Skip to main content
Log in

QoS-Aware Automatic Service Composition: A Graph View

  • Regular Paper
  • Published:
Journal of Computer Science and Technology Aims and scope Submit manuscript

Abstract

In the research of service composition, it demands efficient algorithms that not only retrieve correct service compositions automatically from thousands of services but also satisfy the quality requirements of different service users. However, most approaches treat these two aspects as two separate problems, automatic service composition and service selection. Although the latest researches realize the restriction of this separate view and some specific methods are proposed, they still suffer from serious limitations in scalability and accuracy when addressing both requirements simultaneously. In order to cope with these limitations and efficiently solve the combined problem which is known as QoS-aware or QoS-driven automatic service composition problem, we propose a new graph search problem, single-source optimal directed acyclic graphs (DAGs), for the first time. This novel single-source optimal DAGs (SSOD) problem is similar to, but more general than the classical single-source shortest paths (SSSP) problem. In this paper, a new graph model of SSOD problem is proposed and a Sim-Dijkstra algorithm is presented to address the SSOD problem with the time complexity of O(n log n + m) (n and m are the number of nodes and edges in the graph respectively), and the proofs of its soundness. It is also directly applied to solve the QoS-aware automatic service composition problem, and a service composition tool named QSynth is implemented. Evaluations show that Sim-Dijkstra algorithm achieves superior scalability and efficiency with respect to a large variety of composition scenarios, even more efficient than our worklist algorithm that won the performance championship of Web Services Challenge 2009.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Al-Masri E, Mahmoud Q H. Investigating Web services on the World Wide Web. In Proc. the 17th International Conference on World Wide Web (WWW2008), Beijing, China, Apr. 21–25, 2008, pp.795–804.

  2. Zeng L, Benatallah B, Ngu A H H, Dumas M, Kalagnanam J, Chang H. Qos-aware middleware for Web services composition. IEEE Transactions on Software Engineering, May 2004, 30(5): 311–327.

    Article  Google Scholar 

  3. Yu T, Zhang Y, Lin K J. Efficient algorithms for Web services selection with end-to-end QoS constraints. ACM Trans. Web, 2007, 1(1): 6.

    Article  Google Scholar 

  4. Canfora G, Penta M D, Esposito R, Villani M L. An approach for QoS-aware service composition based on genetic algorithms. In Proc. GECCO, Washington DC, USA, Jun. 25–29, 2005, pp.1069–1075.

  5. Berbner R, Spahn M, Repp N, Heckmann O, Steinmetz R. Heuristics for QoS-aware Web service composition. In Proc. International Conference on Web Services (ICWS 2006), Chicago, USA, Sept. 18–22, 2006, pp.72–82.

  6. McIlraith S, Son T. Adapting golog for composition of semantic Web services. In Proc. the Eighth International Conference on Knowledge Representation and Reasoning (KR2002), Toulouse, France, Apr. 22–25, 2002, pp.482–493.

  7. Sirin E, Parsia B, Wu D, Hendler J, Nau D. HTN planning for Web service composition using shop2. Web Semantics: Science, Services and Agents on the World Wide Web, Oct. 2004, 1(4): 377–396.

    Article  Google Scholar 

  8. Zhou A, Huang S, Wang X. Bits: A binary tree based Web service composition system. Int. J. Web Service Res., 2007, 4(1): 40–58.

    Article  Google Scholar 

  9. Hashemian S V, Mavaddat F. A graph-based framework for composition of stateless Web services. In Proc. ECOWS, Zurich, Switzerland, Dec. 4–6, 2006, pp.75-86.

  10. Amazon simple storage service(amazon s3). http://aws.amazon.com/s3/.

  11. Zhang R, Arpinar I B, Aleman-Meza B. Automatic composition of semantic Web services. In Proc. ICWS 2003, Las Vegas, USA, Jul. 23–26, 2003, pp.38-41.

  12. Yan Y, Xu B, Gu Z, Luo S. A QoS-driven approach for semantic service composition. In Proc. the 11th IEEE Conference on Commerce and Enterprise Computing (CEC2009), Vienna, Austria, July 20–23, 2009, pp.523-526.

  13. Huang Z, Jiang W, Hu S, Liu Z. Effective pruning algorithm for QoS-aware service composition. In Proc. the 11th IEEE Conference on Commerce and Enterprise Computings (CEC2009), Vienna, Austria, July 20–23, 2009, pp.519-522.

  14. Milanovic N, Malek M. Search strategies for automatic web service composition. Int. J. Web Service Res., 2006, 3(2): 1–32.

    Article  Google Scholar 

  15. Benatallah B, Sheng Q Z, Dumas M. The Self-Serv environment for Web services composition. Internet Computing, IEEE, Jan./Feb. 2003, 7(1): 40–48.

    Article  Google Scholar 

  16. Casati F, Ilnicki S, Jin L J, Krishnamoorthy V, Shan M C. Eflow: A platform for developing and managing composite e-services. In Proc. the Academia/Industry Working Conference on Research Challenges (AIWORC2000), Buffalo, USA, Apr. 27–29, 2000, p.341.

  17. Patil A A, Oundhakar S A, Sheth A P, Verma K. Meteor-s Web service annotation framework. In Proc. the 13th International Conference on World Wide Web (WWW2004), New York, USA, May 17–20, 2004, pp.553–562.

  18. Ponnekanti S R, Fox A. Sword: A developer toolkit for Web service composition. In Proc. the 11th International WWW Conference (WWW2002), Honolulu, USA, May 7–11, 2002.

  19. Panahi M, Lin K J, Zhang Y, Chang S H, Zhang J, Varela L. The Llama middleware support for accountable service-oriented architecture. In Proc. the 6th International Conference on Service-Oriented Computing (ICSOC 2008), Sydney, Australia, Dec. 1–5, 2008, pp.180–194.

  20. Oh S C, Lee D, Kumara S R T. Web service planner (WSPR): An effective and scalable Web service composition algorithm. Int. J. Web Service Res., 2007, 4(1): 1–22.

    Article  Google Scholar 

  21. McDermott D V. Estimated-regression planning for interactions with Web services. In Proc. AIPS, Toulouse, France, Apr. 23–27, 2002, pp.204–211.

  22. Zhovtobryukh D. A petri net-based approach for automated goal-driven Web service composition. Simulation, 2007, 83(1): 33–63.

    Article  Google Scholar 

  23. Liang Q A, Su S Y W. And/or graph and search algorithm for discovering composite Web services. Int. J. Web Service Res., 2005, 2(4): 48–67.

    Article  Google Scholar 

  24. Hu S, Muthusamy V, Li G, Jacobsen H A. Distributed automatic service composition in large-scale systems. In Proc. the Second International Conference on Distributed Event-Based Systems (DEBS 2008), Rome, Italy, Jul. 1–4, 2008, pp.233–244.

  25. Gao Y, Na J, Zhang B, Yang L, Gong Q. Optimal Web services selection using dynamic programming. In Proc. Oric, ISCC, Alexandia, Egypt, Jun. 28-Jul. 1, 2006, pp.365-370.

  26. Liu J, Gu N, Zong Y, Ding Z, Zhang S, Zhang Q. Web services automatic composition based on QoS. In Proc. the IEEE International Conference on e-Business Engineering (ICEBE 2005), Beijing, China, Oct. 18–21, 2005, pp.607–610.

  27. Wang X, Huang S, Zhou A. QoS-aware composite services retrieval. J. Comput. Sci. Technol., 2006, 21(4): 547–558.

    Article  Google Scholar 

  28. Naseri M, Towhidi A. QoS-aware automatic composition of Web services using AI planners. In Proc. the Second International Conference on Internet and Web Applications and Services (ICIW 2007), Mauritius, May 13–19, 2007, p.29.

  29. Web Service Challenge 2009. http://ws-challenge.georgetown.edu/wsc09/.

  30. Bartalos P, Bieliková M. Semantic Web service composition framework based on parallel processing. In Proc. the 11th IEEE Conference on Commerce and Enterprise Computing (CEC2009), Vienna, Austria, Jul. 20–23, 2009, pp.495–498.

  31. Gu Z, Li J, Xu B. Automatic service composition based on enhanced service dependency graph. In Proc. ICWS 2008, Beijing, China, Sept. 23–26, 2008, pp.246-253.

  32. Bellman R. On a routing problem. Quarterly of Applied Mathematics, 1958, 16(1): 87–90.

    MathSciNet  MATH  Google Scholar 

  33. Fulkerson D R, Ford L R. Flows in Networks. Princeton University Press, 1962.

  34. Dijkstra E W. A note on two problems in connexion with graphs. Numerische Mathematik, 1959, 1: 269–271.

    MathSciNet  MATH  Google Scholar 

  35. Goldberg A V. A heuristic improvement of the Bellman-Ford algorithm. Numerische Mathematik, 1959, 1: 269–271.

    Article  MathSciNet  Google Scholar 

  36. Fredman M L, Tarjan R E. Fibonacci heaps and their uses in improved network optimization algorithms. J. ACM, 1987, 34(3): 596–615.

    Article  MathSciNet  Google Scholar 

  37. Ahuja R K, Mehlhorn K, Orlin J B, Tarjan R E. Faster algorithms for the shortest path problem. J. ACM, 1990, 37(2): 213–223.

    Article  MathSciNet  MATH  Google Scholar 

  38. Thorup M. On ram priority queues. SIAM J. Comput., 2000, 30(1): 86–109.

    Article  MathSciNet  MATH  Google Scholar 

  39. Raman R. Recent results on the single-source shortest paths problem. ACM SIGACT News, 1997, 28(2): 81–87.

    Article  Google Scholar 

  40. Raman R. Priority queues: Small, monotone and trans-dichotomous. In Proc. the 4th Annual European Symposium on Algorithms (ESA), Barcelona, Spain, Sept. 25–27, 1996, pp.121–137.

  41. Att M T, Thorup M. Undirected single source shortest paths with positive integer weights in linear time. Journal of the ACM, 1999, 46(3): 362–394.

    Article  MathSciNet  Google Scholar 

  42. Meyer U. Average-case complexity of single-source shortest-paths algorithms: Lower and upper bounds. J. Algorithms, 2003, 48(1): 91–134.

    Article  MathSciNet  MATH  Google Scholar 

  43. Cherkassky B V, Goldberg A V, Radzik T. Shortest paths algorithms: Theory and experimental evaluation. Mathematical Programming, 1993, 73(2): 129–174.

    Article  MathSciNet  Google Scholar 

  44. Ran S. A model for Web services discovery with QoS. SIGe-com Exch., 2003, 4(1): 1–10.

    Article  Google Scholar 

  45. OWL-S: Semantic markup forWeb services. http://www.w3.org/submission/owl-s/, Oct. 2010.

  46. Paolucci M, Kawamura T, Payne T R, Sycara K P. Semantic matching of Web services capabilities. In Proc. International Semantic Web Conference, Sardidia, Italy, Jun. 9–12, 2002, pp.333–347.

  47. Oh S C, Lee D, Kumara S R. Effective Web service composition in diverse and large-scale service networks. IEEE Transactions on Services Computing, 2008, 1(1): 15–32.

    Article  Google Scholar 

  48. Rivest R L, Stein C, Cormen T H, Leiserson C E. Introduction to Algorithms, 2nd Edition. The MIT Press, McGraw-Hill Book Company, 2003.

  49. Al-Masri E, Mahmoud Q H. QoS-based discovery and ranking of Web services. In Proc. ICCCN, Honolulu, USA, Aug. 13–16, 2007, pp.529–534.

  50. Raimondi F, Skene J, Emmerich W. Efficient online monitoring of Web-service SLAS. In Proc. the 16th ACM SIGSOFT International Symposium on Foundations of Software Engineering (SIGSOFT 2008/FSE-16), Atlanta, USA, Nov. 9–14, 2008, pp.170–180.

  51. Jaeger M C, Rojec-Goldmann G, Mühl G. QoS aggregation for Web service composition using workflow patterns. In Proc. EDOC, Enschede, The Netherlands, Sept. 19–23, 2004, pp.149–159.

  52. Jaeger M C, Rojec-Goldmann G, Muhl G. QoS aggregation in Web service compositions. In Proc. 2005 IEEE International Conference on e-Technology, e-Commerce and e-Service (EEE 2005), Hong Kong, China, Mar. 29-Apr. 1, 2005, pp.181-185.

  53. Hwang C L, Yoon K. Flows in Networks. Princeton University Press, 1962.

  54. Driscoll J R, Gabow H N, Shrairman R, Tarjan R E. Relaxed heaps: An alternative to Fibonacci heaps with applications to parallel computation. Commun. ACM, 1988, 31(11): 1343–1354.

    Article  MathSciNet  Google Scholar 

  55. Oh S C, Kil H, Lee D, Kumara S R T. Wsben: A Web services discovery and composition benchmark. In Proc. ICWS, Chicago, USA, Sept. 18–22, 2006, pp.239–248.

  56. Bleul S, Weise T, Geihs K. The Web service challenge — A review on semantic web service composition. In Proc. Int. Conf. Service-Oriented Computing (ICSOC 2009), Stockholm, Sweden, Nov. 14–27, 2009.

  57. Al-Masri E, Mahmoud Q H. Discovering the bestWeb service. In Proc. WWW, Chiba, Japan, May 10–14, 2007, pp.1257–1258.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song-Lin Hu.

Additional information

Supported by the National Basic Research 973 Program of China under Grant No.2007CB-310805, the National Natural Science Foundation of China under Grant No. 61070027, the Beijing Natural Science Foundation project under Grant No. 4092043, the Science and Technology Project of State Grid Information & Telecommunication Company Ltd. under Grant No. SGIT[2010]449, and the Planned Science and Technology Project of Guangdong Province, China under Grant No. 2010B050100009.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 102 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, W., Wu, T., Hu, SL. et al. QoS-Aware Automatic Service Composition: A Graph View. J. Comput. Sci. Technol. 26, 837–853 (2011). https://doi.org/10.1007/s11390-011-0183-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11390-011-0183-2

Keywords

Navigation