 19-24, 2003, pp.19–24.

  17. Varadhan G, Krishnan S, Kim Y J, Diggavi S, Manocha D. Efficient max-norm distance computation and reliable voxelization. In Proc. the 2003 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, Aachen, Germany, Jun. 23-25, 2003, pp.116–126.

  18. Hoff-III K E, Keyser J, Lin M, Manocha D, Culver T. Fast computation of generalized voronoi diagrams using graphics hardware. In Proc. ACM SIGGRAPH 1999, Los Angles, USA, Aug. 8-13, 1999, pp.277–286.

  19. Sud A, Otaduy M A, Manocha D. DiFi: Fast 3D distance field computation using graphics hardware. Computer Graphics Forum, 2004, 23(3): 557–566.

    Article  Google Scholar 

  20. Sud A, Govindaraju N, Gayle R, Manocha D. Interactive 3D distance field computation using linear factorization. In Proc. ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, Redwood City, USA, Mar. 14-17, 2006, pp.117–124.

  21. Dong Z, Chen W, Bao H, Zhang H, Peng Q. Real-time voxelization for complex polygonal models. In Proc. Pacific Graphics 2004, Seoul, Korea, Oct. 6-8, 2004, pp.43–50.

  22. Eisemann E, Décoret X. Fast scene voxelization and applications. In Proc. ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, Redwood City, USA, Mar. 14-17, 2006, pp.71–78.

  23. Ogáyar C, Rueda A, Segura R, Feito F. Fast and simple hardware accelerated voxelizations using simplicial coverings. The Visual Computer, 2007, 23(8): 535–543.

    Article  Google Scholar 

  24. Zhang L, Chen W, Ebert D S, Peng Q. Conservative voxelization. The Visual Computer, 2007, 23(9): 783–792.

    Article  Google Scholar 

  25. Eisemann E, Décoret X. Single-pass GPU solid voxelization for real-time applications. In Proc. Graphics Interface 2008, Windsor, Canada, May 28-30, 2008, pp.73–80.

  26. Hsieh H H, Lai Y Y, Tai W K, Chang S Y. A flexible 3D slicer for voxelization using graphics hardware. In Proc. GRAPHITE2005, Dunedin, New Zealand, Nov. 29-Dec.2, 2005, pp.285–288.

  27. Davis J, Marschner S R, Garr M, Levoy M. Filling holes in complex surfaces using volumetric diffusion. In Proc. the First International Symposium on 3D Data Processing, Visualization, and Transmission, Padova, Italy, Jun. 19-21, 2002, pp.428–438.

  28. Li G S, Bordoloi U, Shen H W. Chameleon: An interactive texture-based rendering framework for visualizing three-dimensional vector fields. In Proc. IEEE Visualization, Seattle, USA, Oct. 19-24, 2003, pp.241–248.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chin-Chen Chang.

Additional information

This work is supported by the “National Science Council” under Grant No. 095-2917-I-259-001.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsieh, HH., Chang, CC., Tai, WK. et al. Novel Geometrical Voxelization Approach with Application to Streamlines. J. Comput. Sci. Technol. 25, 895–904 (2010). https://doi.org/10.1007/s11390-010-9374-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11390-010-9374-5

Keywords

Navigation