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Abstract Probabilistic techniques are widely used in the analysis of algorithms to estimate the compu-

tational complexity of algorithms or a computational problem. Traditionally, such analysis are performed

using paper-and-pencil proofs and the results are sometimes validated using simulation techniques. These

techniques are informal and thus may result in an inaccurate analysis. In this paper, we propose a for-

mal technique for analyzing the expected time complexity of algorithms using higher-order-logic theorem

proving. The approach calls for mathematically modeling the algorithm along with its inputs, using

indicator random variables, in higher-order logic. This model is then used to formally reason about

the expected time complexity of the underlying algorithm in a theorem prover. The paper includes the

higher-order-logic formalization of indicator random variables, which are fundamental to the proposed

infrastructure. In order to illustrate the practical effectiveness and utilization of the proposed infrastruc-

ture, the paper also includes the analysis of algorithms for three well-known problems, i.e., the hat-check

problem, the birthday paradox and the hiring problem.

Keywords Formal Methods, Higher-order Logic, Probability Theory, Theorem Proving, Birthday
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1 Introduction

An algorithm, which may be defined as a se-

quence of computational steps that transforms

the given input parameters into the desired out-

put, is the most fundamental component of

computer programming. The computational

complexity of the underlying algorithms greatly

effects the overall efficiency of virtually all ap-

plications of computer science, ranging from

combinatorial optimization, machine learning,

data streaming, complexity theory, coding the-

ory, to communication networks and secured

protocols. Thus, a significant amount of time

and effort is spent on analyzing several can-

didate algorithms for one problem in order to

identify the most efficient solution [39]. For ex-

ample, various sorting algorithms can be ana-

lyzed to find the fastest one for sorting n num-
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bers. The biggest challenge in such analysis is

the fact that the inputs to the algorithms usu-

ally arrive in a random or unpredictable fashion

and thus cannot be modeled in a straightfor-

ward manner for analysis purposes. One pes-

simistic solution to this problem is to analyze

the algorithm under the worst possible scenar-

ios. However, it is an old observation in quite

a few application areas that the worst-case in-

put patterns are not typical and might never

occur in practice. So worst-case analysis can

improperly suggest that the performance of the

algorithm is poor. Probabilistic techniques are

thus utilized in this endeavor. The main idea

behind the probabilistic approach is to model

the input behavior of the given algorithm by

an appropriate random variable and utilize this

information to judge the average or expected

value of the algorithm’s computational runtime

[58].

The probabilistic analysis of algorithms and

the usage of expectations to evaluate their

complexities are widely used concepts since

their introduction about a few decades ago

[40, 37]. The three mainstream approaches for

conducting such analysis are paper-and-pencil

proof methods (e.g. [46]), computer simula-

tions (e.g. [57]), and computer algebra sys-

tems (e.g. [34]). Due to the complex na-

ture of the present age algorithms, the tradi-

tional paper-and-pencil based proof techniques

always have some risk of an erroneous analysis

due to the human-error factor. Most simulation

or testing based algorithm analysis softwares

provide a programming environment for defin-

ing functions that approximate random vari-

ables for probability distributions. The ran-

domness and the input patterns in algorithms

are modeled by these functions and the system

is analyzed using computer simulation tech-

niques [15], such as the Monte Carlo Method

[42], where the main idea is to approximately

answer a query on a probability distribution by

analyzing a large number of samples. Statis-

tical quantities, such as expectation and vari-

ance, may then be calculated, based on the

data collected during the sampling process, us-

ing their mathematical relations in a computer.

Due to the inherent nature of simulation cou-

pled with the usage of computer arithmetic, the

analysis results attained by the simulation ap-

proach can never be termed as 100% accurate.

Similarly, computer algebra systems, such as

Maple, Mathematica etc., have also been used

for the complexity analysis of computational al-

gorithms [18]. Even though, computer algebra

systems yield high precision numeric results by

using exact fractions, arbitrary precision inte-

gers, and variable precision floating point num-

bers, they also fail to guarantee 100% preci-

sion of results. The main reasons being the

usage of computer arithmetic systems, such as

floating or fixed point representations, in com-

putations involving real numbers and the fact

that computer algebra system are constructed

using extremely complicated algorithms, which

are quite likely to contain bugs. For example,

the work reported in [1] clearly highlights the

inaccuracy limitations of a computer algebra

system, using Maple as an example.

Formal methods are capable of conducting

precise system analysis and thus overcome the

above mentioned limitations of simulation [24].

The main principle behind formal analysis of

a system is to construct a computer based

mathematical model of the given system and

formally verify, within a computer, that this

model meets rigorous specifications of intended

behavior. Two of the most commonly used for-

mal verification methods are model checking
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[9] and higher-order-logic theorem proving [27].

Model checking is an automatic verification ap-

proach for systems that can be expressed as a

finite-state machine. Higher-order-logic theo-

rem proving, on the other hand, is an inter-

active verification approach that allows us to

mathematically reason about system proper-

ties by representing the behavior of a system

in higher-order logic.

The precision and accuracy of algorithm

complexity analysis has become imperative

these days because of their extensive usage

in safety and financial critical areas, such as

medicine, transportation and stock exchange

markets. Therefore, more reliable analysis

techniques, like formal methods, are required.

In fact, they have already been used for this

purpose. For example, building upon the mea-

sure theoretic formalization of probability the-

ory, Hurd [35] presented an approach to formal-

ize probabilistic algorithms and formally reason

about their probability distribution properties

using a higher-order-logic theorem prover. A

very comprehensive account of existing meth-

ods for formal reasoning about probabilistic al-

gorithms is presented in [43]. The probabilistic

guarded-command language (pGCL), which is

used to describe probabilistic programs in [43],

has also been formalized in higher-order-logic

in [36]. This formalization facilitates formal

analysis of distributed random algorithms in

higher-order logic. All these above mentioned

existing works have been mainly targeted to-

wards the formal specification of algorithms

with probabilistic components and the ability

to formally reason about their probability dis-

tribution properties. Though, to the best of

our knowledge, there is no existing work that

explicitly deals with the formal analysis of ex-

pected time complexity of an algorithm, which

is the main focus of this paper.

The proposed approach for the formal ex-

pected time complexity analysis is based on

higher-order-logic theorem proving. Higher-

order logic is a system of deduction with a

precise semantics and can be used for the pre-

cise specification of almost all classical math-

ematics theories and software systems. In-

teractive theorem proving is the field of com-

puter science and mathematical logic concerned

with precise computer based formal proof tools

that require some sort of human assistance.

The foremost criteria for the development of

a higher-order-logic theorem proving based ex-

pected time complexity analysis framework are

(i) to be able to model the algorithms that need

to be analyzed in higher-order logic, and (ii) to

be able to formally express and verify expec-

tation properties regarding the computational

runtimes of the given algorithms in a theorem

prover. We propose to model the algorithms in

terms if indicator random variables [11], which

in turn can be formalized based on the ap-

proach given in [35]. Basically, an indicator

random variable is a random variable with only

two possible outcomes, i.e., 0 or 1. The name

indicator random variable is used because the

value 1 is often used to indicate the presence

of an event. Indicator variables are found to

be quite useful for representing situations in

which we perform repeated random trials, and

thus are very frequently used to model algo-

rithms in their probabilistic analysis. In order

to facilitate this step, the paper provides the

higher-order logic model for an indicator ran-

dom variable and the verification of some of

its key properties. For the second step, which

is expressing and reasoning about the expec-

tation of computational runtime of algorithms,

we propose to use the higher-order-logic model
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of the algorithm, developed in the first step,

along with the higher-order-logic formalization

of expectation, given in [32].

In order to illustrate the utilization and ef-

fectiveness of the proposed higher-order-logic

theorem proving based framework for handling

real-world algorithm analysis problems, we an-

alyze the expected time complexity of three

commercially used algorithms, i.e., the hat-

check problem [23], the birthday paradox [44]

and the hiring problem [11]. The hat-check

problem is a classic combinatorial question,

sometimes also referred to as the Montmort’s

matching problem (since one of its variants was

first proposed by mathematician de Montmort

in his 1708 treatise on the analysis of games of

chance [14]). The problem is about finding the

right hat for a group of men that have checked

their hats in a restaurant where the tickets got

scrambled somehow. Because of its wide range

of applications the problem has been studied by

many mathematicians (e.g., [16, 13, 56]). The

birthday paradox, or birthday problem, refers

to the probability that in a set of randomly

chosen people some pair of them will have the

same birthday. It is a widely used characteris-

tic in congruity [2], combinatorics [17, 21] and

computer security literature [55]. Whereas the

hiring problem, sometimes also referred to as

the classical secretary problem, highlights the

problem of choosing the best of a set of ran-

domly presented candidates. The hiring prob-

lem captures fundamental issues and inevitable

tradeoffs related to making irrevocable deci-

sions under an uncertain future. Its applica-

tion spans multiple scientific disciplines, such

as mathematics, economics and computer sci-

ence, and thus since its introduction in the

1960’s [20], the hiring problem has been the

subject of many papers. (e.g., [19, 38, 3, 7]).

In this paper, we present the higher-order-logic

formalization of algorithms for all of the above

mentioned three problems using the proposed

indicator random variables based approach and

the details about their expected time complex-

ity analysis of using a theorem prover. The

analysis results have been found to be 100%

precise, which to the best of our knowledge is

an achievement that has not been reported for

these or any other similar algorithms in the

open literature so far. Also, it is important

to note here that the proposed approach is not

limited to the algorithms of the above three

problems and instead is generic enough to for-

mally analyze many other algorithms. We have

chosen the above three mainly because we be-

lieve that they cover many interesting and dis-

tinct probabilistic analysis cases as will be dis-

cussed later in the paper.

The proposed work is done using the HOL

theorem prover [22], which is based on higher-

order logic. The main motivation behind this

choice is the fact that most of the work that

we build upon is developed in HOL. It is im-

portant to note here that the ideas presented

in this paper are not specific to the HOL the-

orem prover and can be adapted to any other

higher-order-logic theorem prover as well, such

as Isabelle [50], Coq [10] or PVS [52].

The rest of the paper is organized as fol-

lows: Section 2 provides a review of related

work. Then, in Section 3, we present a brief in-

troduction to the HOL theorem prover. Next,

Section 4 highlights upon the two fundamen-

tal components that we build upon for ana-

lyzing the expected time complexity of algo-

rithms in a higher-order-logic theorem prover,

i.e., modeling random variables in higher-order

logic and formally verifying their expectation

properties. This is followed by the description
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of our higher-order-logic definition of the in-

dicator random variable along with the formal

verification of some of its key properties in Sec-

tion 5. We utilize this infrastructure in Section

6 to analyze the hat-check problem, birthday

paradox and hiring problem. Finally, Section 7

concludes the paper.

2 Related Work

The early foundations of probabilistic analy-

sis in a higher-order-logic theorem prover were

laid down by Nȩdzusiak [47] and Bialas [6]

when they proposed a formalization of some

measure and probability theories in higher-

order logic. Hurd [35] implemented their work

and developed a framework for the verifica-

tion of probabilistic algorithms in the HOL

theorem prover. The algorithms, along with

their random components, can be formalized as

higher-order-logic functions and formally ver-

ified, based on the corresponding probability

distribution properties, using the methodology

proposed in [35]. Random variables are fun-

damentally probabilistic algorithms and thus

they can also be formalized based on Hurd’s

approach. In fact, building upon Hurd’s for-

malization, most of the commonly used discrete

[35] and continuous [29] random variables have

been formalized in higher-order-logic and their

corresponding probabilistic [35] and statistical

[32] properties have been verified using interac-

tive theorem proving techniques. These formal-

ized random variables can in turn be used to

express random or unpredictable phenomenon

in system models and the probabilistic analy-

sis of these system models can be conducted

in a theorem prover using the corresponding

probabilistic and statistical properties of these

random variables. Some of the higher-order-

logic theorem proving based probabilistic anal-

ysis examples include the performance analy-

sis of real-time systems [33], communication

protocols [30], wireless systems [31] and safety

analysis of fabrication faults [28].

The above mentioned results have also been

used for the probabilistic analysis of algo-

rithms. For example, Hurd utilized his infras-

tructure to analyze the symmetric simple ran-

dom walk and the Miller-Rabin primality test

based on the corresponding probability distri-

bution properties [35]. Similarly, we utilized

our theories related to the formal verification of

statistical properties for the performance anal-

ysis of the Coupon Collector’s problem [32].

What makes the analysis presented in the cur-

rent paper different from these past endeavors

is the fact that it presents an indicator ran-

dom variable based approach for the analysis

of expected time complexity of algorithms in a

higher-order-logic theorem prover, which to the

best of our knowledge is a novelty that has not

been reported in the open literature so far.

Besides theorem proving, probabilistic

model checking is the second most widely used

formal probabilistic analysis method [4, 53].

Like traditional model checking [5], probabilis-

tic model checking involves the construction of

a precise state-based mathematical model of

the given probabilistic system, which is then

subjected to exhaustive analysis to verify if it

satisfies a set of probabilistic properties for-

mally expressed in some appropriate logic.

Numerous probabilistic model checking algo-

rithms and methodologies have been proposed

in the open literature, e.g., [12, 49], and based

on these algorithms, a number of tools have

been developed, e.g., PRISM [41] and VESTA

[54]. Besides the accuracy of the results, an-
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other promising feature of probabilistic model

checking is the ability to perform the analysis

automatically. On the other hand, probabilistic

model checking is limited to systems that can

only be expressed as probabilistic finite state

machines or Markov chains. Another major

limitation of the probabilistic model checking

approach is state space explosion [5]. Sim-

ilarly, to the best of our knowledge, it has

not been possible to precisely reason about

statistical relations, such as expectation and

variance, using probabilistic model checking so

far. Probabilistic model checking have been

used for the analysis of randomized distributed

algorithms [48] but has been found to be in-

capable of conducting fully automated proofs

of correctness mainly because of its limited-

ness to only complete and finite-state mod-

els. Higher-order-logic theorem proving, on

the other hand, overcomes the limitations of

probabilistic model checking and thus allows

conducting formal probabilistic analysis of al-

gorithms but at the cost of significant user

interaction.

3 HOL THEOREM PROVER

The HOL theorem prover is an interactive

theorem prover which is capable of conduct-

ing proofs in higher-order logic. It utilizes the

simple type theory of Church [8] along with

Hindley-Milner polymorphism [45] to imple-

ment higher-order logic. HOL has been suc-

cessfully used as a verification framework for

both software and hardware as well as a plat-

form for the formalization of pure mathematics.

In order to ensure secure theorem proving,

the logic in the HOL system is represented

in the strongly-typed functional programming

language ML [51]. An ML abstract data type

is used to represent higher-order-logic theorems

and the only way to interact with the theo-

rem prover is by executing ML procedures that

operate on values of these data types. The

HOL core consists of only 5 basic axioms and

8 primitive inference rules, which are imple-

mented as ML functions. Soundness is assured

as every new theorem must be verified by ap-

plying these basic axioms and primitive infer-

ence rules or any other previously verified the-

orems/inference rules.

HOL supports two types of interactive proof

methods: forward and backward. In forward

proof, the user starts with previously proved

theorems and applies inference rules to reach

the desired theorem. In most cases, the forward

proof method is not the easiest solution as it re-

quires the exact details of a proof in advance.

A backward or a goal directed proof method is

the reverse of the forward proof method. It is

based on the concept of a tactic; which is an ML

function that breaks goals into simple subgoals.

In the backward proof method, the user starts

with the desired theorem or the main goal and

specifies tactics to reduce it to simpler inter-

mediate subgoals. Some of these intermediate

subgoals can be discharged by matching axioms

or assumptions or by applying built-in decision

procedures. The above steps are repeated for

the remaining intermediate goals until we are

left with no further subgoals and this concludes

the proof for the desired theorem.

The HOL theorem prover includes many

proof assistants and automatic proof proce-

dures [25] to assist the user in directing the

proof. The user interacts with a proof editor

and provides it with the necessary tactics to

prove goals while some of the proof steps are

solved automatically by the automatic proof



O. Hasan et al.: Formally Analyzing Expected Time Complexity 7

procedures.

In order to facilitate reutilization of verified

theorems, HOL allows its users to store a col-

lection of valid HOL types, constants, axioms

and theorems as a HOL theory file in comput-

ers. Once stored, HOL theories can be loaded

in the HOL system and the corresponding defi-

nitions and theorems can be utilized right away.

Thus, HOL theories allow us to build upon ex-

isting results in an efficient way without go-

ing through the tedious process of regenerating

these results using the basic axioms and primi-

tive inference rules. Various mathematical con-

cepts have been formalized and saved as HOL

theories by the HOL users. Out of this useful li-

brary of HOL theories, we utilized the theories

of Booleans, lists, sets, positive integers, real

numbers, measure and probability in this pa-

per. In fact, one of the primary motivations of

selecting the HOL theorem prover for our work

was to benefit from these built-in mathematical

theories.

Table 1 provides the mathematical interpre-

tations of some frequently used HOL symbols

and functions, which are inherited from exist-

ing HOL theories and will be used in the rest

of the paper.

Table 1. HOL Symbols and Functions

HOL Symbol Meaning

∧ Logical and

∨ Logical or

¬ Logical negation

[ ] Empty List

:: Adds a new element to a list

++ Appends two lists together

el n L ntℎ element of list L

mem a L a is a member of list L

length L Length of list L

(a, b) A pair of two elements

fst First component of a pair

snd Second component of a pair

¸x.t Function that maps x to t(x)

{x∣P(x)} Set of all x such that P (x)

sum(0, k)(¸n.f(n))
∑k−1

n=0 f(n)

suminf(¸n.f(n)) lim
k→∞

∑k
n=0 f(n)

summable(¸n.f(n)) ∃x. lim
k→∞

∑k
n=0 f(n) = x

4 Probabilistic Analysis in HOL

The foremost criteria for conducting the ex-

pected time complexity analysis of an algo-

rithm in a higher-order-logic theorem prover

is to be able to formalize random variables in

higher-order logic and verify their expectation

properties. This section provides some infor-

mation about these capabilities with the intent

of introducing the underlying concepts along

with some notations that are going to be used

in the rest of the paper.

Hurd’s PhD thesis [35] can be considered a

pioneering work in regards to the formalization

of random variables in higher-order-logic. Ran-

dom variables are fundamentally probabilistic

functions that can be modeled in higher-order

logic as deterministic functions with access to

an infinite Boolean sequence B∞; a source of
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infinite random bits [35]. These deterministic

functions make random choices based on the

result of popping the top most bit in the infi-

nite Boolean sequence and may pop as many

random bits as they need for their computa-

tion. When the functions terminate, they re-

turn the result along with the remaining por-

tion of the infinite Boolean sequence to be used

by other programs. Thus, a random variable

which takes a parameter of type ® and ranges

over values of type ¯ can be represented in HOL

by the function.

ℱ : ® → B∞ → ¯ ×B∞

As an example, consider the Bernoulli(1
2
)

random variable that returns 1 or 0 with equal

probability 1
2
. It can be formalized in HOL as

follows:

⊢ bit = (¸s.if shd s then 1 else 0,

stl s)

where s is the infinite Boolean sequence and

shd and stl are the sequence equivalents of

the list operation ’head’ and ’tail’. The prob-

abilistic programs can also be expressed in the

more general state-transforming monad where

the states are the infinite Boolean sequences.

⊢ ∀ a s. unit a s = (a,s)

⊢ ∀ f g s. bind f g s =

g (fst (f s)) (snd (f s))

The unit operator is used to lift values to the

monad, and the bind is the monadic analogue

of function application. All monad laws hold

for this definition, and the notation allows us

to write functions without explicitly mention-

ing the sequence that is passed around, e.g.,

function bit can be defined as

⊢ bit monad = bind sdest

(¸b.if b then unit 1 else unit 0)

where sdest gives the head and tail of a se-

quence as a pair (sℎd s, stl s).

Hurd [35] also formalized some mathemati-

cal measure theory in HOL in order to define

a probability function ℙ from sets of infinite

Boolean sequences to real numbers between 0

and 1. The domain of ℙ is the set ℰ of events

of the probability space. Both ℙ and ℰ are de-

fined using the Carathéodory’s Extension theo-

rem, which ensures that ℰ is a ¾-algebra: closed

under complements and countable unions. The

formalized ℙ and ℰ can be used to verify the

basic laws of probability in the HOL theorem

prover. For example, the additive law, which

represents the probability of two disjoint events

as the sum of their probabilities, can be for-

mally verified as follows:

⊢ ∀ A B. A ∈ ℰ ∧ B ∈ ℰ ∧ A ∩ B = ∅
⇒ ℙ(A ∪ B) = ℙ(A) + ℙ(B)

The formalized ℙ and ℰ can also be used to

prove probabilistic properties for random vari-

ables such as

⊢ ℙ {s | fst (bit s) = 1} = 1
2

where the HOL function fst selects the first

component of a pair and {x∣C(x)} represents a

set of all x that satisfy the condition C.

The measurability and independence of a

probabilistic function are important concepts

in probability theory. A property indep, called

strong function independence, is introduced in

[35] such that if f ∈ indep, then all sets involv-

ing the function f will be both measurable and

independent. In this approach, a set of infinite

Boolean sequences, S, is said to be measurable

if and only if it is in ℰ , i.e., S ∈ ℰ . Since the

probability measure ℙ is only defined on sets

in ℰ , it is very important to prove that sets

that arise in verification are measurable. It has
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been shown in [35] that a function is guaran-

teed to preserve strong function independence,

if it accesses the infinite Boolean sequence us-

ing only the unit, bind and sdest primitives.

All reasonable probabilistic programs preserve

strong function independence, and these extra

properties are a great aid to verification.

The above approach has been successfully

used to formalize both discrete [35] and con-

tinuous random variables [29] and verify them

based on their corresponding probability distri-

bution properties. In this paper, we utilize the

models for Bernoulli and Uniform random vari-

ables formalized as the higher-order-logic func-

tions ber rv and unif rv, respectively, and

verified using the following probability mass

function (PMF) relations [35]:

Lemma 1: PMF of Bernoulli(p) R.V.

⊢ ∀ p. 0 ≤ p ∧ p ≤ 1 ⇒
ℙ {s | fst (ber rv p s)} = p

Lemma 2: PMF of Uniform(m) R.V.

⊢ ∀ m x. x < m ⇒
ℙ {s | fst (unif rv m s) = x} = 1

m

The function ber rv for the Bernoulli(p) ran-

dom variable models an experiment with two

outcomes; True and False, whereas the param-

eter p represents the probability of obtaining

a True. Whereas, the function unif rv for

the Uniform(m) random variable assigns equal

probability to each element in the set {0, 1, ⋅ ⋅ ⋅
, (m−1)} and thus ranges over a finite number

of positive integers.

Expectation theory plays a vital role in the

domain of probabilistic analysis of algorithms

as it is a lot easier to judge performance issues

based on the average characteristic of an al-

gorithm, which is a single number, rather than

its distribution function. Building on the above

mentioned probabilistic analysis infrastructure,

the expectation of a discrete random variable

can be defined as a higher-order-logic function

as follows [32]:

Definition 1: Expectation of Discrete R.V.

⊢ ∀ R. expec R =

suminf (¸n.nℙ {s | fst (R s) = n})
where, suminf represents the HOL formaliza-

tion of the infinite summation of a real sequence

[26] as outlined in Table 1. The function expec

accepts the random variable R with data type

B∞ → (positive integer × B∞), and returns a

real number. This function can be used to suc-

cessfully verify the expectation relation of any

discrete random variable that attains values

in positive integers. For example, the higher-

order-logic theorem corresponding to the ex-

pectation of the Bernoulli random variable has

been formally verified in [32] and is given as

follows:

Lemma 3: Expectation of Bernoulli(p) R.V.

⊢ ∀ p. 0 ≤ p ∧ p ≤ 1 ⇒
expec (¸s. ber rv p s) = p

where (¸x.t) represents a lambda abstraction

function in HOL that maps its argument x to

t(x).

The linearity of expectation property, ac-

cording to which the expectation of the sum

of random variables equals the sum of their in-

dividual expectations,

Ex[
n∑

i=1

Ri] =
n∑

i=1

Ex[Ri] (1)

is one of the most important properties of ex-

pectation. It allows us to verify the expecta-

tion properties of random behaviors involving

multiple random variables without going into

the complex verification of their joint proba-

bility distribution properties. For facilitating
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the analysis of systems involving multiple ran-

dom variables in a higher-order-logic theorem

prover, the linearity of expectation property

has been formally verified in [32] as the follow-

ing theorem.

Lemma 4: Linearity of Expectation

⊢ ∀ L.(∀R.(mem R L)⇒((R ∈ indep) ∧
(summable(¸n.nℙ{s|fst(R s)=n}))))

⇒ (expec (sum rv lst L) =∑lengtℎ L
n=0 (expec (el (length L -

(n+1)) L)))

The predicate mem, in the above assumption, is

defined in the HOL list theory and it accepts an

element and a list and returns True if the given

element belongs to the given list. Thus, the

assumption in the above theorem ensures that

all random variables in the given list L pre-

serve strong function independence, i.e., they

∈ indep, and the infinite summations in their

corresponding expectation definitions converge

to a well-defined value (using the summable

function explained in Table 1). The function

length, defined in the HOL list theory, and

used in the conclusion of the above theorem re-

turns the length of its list argument and the

function el, also defined in the list theory, ac-

cepts a positive integer number, say n, and a

list and returns the ntℎ element of the given

list. Whereas the HOL function sum rv lst,

defined in [32], provides the summation of all

random variables in the given list of random

variables. Thus, the left-hand-side (LHS) of the

conclusion of Lemma 4 represents the expecta-

tion of the summation of a list L of random

variables. Whereas, the right-hand-side (RHS)

of the conclusion of Lemma 4 represents the

summation of expectations of all elements in

the same list L.

Next, we illustrate the utilization of the

above mentioned higher-order-logic founda-

tions for the formalization of indicator random

variables, which facilitates conducting the ex-

pected time complexity analysis of algorithms

in the HOL theorem prover.

5 Formalization of the Indicator Ran-

dom Variable

An indicator random variable is a special

kind of random variable associated with the oc-

currence of an event. The indicator random

variable IA associated with an event A is usu-

ally defined as follows:

IA =

{
1 if the event A occurs;

0 otherwise.
(2)

In other words, IA maps all outcomes in the

set A to 1 and all outcomes outside A to 0.

Indicator random variables are the fundamen-

tal building blocks of many probability distri-

butions. Moreover, they exhibit many useful

characteristics and allow a convenient method

for converting between probabilities and expec-

tations [11]. Because of these features, they are

quite frequently used in the probabilistic anal-

ysis of algorithms.

Based on the approach described in the pre-

vious section, the indicator random variable

can be formalized in higher-order logic as the

following function.

Definition 2: Indicator Random Variable

⊢ ∀ p. ind rv p = bind (ber rv p)

(¸a. unit(if a then 1 else 0))

The above definition models an indicator ran-

dom variable that is associated with an event
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with occurrence probability p. For this pur-

pose, it utilizes the formal definition of the

Bernoulli random variable (ber rv), which is

described in the previous section. The indi-

cator random variable function ind rv accepts

the occurrence probability p as a real number

and returns the corresponding indicator ran-

dom variable value as a positive integer, which

could either be a 1 or a 0.

In order to ensure the correctness of the for-

mal definition of the indicator random variable

as well as to facilitate its utilization for the

analysis of algorithms, we formally verify the

following properties for it.

Theorem 1: PMF for the Indicator R.V.

⊢ ∀ p. 0 ≤ p ∧ p ≤ 1 ⇒
ℙ {s | fst (ind rv p s) = 1} = p

Theorem 2: Expectation for the Indicator

R.V.

⊢ ∀ p. 0 ≤ p ∧ p ≤ 1 ⇒
expec (¸s. ind rv p s) = p

The formal proofs for the above properties are

based on the PMF and expectation relations for

the Bernoulli random variable, given in Lem-

mas 1 and 3, respectively, along with some ba-

sic arithmetic and set theoretic reasonings. It is

important to note here that both of these the-

orems are verified under the assumption that p

lies in the interval [0, 1], which is the allowed

range for a probability. According to Theorem

2, the expectation of an indicator random vari-

able is equal to its occurrence probability. This

property simplifies the expectation analysis sig-

nificantly and thus is one of the main strengths

of analyzing algorithms by modeling them in

terms of indicator random variables.

Indicator random variables have been found

to be quite useful for modeling algorithms in

which we perform repeated trials as each one

of such trials can be modeled as an indicator

random variable. Thus in order to facilitate the

higher-order-logic formalization and analysis of

such algorithms, we now define a function that

models a collection of indicator random vari-

ables as a list.

Definition 3: List of Indicator R.Vs.

⊢ (∀ ps. ind rv list 0 ps = []) ∧
∀ n ps. ind rv list (n + 1) ps =

ind rv list n ps ++ [ind rv (ps n)]

The HOL operator ++ in the above definition

represents the list append operation. The re-

cursive function ind rv list accepts a positive

integer number n and a sequence of probabil-

ities ps with data type (positive integer →
real) and returns a list of n indicator ran-

dom variables with respective probabilities

from the sequence ps. Thus, if the function

ind rv lst is called with arguments ps =

< p0, p1, p2, ⋅ ⋅ ⋅ pn−1 > and n then it

would return a list of indicator random vari-

ables [I(p0); I(p1); I(p2); ⋅ ⋅ ⋅ I(pn−1)], where,

I(p) represents an indicator random variable

with success pobability p. It is important to

note that the usage of a sequence of probabil-

ities in the above definition provides us with

the flexibility to construct a list of indicator

random variables with distinct probabilities.

Next, we formally verify the following very

useful relationship regarding the expectation of

a list of indicator random variables.

Theorem 3: Expectation for the Indicator

R.V. List

⊢ ∀ n ps.(∀i.0≤(ps i) ∧ (ps i)≤1)

⇒ expec

(sum rv lst (ind rv list n ps))

= sum (0, n) (¸i. ps i)
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The assumption in the above theorem ensures

that all real values in the probability sequence

ps are bounded in the interval [0, 1] as this is

the allowed range for a probability. According

to Theorem 3, the expectation of the summa-

tion of all random variables in the list of ran-

dom variables obtained by calling the function

ind rv list with parameters n and ps is equal

to the summation of all corresponding proba-

bilities in the probability sequence ps. This

result is quite important as it allows us to sim-

plify a complex problem of evaluating the ex-

pectation of a sum of random variables to a

simple summation of probability terms.

We proceed with the verification of Theo-

rem 3 by rewriting its LHS using the linearity

of expectation property, given in Lemma 4, as

follows:

n−1∑
i=0

Ex [el (n− (i+ 1)) (ind rv list n ps)]

=
n−1∑
i=0

(ps i)

(3)

The above mentioned substitution became pos-

sible because all random variables in the list

of random variables generated by the func-

tion ind rv list satisfy the preconditions for

Lemma 4, i.e., they preserve strong function

independence because all of them are indica-

tor random variables and thus access the in-

finite Boolean sequence using bind and unit

operators only, as illustrated in Definition 3,

and their corresponding expectations are well-

defined as given in Theorem 2. Another simpli-

fication that has been made in the above substi-

tution is the replacement of the term (length

(ind rv list n ps)), which appears in the

RHS of the linearity of expectation property, by

the number n. The justification for this simpli-

fication was also formally verified in the HOL

theorem prover.

The next step in proving Theorem 3 is to

rewrite the LHS of Equation (3) as follows:

n−1∑
i=0

(ps(n− (i+ 1))) =
n−1∑
i=0

(ps i) (4)

since the expectation of the itℎ indicator ran-

dom variable in the list (ind rv list n ps)

can be proved to be equal to (ps i) using the

result of Theorem 2 and some basic list prop-

erties. Finally, Equation (4) can be verified

based on arithmetic reasoning and the prop-

erties of summation, which also completes the

HOL proof of Theorem 3.

Many computation algorithms can be sim-

ply described as a summation of indicator ran-

dom variables for their expected time complex-

ity analysis. Theorem 3 plays an important role

in conducting their expected time complexity

analysis in a theorem prover, as it allows us

to transform the verification problem of an ex-

pectation relation to a verification involving a

simple summation over real numbers. As an ex-

ample, we present the analysis of the hat-check

problem in the next section. Besides being use-

ful for the analysis of this specific class of al-

gorithms, which can be described as a simple

summation of indicator random variables, the

indicator random variable approach can also be

utilized for the analysis of more complex algo-

rithms. In order to illustrate the utilization

and effectiveness of the proposed approach for

other kinds of algorithms, we also present, in

the next section, the analysis of the birthday

paradox and the hiring problem, which we be-

lieve to be representative to many algorithms

frequently used in computer science.
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6 Applications

6.1 The Hat-Check Problem

The hat-check problem is a classic combina-

torial question: There is a dinner party where n

gentlemen check their hats. The hat-check girl

absentmindedly throws the claim checks away

rather than putting them with the hats. When

the gentlemen return for their hats, the hat-

check girl returns them randomly. What is the

number of gentleman who get their own hat

back? The algorithm for this problem is a sim-

ple counting one and is given below.

Algorithm 1. Hat-Check Problem

Input: Number of gentlemen in the party n

Output: Number of gentlemen that were

able to acquire their hats after

the party x

x Ã 0

for i Ã 1 to n

do if gentleman i has his own hat

then x Ã (x+ 1)

It samples all the n gentlemen in the party

and counts the ones that were able to acquire

their own hat. But the implementation of

this algorithm for analysis purposes is not a

very straightforward task because of the un-

predictable nature of the input, i.e., the input

could be any one of the 2n possible combina-

tions of n men with either their own or oth-

ers hats. Thus, probabilistic techniques are ap-

plied. We assume that the hats are distributed

uniformly among the men, i.e., the probability

of any man in the party to get his own hat is

the same (1/n), and we find the expected num-

ber of people who acquire their own hats. By

the definition of expectation, we have

Ex[X] =
∞∑

k=0

kPr(X = k) (5)

where Pr denotes the probability in the above

equation. Again, evaluating the term Pr(X =

k), where X denotes the number of people who

acquire their own hat, above is very cumber-

some as this requires the probability of each

permutation. The summation over this dis-

tribution would be even more complicated to

solve.

The indicator random variable approach, de-

scribed earlier, provides a very straightforward

solution to the evaluation of the above expec-

tation property. For each man i of the n men

in the party, where 0 ≤ i < n, we define the

indicator random variable Xi as follows:

Xi =

{
1 if man i acquires his own hat;

0 otherwise.
(6)

The occurrence probability of the above indica-

tor variable is 1/n because of the uniform dis-

tribution of hats. Now, the number of men that

get their own hat is the sum of these indicator

random variables

X =
n−1∑
i=0

Xi (7)

Based on the infrastructure presented in Sec-

tion 5, the above equation can be formalized in

higher-order logic as the following higher-order-

logic function.

Definition 4: Hat-Check Problem

⊢ ∀ n. hchkp n =

sum rv lst (ind rv list n (¸i.1
n
))
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The function hchkp accepts a positive integer

n, which represents the number of the men in

the party that checked their hats and it returns

the total number of men that were able to ac-

quire their own hats. It utilizes the function

ind rv list for this purpose, which models a

list of indicator random variables and is given

in Definition 3.

The next step after the formalization of the

algorithm is to conduct its analysis in the the-

orem prover. For this purpose, we verify the

following expectation property.

Theorem 4: Hat-Check Expectation

⊢ ∀ n. 0 < n ⇒
(expec (hchkp n) = 1)

The assumption in the above theorem ensures

that the number of men in the party are more

than 0. We proceed with the verification of the

above theorem by utilizing the result of Theo-

rem 3 to simplify it as follows:

n−1∑
i=0

(
1

n
) = 1 (8)

The above subgoal can now be discharged from

the HOL goal stack using the basic proper-

ties of real summation along with some simple

arithmetic reasoning. This also concludes the

proof of Theorem 4.

According to Theorem 4, one man would

be able to get his own hat back on average.

The higher-order-logic formalization and anal-

ysis for the algorithm for the hat-check prob-

lem was very straightforward mainly because

we were able to build upon the existing results

like Definition 3 and Theorem 3 that were pre-

sented in the last section. Algorithms for many

other commonly known problems, which can

be expressed as a simple summation of indica-

tor random variables like the Chinese appetizer

problem [23], can also be analyzed in a similar

way.

6.2 The Birthday Paradox

The birthday paradox [11] or the birthday

problem refers to the problem of determining

the probability that in a randomly selected

group of k people, two or more have the same

birthday. Besides being an entertaining exam-

ple, the birthday problem is one of the most

famous problems in combinatorial probability

and computer security applications.

The algorithm for the birthday paradox is

given below. All we need to do is to pick each

person from the group one by one and com-

pare his or her birthday with all the persons

in the group that have not been picked be-

fore, and keep track of the number of pairs

with same birthdays. But as with all algorithm

analysis problems, the input to this algorithm

is unpredictable since we could be dealing with

any group of people with birthdays distributed

anywhere in the 365 days of the year. Hence,

probabilistic techniques are used to model this

random phenomenon and conduct the expected

time complexity analysis of this problem.

Algorithm 2. Birthday Paradox

Input: Number of persons in the Group k

Output: Number of pairs of persons with

the same birthdays x

x Ã 0

for i Ã 1 to k

do for j Ã i+ 1 to k

do if j has the same birthday as i

then x Ã (x+ 1)

As in most mathematical problems, we first

have to make some simplifying assumptions,
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and then find the natural mathematical home

for the problem. First of all, we ignore the is-

sue of leap years and assume that all years have

the same number of days, say n. Next, and

most importantly, we assume that birthdays

are more or less uniformly distributed across

the n days of the year. Thus, the probability

that a person’s birthday falls on any particular

day of the year is equal to 1/n and is also the

same for any other day of the year. Lastly, we

also assume that the birthdays of the k peo-

ple in the group are distributed independently,

i.e., the birthday of one person does not effect

the birthday of any other person in the group

in any way. All the above three assumptions

are pretty reasonable based on our given con-

ditions since the human birthdays are usually

independent of one another and are uniformly

distributed throughout the year [11].

Before we embark upon the higher-order-

logic formalization of the algorithm for the

birthday problem, we first formally analyze the

probability for having a pair with matching

birthdays, usually termed as the probability of

success for the birthday paradox. This proba-

bility can be expressed formally as follows:

Definition 5: Success Probability for the

Birthday Paradox

⊢ ∀ n. bdayp suc prob n =

ℙ {s | fst(unif rv n s) =

fst(unif rv n (snd(unif rv n s)))}

According the above definition, the probabil-

ity of success for the birthday problem with n

days a year is equal to the probability of the

event when two independent Uniform(n) ran-

dom variables generate the same values. The

two Uniform(n) random variables in the above

definition correspond to the birthdays of two

persons in a group based on the above men-

tioned assumptions. The independence be-

tween the two Uniform(n) random variables

is ensured because of the fact that the sec-

ond uniform random variable on the RHS of

the equality utilizes the remaining portion of

the infinite Boolean sequence from the first

Uniform(n) random variable that is on the LHS

of the equality.

Next, we formally verify that the success

probability for the birthday paradox is equal

to 1/n. Thus, the probability of having the

same birthday for two persons in the group is

the same as the probability that the birthday

of one of them falls on a given day. The cor-

responding higher-order-logic theorem can be

expressed as follows:

Theorem 5: Success Probability for the

Birthday Paradox

⊢ ∀ n. 0 < n ⇒
(bdayp suc prob n = 1

n
)

The assumption in the above theorem ensures

that the value of n, i.e., the number of days in

the year, is greater than 0 since without this

assumption there is no point in analyzing the

birthday problem. Also, it allows us to remove

the division by 0 problem for the RHS term in

the above theorem. We proceed with the veri-

fication by first rewriting with the definition of

the function bdayp suc prob and simplifying

the set that appears on the LHS as follows:

ℙ(
∪
i<n

({s ∣ fst (unif rv n s) = i}∩

{s ∣ fst (unif rv n

(snd (unif rv n s))) = i})) = 1

n

(9)

Now, using the additive probability law ((A ∩
B = ∅) ⇒ (ℙ(A ∪ B) = ℙ(A) + ℙ(B))), the
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above subgoal can be further simplified as fol-

lows:

n−1∑
i=0

(ℙ({s ∣ fst (unif rv n s) = i}∩

{s ∣ fst (unif rv n

(snd (unif rv n s))) = i})) = 1

n

(10)

The above subgoal can be further simplified us-

ing the independence property between the two

Uniform random variables, the product law of

probability (ℙ(A ∩ B) = ℙ(A)ℙ(B)) and the

PMF of the Uniform random variable, given in

Lemma 2, as follows:

n−1∑
i=0

(
1

n
)(
1

n
) =

1

n
(11)

This subgoal can now be verified based on the

properties of real summation, which also con-

cludes the proof for Theorem 5.

The probability of success for the birthday

paradox can now be utilized to formalize the al-

gorithm for its probabilistic analysis using the

proposed indicator random variable approach.

For each pair (i, j) of the k people in the group,

where 0 ≤ i ≤ j < k, we define the indicator

random variable Xij as follows:

Xij =

{
1 if i and j have the same birthday;

0 otherwise.
(12)

The occurrence probability of the above indica-

tor variable is 1/n as has been already verified

in Theorem 5. The algorithm for the birth-

day paradox is a simple counting algorithm

that counts the number of pairs of individu-

als, present in the given group, having the same

birthday. This algorithm can now be developed

in terms of the indicator random variables as

the one that counts the values of the indicator

random variable for all possible pair combina-

tions in the given group is as follows:

X =
k−1∑
i=0

k−1∑
j=i+1

Xij (13)

The formalization of the above algorithm can-

not be done using the summation of a list of in-

dicator random variables as was the case in the

hat-check problem. So, we formalize it, based

on the infrastructure presented in Section 5,

using the following two recursive functions.

Definition 6: Birthday Paradox

⊢ (∀ n. bdayp helper 0 n = unit 0)

(∀ k n. bdayp helper (k + 1) n =

bind (bdayp helper k n)

(¸a. bind (ind rv (1
n
))

(¸b. unit (b + a))))

⊢ (∀ n. bdayp 0 n = unit 0)

(∀ k n. bdayp (k + 1) n =

bind (bdayp k n)

(¸a. bind (bday helper k n)

(¸b. unit (b + a))))

The functions bdayp helper and bdayp model

the inner and outer summations of Equa-

tion (13), respectively. Whereas the function

ind rv, defined in Definition 2, models the in-

dicator random variable given in Equation (12)

with occurrence probability 1/n. The function

bdayp accepts two parameters k and n, which

represent the population of the group and the

number of days in a year, respectively, and it

returns the total number of pairs of individuals

having the same birthday in the given group.

Now, for the expected time complexity anal-

ysis of this algorithm, we verify the following

expectation property.
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Theorem 6: Birthday Paradox Expectation

⊢ ∀ k n. 0 < n ∧ 2 ≤ k ⇒
(expec (bdayp k n) =

k(k−1)
2n

)

The assumptions in the above theorem ensure

that the number of days in a year are more than

0 and the population is at least 2 or more in

order to have 1 pair at minimum. We proceed

with the verification of the above theorem by

performing induction on the variable k, which

generates the following two subgoals.

expec(bdayp 2 n) =
2

2n
(14)

2 ≤ k ∧ (expec(bdayp k n) =
k(k− 1)

2n
) ⇒

expec(bdayp (k+ 1) n) =
(k+ 1)k

2n
(15)

The base case can be rewritten using the def-

inition of the function bdayp as follows:

expec(¸s. ind rv (
1

n
) s)) =

2

2n
(16)

which can be simply verified using the expecta-

tion theorem for the indicator random variable

as 1/n lies in the interval (0, 1] when 0 < n.

We proceed with the verification of the step

case by first rewriting the expec(bdayp (k+1)

n) part as follows:

2 ≤ k ∧ (expec(bdayp k n) =
k(k− 1)

2n
) ⇒

expec(bdayp k n) + expec(bdayp helper k n)

=
(k+ 1)k

2n
(17)

This substitution is made based on the defini-

tion of the function bdayp, given in Definition

6, and the linearity of expectation property,

given in Lemma 4. This allows us to utilize the

second assumption in the subgoal as follows:

2 ≤ k ⇒
k(k− 1)

2n
+ expec(bdayp helper k n)

=
(k+ 1)k

2n

(18)

The above subgoal can now be further simpli-

fied by rearranging the terms along with some

arithmetic reasoning as follows:

expec(bdayp helper k n) =
k

n
(19)

We verified the above mentioned subgoal,

which represents the expectation of the func-

tion bdayp helper, in a similar way as we han-

dled the expectation property of the function

bdayp, i.e., by using induction on variable k

followed by using the linearity of expectation

property and the expectation of the indicator

random variable, given in Theorem 2, along

with some arithmetic reasoning. The verifica-

tion of the above subgoal also concludes the

verification of Theorem 6.

Theorem 6 provides very useful insights into

the birthday paradox. It can be clearly ob-

served that the expected number of pairs of

people with the same birthday would be at least

1 if k(k − 1) ≥ 2n. This means that if we have√
2n + 1 or more individuals in a room, then

on average we can expect at least two people to

have the same birthday. For n = 365, we need

at least 28 people to have one pair of people to

have the same birthday on average.
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6.3 The Hiring Problem

The hiring problem [11] is a combinato-

rial problem that captures a fundamental issue

which arises in many applications where one

must make decisions under uncertainty. In its

most general form, the hiring problem concerns

a company that wants to hire the best possible

office assistant through an employment agency.

Meanwhile, the company also needs an office

assistant right away and it cannot wait for the

best candidate to come along. So they decide

to contact an employment agency, which has n

candidates available for this job, and ask them

to send a new candidate for interview every day.

The company hires the first candidate to fill the

vacant position for the office assistant but con-

tinues to interview new candidates. If a new ap-

plicant is found to be better qualified than the

existing office assistant, he is hired and the ex-

isting office assistant is fired. The employment

agency charges the company a small interview-

ing cost, say ci, associated with each candidate

interview and a comparatively large hiring cost,

say cℎ, associated with each hiring. The hiring

problem is to find out the cost associated with

this kind of a hiring strategy.

The cost algorithm for the hiring problem

is given below. In the given hiring strategy, n

candidates are always interviewed, irrespective

of the number of people that are hired. Now,

if we assume that a total number of m candi-

dates get hired in the above strategy then the

total cost associated with the algorithm would

be nci + mcℎ. In the worst case, each candi-

date that is interviewed is also hired and thus

m becomes equal to n as well. This happens

only if the candidates come in increasing order

of quality. However, this does not always hap-

pen in practice and the candidates arrive in an

unpredictable fashion. Therefore, probabilistic

techniques are relied upon to evaluate the typ-

ical or average case cost for this algorithm.

Algorithm 3. Hiring Problem Cost

Input: Number of available candidates n

Hiring Cost cℎ
Interviewing Cost ci

Output: Hiring Problem Cost cℎp
cℎp Ã 0

best Ã 0

for i Ã 1 to n

do interview candidate i

cℎp Ã (cℎp + ci)

if candidate i is better than best

then best Ã i

hire candidate i

cℎp Ã (cℎp + cℎ)

For conducting the expected time complex-

ity analysis of the hiring problem, we again

utilize the proposed indicator random variable

approach. For each candidate i, we define an

indicator random variable as follows:

Xi =

{
1 if candidate i is hired;

0 otherwise.
(20)

A candidate i is hired only if it is better than

each of the already interviewed i−1 candidates.

If we assume that the quality of candidate ar-

rival is uniformly distributed then candidate i

has a probability of 1/i of being hired or of be-

ing better than the already interviewed i − 1

candidates. Thus, the occurrence probability

of an indicator random variable corresponding

to candidate i is equal to 1/i in the above men-

tioned indicator random variable.

Now, the hiring problem cost algorithm can

be expressed as the following summation.



O. Hasan et al.: Formally Analyzing Expected Time Complexity 19

X =
n−1∑
i=0

ci + cℎXi (21)

The above equation does not represent a sim-

ple sum of indicator random variables and thus

cannot be formalized using the function given

in Definition 3. Thus, we formalized it with

the following recursive function, based on the

infrastructure presented in Section 5.

Definition 7: Hiring Problem

⊢ (∀ ch ci. hirep 0 ch ci = unit 0)

(∀ n ch ci. hirep (n + 1) ch ci =

bind (hirep k ch ci)

(¸a. bind (ind rv (1
n
))

(¸b. unit (if b = 1

then (ch + ci + a)

else (ci + a)))))

The function hirep accepts three parameters

n, cℎ and ci, which represent the number of

available candidates, the cost of hiring and

cost of interviewing a candidate, respectively.

Whereas, it returns the total cost associated

with the hiring strategy explained in this sec-

tion. For this purpose, it utilizes the indica-

tor random variable function ind rv, defined

in Definition 2, with occurrence probability 1/i

for candidate number i.

The next step after the formalization of the

algorithm is to conduct its analysis in the the-

orem prover. We verified the following expec-

tation property in this regard.

Theorem 7: Hiring Problem Expectation

⊢ ∀ n ch ci. expec (hirep n ch ci)

= n ci + ch
∑n−1

i=0
1

i+1

We proceed with the verification of the above

theorem by performing induction on the vari-

able n, which generates the following two sub-

goals.

expec(hirep 0 ch ci) = ch

0∑
i=0

1

i+ 1
(22)

expec(hirep n ch ci) = nci+ ch

n−1∑
i=0

1

i+ 1
⇒

expec(hirep (n+ 1) ch ci)

= (n+ 1) ci + ch

n∑
i=0

1

i+ 1

(23)

The base case can be simply verified based

on the definitions of the expectation and the

function hirep, given in Definitions 1 and 7.

respectively, along with some arithmetic rea-

soning. For the verification of the step case, we

first rewrite the expec(hirep (n+1) ch ci)

part using the definition of the function hirep,

given in Definition 7, and the linearity of expec-

tation property, given in Lemma 4, as follows:

expec(hirep n ch ci) = nci+ ch

n−1∑
i=0

1

i+ 1
⇒

ch expec(ind rv (
1

n+ 1
))+

ci+ expec(hirep n ch ci)

= (n+ 1) ci + ch

n∑
i=0

1

i+ 1

(24)

Now the assumption, given in Equation (24),

can be used to obtain the following subgoal:

ch expec(ind rv (
1

n+ 1
))+

ci+ nci+ ch

n−1∑
i=0

1

i+ 1

= (n+ 1) ci + ch

n∑
i=0

1

i+ 1

(25)
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The above subgoal can now be verified by using

the expectation property of the indicator ran-

dom variable, given in Theorem 2, along with

some arithmetic reasoning. This also concludes

the proof for Theorem 7.

The term
∑n−1

i=0
1

i+1
, which appears on the

RHS of Theorem 7, is basically equal to ln n.

Thus, according to Theorem 7, even though n

people are interviewed only ln n of them are

hired on average. This result means that the

average or expected cost of the hiring problem

is O(cℎln(n)).

6.4 Discussion

The successful handling of the expected time

complexity analysis of the hat-check problem,

birthday paradox and hiring problem clearly

demonstrates the effectiveness of the proposed

indicator random variable based approach for

formalizing probabilistic algorithms and con-

ducting their analysis in a higher-order-logic

theorem prover. It is worthwhile to mention

here that the algorithm analysis results pre-

sented in this section are not something that is

new and they have been known for quite some

time now. The real contribution of the paper

lies in demonstrating the ability to conduct the

analysis of these algorithms precisely using a

computer based tool. Due to the formal na-

ture of the algorithm implementations and in-

herent soundness of theorem proving, we have

been able to verify the expectation properties

of interest regarding the given algorithms with

100% precision; a novelty which is not available

in simulation. Similarly due to the high ex-

pressibility of higher-order logic, we have been

able to verify generic properties that are valid

for all values of algorithm inputs. The pro-

posed approach is also superior than the paper-

and-pencil analysis methods in a way as the

chances of making human errors, missing crit-

ical assumptions and proving wrongful state-

ments are almost nil since all proof steps are

applied within the sound core of the HOL the-

orem prover. These additional benefits come

at the cost of the time and effort spent, while

constructing the formal model of the algorithm

and formally reasoning about its properties, by

the user. But, the analysis infrastructure, pre-

sented and developed in Sections 4 and 5 of

this paper, led to a significant reduction in the

interactive verification effort. The analysis pre-

sented here for the three algorithms consumed

around 1500 lines of HOL code and approxi-

mately 100 man hours.

7 Conclusions

In this paper, we utilized the mathemati-

cal probability theory formalized in a higher-

order-logic theorem prover to develop a formal

expected time complexity analysis approach

for algorithms. The main idea behind this

approach is to construct a higher-order-logic

model of the algorithm along with its ran-

dom components and to verify the correspond-

ing performance characteristics and computa-

tion complexity relations in a theorem prover.

We specifically targeted algorithms that can be

modeled using indicator random variables and

thus also presented a higher-order-logic defini-

tion of the indicator random variable as well as

the formal verification of some of its key proper-

ties. Because of the formal nature of the mod-

els in the proposed approach, the probabilistic

analysis is free of approximation and precision

errors, and due to the high expressive nature of
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higher-order logic a wider range of algorithms

can be analyzed. Thus, the theorem proving

based expected time complexity analysis ap-

proach can prove to be very useful for algo-

rithms used in safety critical and highly sensi-

tive engineering and scientific applications.

The proposed approach was used to con-

duct the analysis of algorithms for three well-

known problems, i.e., the hat-check problem,

the birthday paradox and the hiring problem.

We developed higher-order-logic based formal

models for these algorithms, based on which

we formally verified the expectation relations

of some of their key characteristics. The formal

definition of the indicator random variable and

its formally verified properties greatly helped

us to speed up the analysis process. The results

obtained are 100% precise and confirmed the

results of paper-and-pencil based analysis ap-

proaches. The successful handling of these real-

world algorithm analysis problems by the pro-

posed approach clearly demonstrates its feasi-

bility for other algorithm analysis problems. To

the best of our knowledge, this is the first study

on using higher-order-logic theorem proving for

the expected time complexity analysis of such

algorithms.

The proposed probabilistic approach can be

readily applied for the analysis of many other

algorithms, such as, the balls and bins prob-

lem [11], the longest streak of heads problem

[11], the on-line hiring problem [11] the Chi-

nese appetizer problem [23] and the Quicksort

algorithm [46]. Similarly, besides the expecta-

tion properties, we can also verify other statisti-

cal properties like variance and tail distribution

bounds regarding the algorithm characteristics

using the formalizations presented in [32].

The time complexity of an algorithm is basi-

cally the time that it takes to run in terms of its

inputs. A commonly used metric for calculat-

ing time complexities of algorithms is the Big

O notation, where the main idea is to remove

all multiplicative constant factors and lower or-

der terms from the time complexity relations.

The big O notation method is quite useful in

computing the time complexities of algorithms

as their input size becomes very very large. In

this paper, we presented an approach to for-

mally estimate the average time complexities

of algorithms. Based on these foundations, we

can also formally analyze the time complexities

of algorithms as their inputs become very large

or possibly infinite in a higher-order-logic the-

orem prover. We are working towards this goal

by building upon the higher-order-logic formal-

ization of limit of a real sequence [26].
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