Canali C, Colajanni M, Malandrino D et al. A novel intermediary framework for dynamic edge service composition. JOUR-
NAL OF COMPUTER SCIENCE AND TECHNOLOGY 27(2): 281-297 Mar. 2012. DOI 10.1007/s11390-012-1223-2

A Novel Intermediary Framework for Dynamic Edge Service
Composition

Claudia Canali', Member, IEEE, Michele Colajanni', Member, IEEE, Delfina Malandrino?,
Vittorio Scarano?, Member, ACM, and Raffaele Spinelli?

! Department of Information Engineering, University of Modena and Reggio Emilia, Modena, I-4125, Italy
2 Department of Computer Science, University of Salerno, Fisciano (SA), I-84084, Italy

E-mail: {claudia.canali, colajanni}@unimore.it; {delmal, vitsca, spinelli}@dia.unisa.it

Received February 25, 2011; revised December 7, 2011.

Abstract Multimedia content, user mobility and heterogeneous client devices require novel systems that are able to
support ubiquitous access to the Web resources. In this scenario, solutions that combine flexibility, efficiency and scalability
in offering edge services for ubiquitous access are needed. We propose an original intermediary framework, namely Scalable
Intermediary Software Infrastructure (SISI), which is able to dynamically compose edge services on the basis of user prefer-
ences and device characteristics. The SISI framework exploits a per-user profiling mechanism, where each user can initially
set his/her personal preferences through a simple Web interface, and the system is then able to compose at run-time the
necessary components. The basic framework can be enriched through new edge services that can be easily implemented
through a programming model based on APIs and internal functions. Our experiments demonstrate that flexibility and
edge service composition do not affect the system performance. We show that this framework is able to chain multiple edge

services and to guarantee stable performance.

Keywords

1 Introduction

In the ubiquitous computing epoch, one of the main
challenges of Web-based system is to guarantee any-
time/anywhere access to any data and information
through any client device and access network. The ad-
vent of novel Web applications has led to a new way of
interaction, has multiplied the heterogeneity of offered
contents and has promoted interactive forms of infor-
mation sharing among users. At the same time, wireless
technologies have allowed these interactive Web appli-
cations to be accessed through a large variety of mobile
devices, such as tablet computers (e.g., iPad), smart
phones (e.g., iPhone, NexusOne), car-based systems.
These devices are characterized by heterogeneous ca-
pabilities in terms of hardware and software properties,
thus opening several challenges to the content providers
for the delivery and presentation of Web resources. In
this scenario, edge services are needed to tailor Web
contents according to the user preferences and needs
and to the capabilities of mobile client devices.

A modern content generation and delivery function
is now composed by more edge services that should
be applied to obtain the final required version of the

ubiquitous Web, edge service, intermediary framework, service flow, performance

content: we define service flow the sequence of applica-
tions that are able to transform the original content
into the modified version delivered to the end user.
Most edge services are based on user preferences that
are explicitly declared by the user or inferred by the
system. This means that the provider’s system must
support a per-user profiling and the possibility of per-
sonal customization. The framework proposed in this
paper supports edge services that are able to manage
per-user profiles.

Edge services may include a wide range of Web con-
tent transformations, such as content adaptation, con-
tent filtering and privacy protection, and many oth-
ers are appearing and will appear in the future. For
this reason, flexibility and scalability are mandatory re-
quirements of the provider’s system. Content adapta-
tion services involve the transformation of textual and
multimedia contents (e.g., text compression, HTML
structure manipulations, image removal and/or quality
reduction, text-to-speech translation, video-on-demand
adaptation, video streams transcoding) to match user
preferences, client device capabilities, and available net-
work connections!'™8l. Content filtering services al-
low to control which Web sites users can access, thus

Regular Paper

(©2012 Springer Science + Business Media, LLC & Science Press, China

282

making contents accessible only to authorized users and
avoiding children to see inappropriate documents (e.g.,
access control, URL blocking, banners and pop-up fil-
tering). Privacy protection services address the issue
to protect users from privacy leakage and identity theft
during Web navigation (e.g., HTTP request/response
header analysis, disabling of dangerous third party
script executions, blocking of identifying URLs, Web
bugs and other well-known harmful activities[™).

Edge services can be provided client-side!®!, by
the content server” or by an intermediary frame-
work!6:10-11] after the content generation. In this paper,
we consider the last scenario, where, a network interme-
diary component, interposed between the client device
and the content provider, analyzes and transforms the
requested content on-the-fly before delivering the re-
sult to the end user. A typical service flow includes the
following steps: the intermediary framework intercepts
the client request, it fetches the contents from the ori-
gin server, it applies the edge services that modify the
original contents to match the user profile and/or ex-
pectations, and it delivers the modified content to the
client.

A solution based on an intermediary framework
shifts the computational load away from content
provider servers, thus simplifying their design. The
intermediary-based approach represents the preferable
approach to develop Web applications that require
transparency, real time processing, easy usage, sharing
of access from several Web users, high scalability and
performancel!0:12],

Specifically, we designed a “close to clients” interme-
diary framework because this solution presents several
advantages. First, an intermediary framework located
close to the clients may adapt contents coming from
multiple sources. Second, the impact on network traf-
fic of services that considerably increase the size of the
delivered content, such as the Text2Speech service de-
scribed in Section 5, is limited because contents have
to travel only the last mile to the client. Third, perfor-
mance may be improved by exploiting caching policies
of original and adapted content. It is worth to note
that several caching strategies already exist371] that
can be easily integrated into our intermediary frame-
work.

On the other hand, an important issue when provid-
ing third party managed services is the privacy of users,
since there is a potential for privacy violation. However,
an intermediary system is often viewed as a trusted en-
tity if users configure their browsers to go through it!¢.

Several examples of intermediary frameworks for
edge services exist, such as RabbIT'" WebCleaner!!8!
and Privoxy!!®. All these systems may offer multiple

J. Comput. Sci. & Technol., Mar. 2012, Vol.27, No.2

edge services, as we will describe in Subsection 2.2.
However, none of them support an efficient and flexi-
ble dynamic composition of edge services based on user
preferences and device capabilities.

The proposed Scalable Intermediary Software Infras-
tructure (SISI) is a flexible intermediary infrastructure
for ubiquitous Web access that integrates advanced
edge services dynamically composed to match user
preferences and device capabilities. Unlike other in-
termediary frameworks providing general services, SISI
associates each user to one or more profiles contain-
ing personal preferences and device capabilities. In this
way, each user can have his/her requests served accord-
ing to personal settings, independently of the choices
of other users. The possibility of managing multiple
profiles for each user allows the system to change edge
services and related parameters on the basis of current
user condition and/or device.

The flexibility is another important feature of SISI.
The proposed framework simplifies the integration and
configuration of other services and facilitates program-
mers to create new edge services. Several experiments
demonstrate that the dynamic composition of multiple
edge services in SISI is not detrimental for performance
as in other intermediary frameworks.

The paper is organized as follows. Section 2 dis-
cusses the main requirements of intermediary frame-
works for edge services and presents some existing so-
lutions. Section 3 describes the SISI architecture and
its main components. Section 4 outlines the SISI pro-
grammability and flexibility by showing how program-
mers can easily implement new edge services and in-
tegrate them into SISI. Section 5 describes some SISI
edge services that are not offered by other intermediary
systems. Section 6 presents a qualitative comparison
between SISI and existing frameworks for ubiquitous
Web access. Section 7, Section 8 and Section 9 intro-
duce the testbed and analyze the performance and the
scalability of SISI, respectively. Section 10 concludes
the paper with some final remarks.

2 Motivation and Background

Providing advanced edge services for the ubiquitous
Web poses several challenges to the underlying systems.
In this section, we first discuss the main requirements
that an intermediary framework for edge services has
to satisfy, then we present some existing frameworks
offering edge services for the ubiquitous Web.

2.1 Requirements of Intermediary Frameworks
for Edge Services

A fundamental requirement for intermediary

Claudia Canali et al.: An Intermediary for Dynamic Service Composition 283

frameworks offering edge services for the ubiquitous
Web is the capability to customize the offered ser-
vices according to the needs of every single user. Since
edge services include a highly heterogeneous variety of
content transformations, the intermediary framework
should support a mechanism for the dynamic composi-
tion of multiple edge services that will constitute the
services flow to be applied to the user requests. Edge
services should be dynamically selected, configured and
composed depending on the user preferences and device
capabilities. As anticipated in Section 1, every user cus-
tomization is not feasible if the underlying system only
supports a system-wide profile that is used for every
user request. A per-user profiling should be supported
to manage personalized users preferences and device in-
formation. This implies that the framework has also to
support user authentication and authorization mecha-
nisms, to ensure that each user may perform only the
authorized operations. The support of more profiles for
each user offers an important enhancement for the con-
tent customization, because the edge service flow may
be composed by taking into account specific user set-
tings related to his/her current context and used device.

A second important requirement is the programma-
bility of the framework, that is the possibility to extend
or develop from scratch system functionalities in a quick
and easy way. By leveraging a specific execution envi-
ronment and a programming model, a programmable
framework may offer quick prototyping and easy de-
ployment of new customized edge services. The exe-
cution environment has to exhibit a modular structure
for providing the basic components to develop new edge
services, while the programming model should provide
APIs and software libraries to simplify the development
of new edge services and the enhancement of the exist-
ing ones. Developing edge services that can be plugged-
in very easily into the intermediary framework allows
the system to extend its pre-defined behavior without
the need of major modifications of the original source
code. Finally, by enhancing the separation between
the core network infrastructure and the programming
model for developing new edge services, programmers
can develop services without taking care of the internal
details of the underlying system.

A final, but not least, important requirement is re-
lated to the efficiency of the framework in offering ad-
vanced edge services. The high computational expen-
siveness of most edge services[20-21] represents a great
challenge for the underlying system, that has to pro-
vide users with acceptable response time even in case
of high load. Moreover, since a single user request usu-
ally requires a service flow including multiple edge ser-
vices, the intermediary framework should be efficient in

composing edge services and avoid performance degra-
dation. It is important to note that, even if efficiency is
an essential requirement for systems offering edge ser-
vices, not much attention has been devoted to this as-
pect during the design phase of existing frameworks, as
we will discuss in Section 6.

2.2 State-of-the Art of Intermediary Systems

We now present an overview of three frameworks of-
fering edge services for the ubiquitous Web, RabblT,
Privoxy, and WebCleaner, with a description of their
main features. It is worthy to note that the frame-
works that we consider are based on Open Source soft-
ware, and they are written in different programming
and scripting languages, in order to provide a compre-
hensive comparison with the SISI proposal.

RabbIT Web Prozy. RabbIT['" is a Java-based in-
termediary server that aims to speed up Web navigation
by compressing text pages and images, by removing un-
necessary parts of HTML pages, such as HTML tags,
background images, advertisements, banners, pop-ups,
by caching filtered documents before forwarding them
to the clients. RabbIT supports one system-wide pro-
file, that is, all users that connect to the Internet
through this intermediary will have the same services
applied to their requests, differently from SISI that al-
lows the definition of multiple profiles according to dif-
ferent needs. RabbIT has a modular architecture that
facilitates the integration of new modules through a set
of provided APIs, but their development is not a triv-
ial task because RabbIT does not provide any tool for
modules deployment and configuration. To enable new
modules, the main configuration file of RabbIT must be
accessed and modified accordingly. In summary, Rab-
bIT has mainly been conceived as a tool to compress
Web resources and remove possibly annoying elements
from Web pages.

Privory Web Prozy. Privoxy!™ is an interme-
diary system with advanced filtering capabilities to pro-
tect privacy, to modify Web contents, to control ac-
cesses, and to remove advertisements, banners, pop-
ups. Privoxy is implemented in C language and new
services can be added to the system and configured
through proper configuration files, that are accessed
through specific URLs. The configuration files must
be edited according to the user needs because there is
not a simple user interface, and a correct modification
with no error requires experience. Few filters are pro-
vided with the present distribution for ad-filtering by
link and by size, for ad-blocking by URL, and for GIF
De-animation. Moreover, implementing novel services
for Privoxy is not a trivial task, since programmers can

284

not rely on a modular architecture and are not provided
with simple building blocks. Similarly to the other
frameworks, Privoxy allows the definition of system-
wide profiles, with no possibility for user differentiation.
The system administrator can choose among many pro-
files, but only one of them may be loaded at run-time
and will be used for the requests coming from every
user. It is important to highlight that Privoxy is not
compliant with the HT'TP protocol version 1.1.
WebCleaner. WebCleaner'8! is an intermediary sys-
tem implemented in C and Phyton languages. Web-
Cleaner offers filtering capabilities (e.g., removal of
advertisements, banners, Flash and Java-script code),
possibilities of text and image transcoding, services of
Web pages blocking and virus detection. Moreover,
WebCleaner allows only one system-wide profile. Even
if it is not upgraded since 2006, we decided to analyze
its performance for the following reasons: 1) it provides
functionalities comparable with all other systems we se-
lected; 2) it is an Open Source software and licensed
under the GPL; 3) it is implemented in Python with
a parser written in C to parse and analyze Web pages
(i.e., it gives us the possibility to analyze edge servers
implemented in another programming language); 4) it
is configurable and new services can be implemented to
enhance the pre-defined behavior. However, this frame-
work does not offer any support for a quick prototyp-
ing of new edge services and for an ease implementa-
tion of new system functionalities. WebCleaner simply

J. Comput. Sci. & Technol., Mar. 2012, Vol.27, No.2

employs a configuration process to customize services
according to the specific context. New services can be
added through a Web interface by specifying some con-
figuration parameters.

3 Scalable Intermediary Software
Infrastructure (SISI)

In this Section we first present the architecture of the
SISI framework and its components, then we describe
how SISI allows dynamic edge service composition to
satisfy heterogeneous user needs and device constraints
in a ubiquitous Web environment, as shown in Fig.1.

3.1 SISI Architecture

From the architectural point of view, SISI consists
of many modules that allow to intercept client re-
quests, apply the required edge services, and deliver
the adapted response to the client. The SISI mod-
ules have been implemented in the Perl language as
Apache modules!??). There are multiple reasons that
motivate this implementation choice. The Apache Web
server is reliable and highly popular, it supports plug-
in modules for extensibility and is relatively easy to
configurel?3]. These characteristics allow programmers

to quickly and easily implement new modules in the
Perl language and integrate them into Apache by tak-

ing advantage of the power and the flexibility of the
(24]

standard mod_perl Apache module!**). Furthermore, it

Original Web

Blocked Filtered Adapted igi
‘Web Pages Web Pages ‘Web an Pages

Eﬁ

Client Systems

User
Profile

Service Flow

SISI Intermediary

Framework

Content Providers

Privacy Protection Service

Content Filtering Service

Content Adaptation Service

Fig.1. SISI intermediary framework.

Claudia Canali et al.: An Intermediary for Dynamic Service Composition 285

is important to note that having a persistent Perl in-
terpreter embedded into the Apache Web server avoids
the overhead of activating an external interpreter for
any HTTP request that requires to run Perl code.

Fig.2 shows the SISI internal structure, where we
can distinguish three categories of modules:

e CORE Modules. They include the main build-
ing blocks of the SISI framework. The Proxy module,
the Dispatching module and the Authorization module
are devoted to intercept and apply some manipulations
at the early stage of the request processing, while the
Deployment module is used to enhance the SISI frame-
work with new implemented services. These modules
are presented next in this Section.

e SERVICE Modules. They include all details re-
lated to the edge services implementation. These mod-
ules are presented in Section 5.

o SYSTEM Modules. They are at the basis of the
SISI programming model and are presented in Subsec-
tion 4.1.

In the Apache programming environment, each
HTTP request is processed in sequential phases, and
different decisions can be taken about the request at
each phase. This provides the possibility to access and
control all phases of the HTTP request life-cycle, thus
allowing the programmer to enhance and personalize
the behavior of the intermediary server. For each phase
a specialized handler may be provided to manipulate
the requested URI. In addition, multiple handlers can
be chained together to contribute to the processing of

a request.

In the following we describe the SISI CORE modules
outlining their tasks and their relationships with other
modules. They offer all the main internal functionali-
ties and are activated in different phases of the Apache
HTTP request life-cycle.

3.1.1 SISI CORE Modules

SISI CORE modules includes the Proxy module, the
Authorization module, the Dispatching module and the
Deployment module.

The Proxy module intercepts all HT'TP requests
and, as the first step, identifies the user or initiates a
challenge-response authentication cooperating with the
Authorization module (that verifies that the user issu-
ing a request is bearing the necessary authorizations),
then it loads the current user profile, fetches the original
resources and forwards them to the following Apache
phase. It must be emphasized that we have used this
mechanism to authenticate users to both restrict access
to resources and to enhance the trustiness of the SISI
intermediary system. In this phase intervenes the Dis-
patching module that acts as a dispatcher within the
SIST architecture for the available edge services, which
can be customized according to the user preferences. All
modules that implement the edge services are preloaded
in the main memory, but only the modules correspond-
ing to the services requested by the user are actually
added to the transaction. Its main goal is, therefore, to

SISI Workflow and Modules

1 Proxy Module
| PerlTransHandler

<=

PerlResponseHandler
Apache::Deploy

« Apache::Proxy

HTTP Request CORE 3

Modul Dispatching Module
—_— ules

PerlOutputFilterHandler

R
{ PerlAuthenHandler

Apache::Authorization —|

Authorization Module

F 3

Apache::Dispatching

HTTP Response

:
—— | T H
. i
Dispatching | | H
SERVICE — 42 > :'
Deployment Modules 4.1 Content Adaptation Service Y Content Filtering Service !
— — PerlResponseHandler Active PerlResponseHandler Active[™
Module Name: ImageQualityLowerinActive Module Name: NoAdverts Active
Module Name: ImageResizing Not Active \Module Name: NoScripts Not Active

SLS‘IS Core || Accounts !P-ITML
and Service|| Mngmnt arsing
SYSTEM [Apj Libr Library
Modules

: PerIMagick Apache

SISI Programming Model

External Perl Modules Apache Modules

Fig.2. SISI modules and Workflow. SERVICE modules include the Content Adaptation and the Content Filtering edge services. For

these services we show the modules involved in the benchmarking process described in Section 8.

286

compose edge services in a complex service flow accord-
ing to user preferences. Finally, the Deployment mod-
ule allows the system administrator to automatically
add new services to the framework with no need of a
detailed knowledge of the underlying software infras-
tructure.

3.2 SISI User Profile Management

The support for user and device profiling is an im-
portant requirement in the context of the ubiquitous
Web because of the heterogeneity of the devices and of-
fered services. Users need multiple profiles according to
their status or preferences, and different configurations
that should be easily modified.

As discussed in Section 2, user authentication is a
fundamental requirement to allow user profile manage-
ment to fully support the dynamic composition of edge
services and their customization. While systems de-
scribed in Subsection 2.2 do not provide profile mana-
gement features lacking in differentiate the offered ser-
vices depending on the user identity, SISI provides full
support for both creation and management of user pro-
files.

Specifically, when a new user is added to the sys-
tem by the administrator, a default profile is automati-
cally generated and the user can modify it the first time
he/she logs into the system. This default profile is filled
with default values for each content service. A user may
create a new profile, modify or delete an existing profile
through simple forms. Since mobile devices are chara-
cterized by limited capabilities (e.g., display, process-
ing power and connectivity) users connected through a
wireless device may want only black/white images or
resized images to save bandwidth. To this aim, they
can activate the Content Adaptation edge service by
enabling the the Color2Black& White or ImageResiz-
ing modules. If these users are also worried about ob-
jects that may represent a risk for their privacy, then
they can activate the Privacy Protection edge service
by composing it with the previous Content Adaptation
edge service.

A user may also have more profiles that correspond
to different devices. To this purpose, the user can sim-
ply activate the profile suitable to the device and con-
nection that was previously stored. Through a user-
friendly interface, each user may change the service
parameters according to his/her personal preferences
and authorizations. The services activation is manual
(i.e., done by users) and the system has only to load
the current profile associated with the user and apply
the services in the order specified by him/her during
the initial service configuration phase. A future work
envisions the design of an automatic service activation,

J. Comput. Sci. & Technol., Mar. 2012, Vol.27, No.2

inferred by the system, with checks about consistency
and correctness.

Of course the management of per-user profiles adds
some overhead for the system. Specifically, the use of
SISI is subject to one registration step and an authen-
tication for each user session. This causes an initial
overhead for each HTTP client request that is mana-
ged by SISI. This overhead will be quantified in the
experimental results in Section 8.

4 SISI Programmability and Flexibility

In this section we describe the main strengths of the
SISI framework, that is programmability, extensibility
and flexibility.

4.1 SISI Programming Model

SIST allows programmers to design services start-
ing from simple building blocks, implemented in Perl
language, that can be further enhanced by means of
a supported programming model. This programming
model includes facilities that can be used both to im-
plement new services and to enhance the system core
functionalities. Specifically, it is composed of the fol-
lowing SYSTEM modules:

e SISI Service APIs. They allow programmers to
start from templates to develop new (Apache) modules
(i.e., handlers) and include APIs for managing and ac-
cessing the phases of the Apache request life-cycle.

e SISI Core APIs. They deal with all the opera-
tions that are carried out without programmers inter-
vention, such as source content fetching or HTTP re-
quest /response headers manipulation.

e SISI Accounts Mngmt Library. This library in-
cludes functions for the system administrator to cre-
ate/modify/delete user accounts and for end users to
customize edge services and define profiles according to
their own needs. This library also includes a specific
function to select the correct (i.e., active) profile for a
user among these available profiles.

e SISI HTML Parsing Library. This library, imple-
mented in Perl, realizes an efficient parsing of HTML
documents. Several methods have been provided to
programmers, such as methods to search for links, ima-
ges, scripts, in Web pages.

4.2 SISI Service Implementation Details

SISI programmability, as previously described, is a
crucial characteristic since it allows an easy implemen-
tation of novel edge services that enhance the quality
and the perception of user navigation. Easily pro-
grammable frameworks for edge services are necessary
to cope with the rich and dynamic nature of the

Claudia Canali et al.: An Intermediary for Dynamic Service Composition 287

Web[?], and to address the challenges coming from
the ever growing demand for complex and differentiated
services.

Often the introduction of new edge services into
an existing software infrastructure is an expensive and
time consuming process. To simplify this task, SISI
exhibits an extensible and flexible environment where
a compositional framework may provide programmers
with the basic components to quickly and easily develop
new services. The provided services exhibit a minimal
complexity from the programming point of view and
a smaller number of code lines if compared with fil-
ters provided by other systems, typically Java-based.
For example, if we focus the attention on the part of
the HTML page that needs to be filtered, functions
like blink, background or advertisement filtering require
about 50 lines of Java code in RabbIT['"), against the
20 lines of Perl code thanks to the use of regular ex-
pressions in SISI.

To implement a new edge service the programmer
can choose among two possibilities: either implement-
ing the service from scratch, by using the SISI program-
ming model, mod_perl APIs and following the rules of
the Apache module programming, or (this is where SIST
programmability comes in handy) writing a simple Perl
script and then using the SIST Deployment module to
load it into the Apache software.

When services are added to the Apache pool of avail-
able modules (by means of the directives specified in the
Apache main configuration file), and the corresponding
configuration files filled out with the needed parame-
ters, they can be invoked according to a user request.

4.3 Service Deployment Details

Through the deployment module, SISI offers an im-
portant system function that allows the system admini-
strator to automatically add new services to the frame-
work with no necessity of a detailed knowledge about
Apache and mod_perl. It consists of an automatic mod-
ule generation process that implements edge services
starting from simple Perl code fragments.

If the programmers follow some easy and well de-
fined rules (templates), Perl programs can be used to
build the core of the service to be loaded into Apache.
The Deployment module, activated through a specific
internal URI, uses an XML file to define the parame-
ters needed in the dynamic creation and installation of
the new edge services. The deployment is obtained by
filling out forms in an HTML page and provided infor-
mation (i.e., service name, service parameters, and so
on) is stored in an XML file and used by the Deploy-
ment module to build the service itself.

Automated deployment allows a quick and effective

life-cycle management of the service, since a service can
be developed off-line, as a traditional Perl program, ac-
cessing locally stored HTML files that act as test-bed
for the required filtering. When ready, the Perl program
can be simply deployed on the intermediary-based sys-
tem.

5 Out-of-the-Box SISI Edge Services

Providing new edge services into the SISI intermedi-
ary framework is a simple task, since the programmer
may take advantage of the SISI programming model
and does not need to take care of the details of the
underlying system. We implemented a variety of ser-
vices that can be taken as examples by programmers
who wants to create new ones. In particular, the imple-
mented services encompass three different service areas:

e Content adaptation for ubiquitous and mobile
computing;

e Content filtering and privacy protection;

o Web accessibility.

Before describing some of these services, we have to
emphasize that SISI is the only framework that offers
all these functionalities. Content adaptation (i.e., im-
age transcoding) is also provided by RabbIT and Web-
Cleaner (privoxy does not provide any service to ma-
nipulate Web images), services for privacy protection
are provided by Privoxy, while filtering capabilities are
provided by all the analyzed systems but with different
complexity.

5.1 Content Adaptation

For this service area we provided services that al-
low client systems to access Web content regardless of
device capabilities, network connectivity, location, user
preferences and evolving needs. The content adaptation
edge service includes modules that allow to adapt Web
pages according to the capability of requesting client
systems (i.e., Image removal, ImageQualityLowering for
quality downgrade and ImageResizing).

Another interesting example for this service area is
the content selection service, that address the challenge
of creating and presenting Web sites in a form that
is suitable for a wide variety of devices with different
characteristics®®!. Tt is based on the W3C draft on
content selection!?”! that specifies a syntax and a pro-
cessing model for general purpose content selection or
filtering. Selection involves conditional processing of
XML information according to the results of the eval-
uation of expressions. Through this mechanism, some
parts of the information can be selected while other not
delivered, automatically adapting the original content
according to particular accessibility rules.

288

5.2 Content Filtering and Privacy Protection

Internet Web sites deliver to the end users hete-
rogeneous contents, that differ in size, format, mes-
sage and so on. Different technologies are required
to verify the appropriateness of these contents. For
example, some contents may contain material that is
not suitable for children, who increasingly access the
Web at an early age. Content filtering mechanisms
allow to get control on Web site accesses, ensuring
that contents are accessible only by authorized users,
and avoiding children to see inappropriate documents.
For this category we have implemented the Parental-
Control and NoAdverts modules. The ParentalCon-
trol provides functionalities for cookie analysis, text
analysis (i.e., pornographic content, violence- or hate-
oriented content), image (pornography) analysis, and
This service also provides functionalities to
block requests for destination sites that are included in
blacklists since their represent unwanted content. The
NoAdverts module removes advertisements and other
annoying Internet junk (pop-ups, js, etc.).

We also implemented the privacy protection edge
service, that provides functionalities for disabling cook-
ies (for all or for third-party servers), disabling or filter-
ing out script execution, filtering all third-party objects
(this technique can eliminate all object retrievals that
could be used by third-party servers to aggregate infor-
mation about a user’s page retrieval), filtering requests
with specified URLs, header filtering, filtering objects
from top aggregation servers, removing invisible Web
bugs.

SO on.

5.3 Web Accessibility

For this service area we provided services that, tak-
ing into account the rules suggested by the W3C®, im-
prove the accessibility of Web pages by enhancing the
navigation of users with visual, motor or cognitive dis-
abilities.

An example is the LinkRelationship module[?8! that
adds a toolbar containing the LINK attributes on the top
of each HTML page. The objective is twofold: make
HTML pages more accessible by screen readers and al-
low content developers to produce alternative contents,
for example, for browsers that support “braille” render-
ing. Another example is the LinkAccessKey module[2?]
that adds to any link embedded in a Web page a nu-
meric Access Key in such a way to make it accessi-
ble through a simple combination of keyboard keys
ALT+ Access Key+Return. The goal is to make URLSs
accessible from users with motor disabilities. Another
interesting application concerns the improvement of

J. Comput. Sci. & Technol., Mar. 2012, Vol.27, No.2

Web navigation for color blind users. To this aim,
the ColorBlind module modifies background and fore-
ground colors in Web pages and re-colors embedded
images (also animated GIF images) in order to make
more recognizable the red/green contrast for dichro-
matic users?9.

Finally, we implemented the Text2Speech module to
make Web content accessible to people with visual dis-
abilities. However, it could also help the comprehen-
sion of documents that are written in foreign languages,
since a reader that is partially familiar with the spoken
language and not with its written form can be sup-
ported in getting, at least, the meaning of the informa-
tion contained in the document.

To implement the Text2Speech module we used
eSpeakl®% | a compact Open Source software speech syn-
thesizer for English and other languages and for Linux
and Windows platforms. The Text2Speech module first
parses the original HTML document to eliminate use-
less characters, then, the resulted document is parsed
to obtain a text version of the HTML document (by us-
ing an External Perl Library); finally, the resulted text
document is manipulated by the eSpeak synthesizer to
reproduce the corresponding spoken version. Once the
synthesizer outputs the WAVE file, by using the “lame”
application®!], the WAVE file is translated into a (more
compact) MP3 file that is incorporated into the HTML
page through the EMBED HTML tag and, finally, the re-
quested document is returned to the client. When the
output reaches the browser, the result will be a nor-
mal page HTML with contemporaneous reading of the
content.

6 Qualitative Evaluation

In this Section we present a qualitative comparison
between SISI and the existing frameworks for ubiqui-
tous Web edge services presented in Subsection 2.2.
The comparison focuses on the capability of dynami-
cally composing the edge service flow, the programma-
bility and the efficiency of the considered frameworks.
In Table 1 we summarize the main features of each de-
scribed framework.

One of the main differences between SISI and the
other intermediary frameworks is that SISI allows a
per-user configuration, with authentication and autho-
rization mechanisms, while other systems just support
a system-wide profile configuration. This means that
in all other frameworks each user cannot have his/her
personal configuration, but each request will undergo
to the same edge service flow. On the other hand, SISI
not only supports a per-user profiling, but also allows

®http://www.w3.org/WAI/

Claudia Canali et al.: An Intermediary for Dynamic Service Composition 289

Table 1. Main Features of Intermediary Frameworks

Feature RabbIT Privoxy WebCleaner SISI
Programming Language Java (@] C, Phyton Perl
Configuration Interface Web?) WebP) Web®) Web®), GUI
Configuration Very complex Very complex Complex Simple
Installation/Management Simple Complex Complex Simple

Per-user Profile — — — Vv

User Authentication Vv — - Vv

Performance Evaluation®) Partial - — Vv

HTTP/1.1 Compliance No pipelining V4

Supported Platform Linux/Windows Linux/Windows Linux/Mac OS X Linux/Windows

Note: ®: The Web interface only shows information about system status and managed connections.

b).

not offer more powerful tools.

The Web interface allows to modify the configuration file from a text box instead from the command line. It does

). The Web interface allows both service activation and customization.

d).

each user to have more personal profiles, then to choose
the active profile depending on current conditions, such
as the used device. In this way, the service flow may be
different for requests coming from the same users but
through different devices, allowing a customization that
can better satisfy the changing user needs. The inter-
mediary framework supports the dynamic composition
of the edge service flow thanks to its modular structure
that allows to select at run-time the required services
and to apply them to the request.

As regards the framework programmability, the ex-
tension of existing edge services and the development of
new ones are possible for all the considered frameworks.
However, some frameworks (RabbIT and SISI) provide
programmers with exhaustive APIs and libraries that
allow easy and quick prototyping of new edge services,
without the need of knowing the details of the under-
lying infrastructure. On the other hand, other frame-
works (Privoxy and WebCleaner) are not programmer
friendly and require much higher efforts to obtain simi-
lar results. It is worthy to note that all the consid-
ered frameworks offer a basic set of edge services, as
shown in Table 2. In SISI we implemented additional
edge services, as described in Section 5. As we can see
from Table 1, all frameworks are configurable through
a Web interface or a GUI; however, it is worth to note
that the configuration is very easy for SISI, while it is
complex for RabbIT and WebCleaner, and error-prone
for Privoxy, since for the last system, the configuration
process may also require to edit text configuration files,
involving not trivial tasks for standard users.

It is worth to note that a common drawback of exist-
ing frameworks is the trade-off between programmabi-
lity and performance, because frameworks are often
programmable but not efficient, or programmer un-
friendly but efficient. Moreover, often not much at-
tention has been devoted to the performance of the ex-
isting systems in offering edge services. For example,
RabbIT has been tested only to prove the compliance

This refers to any performance study before this work.

to HTTP/1.1; WebCleaner and Privoxy intermediary
systems come with no information about their perfor-
mance. Efficiency is essential for the use of an interme-
diary framework in a real Web context, because many
advanced edge services are computationally expensive
and the composition of multiple edge services may lead
to significant performance degradation in serving re-
quests. SISI is designed to support the composition
of multiple edge services without affecting system per-
formance. An important characteristic of SISI is the
hot-swap of service composition, that is its capability
to load and execute different edge services according to
different user profiles at run-time without the need of
recompiling any part of the software framework. While
the majority of existing frameworks are able to support
a little number of concurrent client requests, SIST may
achieve an efficient edge service composition, as we will
demonstrate in Section 8. We have to recall that per-
formance may be further improved by introducing the
caching functionality, that can be easily and quickly
integrated in the proposed framework. However, we
did not consider this functionality in our performance
evaluation to carry out a fair comparison with the al-
ternative frameworks we have analyzed.

Table 2. Basic Set of Offered Edge Services

Functionality RabbIT Privoxy WebCleaner SISI

GIF De-Animation
Cookies Analysis/Removal —
Header Analysis/Removal
Content Filtering

URL Blocking

Image Transcoding

L I

I
NSRS
L

7 Performance Study

The SISI framework was extensively tested to veri-
fy that its programmability and extensibility have not
been achieved by damaging the system performance. To

290

this aim, we evaluate the performance of SIST and other
intermediary frameworks described in Subsection 2.2
under reproducible workloads, that we especially de-
signed for evaluation purpose. Our choice has been
dictated by the lack of standard benchmarks that sup-
port and stress service composition, therefore, we have
decided to create a realistic workload according to the
most popular studies in this field.

We realize two different workload models: 1) a real
workload, for benchmarks that aim to evaluate the sys-
tems behavior under realistic traffic conditions, and 2)
an intensive workload, for benchmarks that reproduce
intensive traffic conditions, such as flash crowd events.
Moreover, we have realized three different class of work-
ing tests, where different edge services and request rates
are applied to the real and intensive workload models,
in order to analyze and evaluate the performance of
the analyzed intermediary frameworks when multiple
services are composed and applied to the user requests.

In the rest of this section we describe the real and
intensive workload models, then the testbed architec-
ture used to evaluate the performance of the consid-
ered intermediary-based systems under a wide range of
conditions. In the next section, we will describe the
Working Tests and the corresponding experimental re-
sults.

7.1 Workload Models

We rely on past studies on Web workload
characterization?%3233] to create a realistic Web
benchmark that reproduces a “real life” workload. In
terms of workload composition, the Real workload con-
sists of: 60% of images (25% JPEG and 35% GIF) and
30% of HTML documents.

The real workload is modelled through the follow-
ing parameters: 1) the file size distribution, modeled
through a hybrid distribution where the body follows
a Lognormal distribution with mean (x) ~ 7000 and
standard deviation (o) ~ 11000, and the tail follows a
Pareto distribution with (a) ~ 1.3132:34]; 2) the resource
popularity, modeled through the Zipf-like distribution
with parameter o equal to 0.75[32:3%; 3) the tempo-
ral locality, that refers to the time-based correlation in
document access behavior and is modeled through a
Least Recently Used Stack Model with Stack size equal
to 10002, A summary of our workload model and
related parameters are shown in Tables 3~4.

The intensive workload model aims to stress the sys-
tems in order to estimate the maximum load sustain-
able by each intermediary framework. Specifically, we
designed two workloads, namely “Picture” and “Annoy-
ance”, with different sets of Web resources. The basic
idea of the intensive workload is to put much more

J. Comput. Sci. & Technol., Mar. 2012, Vol.27, No.2

Table 3. Real Workload Model Distributions

Category Distribution = Formulas
Resource Size (tail) Pareto ak®x—oT
—(In z—p)2
Resource Size (body) Lognormal 1 e 202
zV2mo
Resource Popularity Zipf-like P(r)=kr—«
1 —(In xfu)2
. 2.z
Temporal Locality LRU Stack —aozC 2

Table 4. Real Workload Model Parameters

Parameter Value
Mean of the Lognormal Distribution (u) 7000
StdDev of Lognormal Distribution (o) 11000
Pareto Tail Index 1.3
Zipf Parameter 0.75
LRU Stack Size 1000

stress on the transcoding process in the case of the “Pic-
ture” workload (expressly made by only images) and on
the filtering process for the “Annoyance” one (expressly
made by only HTML pages with a lot of unwanted con-
tent).

The “Picture” workload has been built based on the
results of the studies on image workload characteriza-
tion in [21, 36]. The workload consists entirely of im-
ages, 50% GIF and 50% JPEG images. The 80% of the
GIF images are smaller than 6 KB, while the 20% are
larger than 6 KB, including a 15% of animated GIF. Of
the JPEG images, the 40% is larger than 6 KB. The
“Annoyance” workload is composed of Web pages from
English-language sites chosen across various categories
from Alexa’s most popular sitesl®7]. This set included
pages from each of 13 categories: arts, business, com-
puters, games, health, home, news, political, recreation,
reference, regional, science, and shopping. We have
analyzed off-line these pages in order to choose those
with a high percentage of unwanted content.

Once defined the workload model, the next step is
to define the performance indexes to evaluate the con-
sidered systems. We choose to analyze the response
time, that is, the time elapsed between sending the re-
quest and obtaining the last byte of the corresponding
response.

Once defined the performance indexes, we must
choose some metrics to get the values that are repre-
sentative for such indexes. Common statistical metrics
are mean, standard deviation, X-percentile and finally
cumulative distribution functions. We consider the Cu-
mulative Distribution Function (CDF) of the response
time as the main performance metric because it is more
significant than average values in a system characte-
rized by heavy-tailed distributions.

We use httperfl8] as synthetic workload genera-
tor. Httperf provides a flexible facility for generating

Claudia Canali et al.: An Intermediary for Dynamic Service Composition 291

various HTTP workloads and collecting several met-
ric measurements, i.e., connection time, latency time,
request and reply rate, throughput, etc. We modi-
fied the httperf tool to collect information about the
response time of each HTTP request issued in the re-
quest stream. To analytically synthesize our Web work-
load models, we also used WebTraffl39]. This tool is able
to capture the salient characteristics of Web workloads,
such as Zipf-like document popularity, heavy-tailed file
size distribution and temporal locality.

7.2 Testbed Architecture

We set up a testbed architecture consisting of three
nodes connected through a switched fast Ethernet LAN
(see Fig.3). We consider this setting as the fairest way
to compare the considered frameworks for providing
edge services because it avoids possible non predictable
WAN network effects.

The client node runs httperf®® to submit the HTTP
request streams, the second node runs the intermediary
servers, and, finally, the third node runs a (Apache)
Web server where we preloaded the files of all our work-
loads.

All nodes are equipped with a Dual Core Pentium 4
at 3.40 GHz, 1 GB Memory RAM, running Fedora Core
11 Linux with Kernel 2.6.29 (as shown in Fig.3). We
should mention that SISI does not require special hard-
ware because it may run on off-the-shelves PCs.

Fedora 11 Linux, Kemnel 2.6.29

CPU (MHz) 340 GHz

Mem. (MB) 1002.06 X3 -

[P Addr, 172161545 _ | v

System Running — Apache Web Server 2. ‘ <
_____ g

Fedora 11 Linux, Kernel 2.6.29

CPU (MHz) 3.40 GHz
Mem. (MB) 1002.06
IP Addr. 172.16.15.61
System Running Edge Servers

Fedora 11 Linux, Kernel 2.6.29

CPU (MHz) 340 GHz
Mem. (MB) 1002.06
[P Addr. 172.16.15.35
System Running httperf

Fig.3. Experimental testbed: the client (i.e., olympus) requests
resources (hosted by utopia) through an intermediary-based sys-

tem (i.e., atlantide).

8 Experimental Results

In this section we describe the experiments we per-
formed to evaluate the performance of the considered

intermediary frameworks and the overhead introduced
by the SISI user profile management. It is worthy to
note that we do not modify any service that was al-
ready implemented in the systems, since our goal is to
test the intermediary frameworks without taking any
(even simple) modification.

We organize the experiments in the following cate-
gories:

e Performance Comparison Tests (PCT);

e Stress Tests (ST);

e User Profiles Tests (UPT).

To provide a deeper insight on the performance
evaluation of the intermediary frameworks, we carried
out a preliminary experiment to measure the response
time achieved when requests are issued directly to the
Web server without any intermediary intervention in
the HTTP flow. Specifically, using the Real workload
model we configured the client running on the olympus
node to request Web pages directly to the origin Web
server running on the utopia node. The result of this
experiment is shown in Fig.4 (i.e., mean response time
of 1.4 ms).

207.2

200
z
E 160
o
E
= 120
2
=
g % 11.6
= 40 19 2.3 -

1.4 u— pavore grs) WebCleaner
0 e . RabbIT
Privoxy

WebServer

Fig.4. Mean response time (ms) for the NoService Working Test.
The first column (i.e., WebServer) refers to the case when no in-
termediary framework is considered and HTTP requests are sent

directly to the Web server.

8.1 Performance Comparison Test (PCT)

The PCT test aims to evaluate the intermediary
frameworks performance in realistic traffic conditions,
under the Real workload model. To compare the inter-
mediary frameworks performance we have analyzed the
services provided by each of them (see Table 2), then
we have selected the services that exhibit “comparable”
complexity and computational requirements.

The PCT test can be further classified in three dif-
ferent working tests:

e NoService working test;

e OneService working test;

e MoreServices working test.

292

NoService Working Test. We carried out this work-
ing test as preliminary experiment to measure the over-
head introduced by the presence of the intermediary
framework in the path between the client and the ori-
gin Web server. To this aim, we configured httperf
to request Web pages through the intermediary frame-
works when no service is applied on the HTTP re-
quest stream. We disabled, on each intermediary frame-
work, all services and specific internal core functionali-
ties (e.g., caching).

As we can see from Fig.4, Privoxy and RabbIT ex-
hibit similar mean response time, while SISI shows a
response time that is greater than one order of mag-
nitude of the two previous intermediary frameworks.
This is due to the fact that SIST is implemented as part
of the Apache architecture, and therefore, it adds an
overhead due to the memory usage of all Apache and
mod_perl modules loaded at Web server startup. Fi-
nally, WebCleaner shows a response time that is two
orders of magnitude higher than Privoxy and RabbIT
response time. A possible explanation for this result is
that WebCleaner uses an HTML SAX parser invoked
for every HTTP request.

OneService Working Test. In the OneService Work-
ing test we have compared the performance of the in-
termediary frameworks when only one service is applied
on the HTTP request stream. For this tests we choose
the content filtering and the transcoding edge services.
The functionality of the content filtering edge service is
to remove all advertisements from the requested Web
resources (it corresponds to the SISI NoAdverts mod-
ule of the content filtering edge service shown in Fig.2).
The Transcoding edge service aims to reduce the qua-
lity of images in order to save bandwidth (it corre-
sponds to the SISI ImageQualityLowering module of
the Transcoding edge service shown in Fig.2).

From Fig.5, which shows the cumulative distribu-
tions of response time of the considered systems for the
content filtering edge service, we can see that RabbIT
shows the best results. However, it is important to note
that the provided content filtering edge services are not
comparable in terms of computational load: by inspect-
ing the Java source code of the RabbIT ad-filtering
service, we found that RabbIT uses a simple regular
expression to look for the string ad, while other sys-
tems rely on complex regular expressions to provide ad-
vanced filtering capabilities that remove ads and other
unwanted Web junk. From the results, we see that also
Privoxy outperforms SISI, with a 90-percentile of 9 ms
against 18.8 ms. The good performance of Privoxy may
be due to its structure, that is a single C module, while
in other frameworks, such as SISI, an overhead is intro-
duced because each HTTP request has to go through

J. Comput. Sci. & Technol., Mar. 2012, Vol.27, No.2

multiple modules to be served. However, we should
consider that for a fair comparison in this test we con-
figured httperf to use HT'TP version 1.0 since Privoxy
does not support the request pipelining (HTTP ver-
sion 1.1). This may explain the worse performance of
SISI, which does not fully exploit its capabilities. We-
bCleaner achieves the worst performance, however, it
shows a minimal increment (i.e., 2.29%) with respect
to the NoService Working test, while Privoxy shows the
biggest increment (i.e., 272%) in terms of user response
time.

Fig.6 shows the cumulative distributions of the re-
sponse time of the considered systems for the Transcod-
ing edge service. This experiment does not take into
consideration the performance of Privoxy since it does
not provide any service for image transformation. As
we can observe, SISI achieves a 90-percentile of the re-
sponse time lower than 20 ms, while the same percentile
is achieved by RabblIT in approximately 35ms. For
this type of service SISI performs better than RabblIT,
which starts to experience an increasing overhead since

o OneService Working Test: Content Filtering

£ ool j —- RabbIT
2 oslf i —- WebCleaner
s ---- Privoxy
£ 0.7 | — SISl

E 06 !

=)

T 05 !

.4

a 04 }

203 :

=02 |

£ 01 J i

~ 0.0

il
0 50 100 150 200 250 300 350 400 450 500
Response Time (ms)

Fig.5. Cumulative distributions of response time for the OneSer-
vice Working Test for the real workload model and the content

filtering edge service.

OneService Working Test: Transcoding

1.0 -

09~ Z —— RabbIT
08! ! —-- WebCleaner
07 — SIS

0.6 'i’

05

04
03

(=
[o+
==

I
i
|
|
1
}
t

Cumulative Distribution Function

=
S

0 50 100 150 200 250 300 350 400 450 500
Response Time (ms)

Fig.6.

Transcoding edge service.

Cumulative distributions of response time for the

Claudia Canali et al.: An Intermediary for Dynamic Service Composition 293

the complexity (in terms of computational load) of the
service tested. The step in the curve of Rabbit depends
on the size of the transcoded images.

MoreService Working Test. This test aims to eval-
uate the intermediary frameworks performance when a
chain of edge services is applied to the HTTP request
stream. For this working test we use the Content fil-
tering and Transcoding edge services considered for the
OneService Working Test, which in this case are applied
one after the other to satisfy the client request.

- MoreServices Working Test

0.9
0.8
0.7 |
0.6 |
0.5
0.4

i
0.3 {
0.2 JI
0.1}

]
ool
0 50 100 150 200 250 300 350 400 450 500

Response Time (ms)

—- RabbIT
—- WebCleaner
— SISI

Cumulative Distribution Function

Fig.7. Cumulative distributions of response time for the More-

Services Working Test for the real workload model.

As we can see from Fig.7, WebCleaner shows once
again the worst results even if with a minimal increase
compared with previous test. On the contrary, Rab-
bIT shows a significant performance degradation, while
SISI shows a minimum increase compared to the previ-
ous test. SISI appears to be efficient in chaining edge
services, because it adds a small overhead for additional
services.

From Table 5, which shows the 90-percentile for both
OneService and MoreServices Working Tests, we can
see that RabbIT shows an overhead that is higher than
that experienced by SIST and WebCleaner. WebCleaner
response time remains high, even if the overhead ob-
tained by increasing the number of services is minimal.
The same applies for SISI, which in comparison with
RabbIT achieves better results.

Table 5. 90-Percentile for the OneService [Content Filtering],
OneService [Transcoding] and MoreServices Working Tests

90-percentile (ms)

OneService
Framework Content Transcoding MoreServices
Filtering
Privoxy 9.04 — —
RabbIT 2.97 32.22 35.72
SISI 18.87 24.84 25.27
WebCleaner 212.11 211.05 213.11

8.2 Stress Test (ST)

With this class of tests we want to evaluate the per-
formance of intermediary frameworks under intensive
traffic conditions. For this category of tests we used the
Intensive workloads defined in Subsection 7.1 expressly
created to stress the edge services. Therefore, the “Pic-
ture” workload will be used to stress the Transcoding
edge service and the “Annoyance” workload to stress
the content filtering edge service.

As for the PCT category also for the ST category
we organized tests in two different Working Tests:

e LowQualityPictures working Test;

e NoAnnoyance Working Test.

LowQualityPictures Working Test. In this work-
ing test we have compared the performance of SISI
and RabblIT by analyzing the response time when the
Transcoding edge service is applied on the request
stream. Since Privoxy does not provide any transcod-
ing services, we do not consider it in this test.

As we can see from Table 6 (i.e., Intensive Workload,
column on the right), SISI achieves better results with
respect to RabbIT. The same applies when we carried
out the same experiment by using the Real Workload
model (Table 6, column on the left). In both experi-
ments SISI outperforms RabbIT, but the most interest-
ing result is that SISI shows the lowest increase in terms
of response time when passing from a realistic workload
to stressful conditions. Finally, for this Working Test,
SIST was able to sustain a load of 77.2 req/s (request
per second) against 44.7 req/s of RabbIT.

Table 6. 90-Percentile for SISI and RabbIT When the
Transcoding Edge Service is Applied to Both
the Real and the Intensive Workload
(i-e., “Picture” Workload Model)

90-Percentile (ms)

Intermediary Real Workload Intensive Workload
Framework

SISI 24.84 144.02
RabbIT 32.22 769.44

NoAnnoyance Working Test. In this working test we
compared the performance of SISI and Privoxy. The
tested edge service is the content filtering edge service.

As we can see from the results in Table 7, in this test
SISI outperforms Privoxy, that for the first time shows
worse performance. It is important to highlight that
Privoxy starts to get worse results when the applied
service exhibits a greater complexity. We argue that
when the cost of the filtering process increases, Privoxy
is not able to sustain too many concurrent requests. To
show that we compared the results of this test with the
results of the experiment (described in Subsection 8.1
and outlined in Table 7, Real Workload column) car-
ried out by applying the same service but by using the

294

real workload model (that does not put more stress on
the filtering process since the different nature, in terms
of type of Web resources, of the working set). We ob-
serve that the experienced overhead is high for both the
intermediary frameworks. However, the most interest-
ing result is that under the Intensive workload Privoxy
shows a 90-percentile of the response time that is higher
of 50% with respect to SISI, while under the real work-
load the 90-percentile of Privoxy was 66% lower than
that of SISI. This means that the Privoxy framework
is overwhelmed under an intensive traffic. Finally, for
this working test, SISI was able to sustain a load of 92.6
req/s against 60 req/s of Privoxy.

Table 7. 90-Percentile for SISI and Privoxy When the
Content Filtering Edge Service is Applied to Both the
Real and the Intensive Workloads

90-Percentile (ms)

Intermediary Real Workload Intensive Workload
Framework

SIST 15.52 7238.90
Privoxy 5.43 10807.94

8.3 User Profiles Tests

An important difference between SISI and the other
intermediary frameworks is that SISI performs user au-
thentication and then has to load a specific profile for
each user, instead of just considering a system-wide pro-
file. It is, then, important to measure the overhead
introduced by the SISI profile management.

We compare the results of the OneService Work-
ing Test described in Subsection 8.1, where authenti-
cation was disabled, with the results obtained by ap-
plying the same service with enabled authentication.
The end result of this experiment is that the overhead
introduced by the authentication process is negligible,
since it corresponds to a small increment of the 8% on
the median response time. This result emphasizes that
the overhead due to the management of user profiles is
not critical, in terms of performance, for intermediary
frameworks that provide advanced edge services.

8.4 Final Considerations

In this subsection we summarize the results obtained
in all experiments providing some considerations about
the analyzed intermediary frameworks.

WebCleaner does not provide any support for quick
and easy development of new edge services. Moreover,
this framework shows the worst results compared to all
other intermediary framework for all the performed ex-
periments. This is basically due to the high overhead
introduced by the system even when no services are
required and the requests just flow through the inter-
mediary framework without any intervention.

J. Comput. Sci. & Technol., Mar. 2012, Vol.27, No.2

The main advantages of Privoxy are robustness and
reliability, while the main drawbacks are that its archi-
tecture is neither modular nor programmable. Imple-
menting new edge services is not a trivial task, as well
as the configuration of the intermediary framework it-
self. In terms of performance, Privoxy shows very good
performance under realistic traffic conditions thanks to
its structure. However, its performance significantly de-
grades under intensive traffic conditions. Furthermore,
Privoxy is not fully compatible with HTTP 1.1 specifi-
cations.

RabbIT has a modular and programmable architec-
ture, new services can be added and configured through
configuration files. This framework achieves good per-
formance only when tested with a Content filtering edge
service under realistic traffic conditions; however, this
result is due to the specific implementation of the Con-
tent filtering service, that has a very low computational
cost. On the other hand, the RabbIT performance con-
siderably degrades when a chain of multiple services
is applied on HTTP request streams as well as under
intensive traffic conditions.

The proposed SISI framework is easy to install, to
configure and to extend with new edge services thanks
to its programmability and flexibility. It is the only
framework being able to provide complex functionali-
ties other than filtering, compression and image manip-
ulation as provided by others. It is also able to provide
mechanisms to record security related events (logging)
by producing an audit trail that makes possible the re-
construction and examination of a sequence of events.
SISI shows the best performance in case of intensive
traffic conditions with respect to all other frameworks
and is very efficient in chaining multiple edge services.
Finally, SISI is the only framework that allows each user
to define one or more personal profiles in according to
the capabilities of heterogeneous client devices and user
preferences/needs. We proved that the SISI user pro-
file management is not critical in terms of performance
when edge services are applied on HTTP transactions,
both under realistic and intensive traffic conditions.

9 Scalability Study

In this Section we describe the scalability experi-
ments we have performed to show that increasing the
number of offered services does not impact negatively
on user experience and that services composition does
not affect the overall system performance.

Before describing in detail our scalability test, we
have to present two important considerations. First,
since we are offering edge services rather than Web ser-
vices we cannot test millions of them. Second, edge ser-
vices, as described in Section 1, involve (text and image)

Claudia Canali et al.: An Intermediary for Dynamic Service Composition 295

content transformations and for that reason, their in-
vocations is not always idempotent. In particular the
latter consideration was fundamental in the design of
our scalability experiments.

To accomplish all experiments we have used the
same setting used for the performance study. Specifi-
cally, we have run httperf (on the olympus client node)
sending a request for a specific resource (hosted by
the utopia server node) to the SISI framework (on the
atlantide intermediary node) by applying ¢ service in-
vocations, where ¢ varies between 1 and 1024 (choice
needed, as anticipated before, since we are testing idem-
potent services). The size of the requested resource
is nearly 400KB (i.e., a heavy resource) while the ap-
plied service is a text-based service, that is the LinkAc-
cessKey (i.e., LAK) described in Section 5.

In general, the overall response time experienced by
end users is the sum of three different time values:
a constant time due to the network latency (between
the client and the intermediary in the request phase
and between the server and the intermediary in the re-
sponse phase), the overhead of the infrastructure (time
required to load all Apache and SISI modules) and, fi-
nally, the time required for service processing (strongly
dependent on the service implementation).

Each service also loads specific modules (catego-
rized as SYSTEM modules and described in Section 4)
to provide specific functionalities (as an example all
image-based services load the PerlMagick library to ma-
nipulate images(*?), and in general, all implemented ser-
vices load the SISI SYSTEM modules to manage user
profiling and HTML parsing).

Our goal is to calculate the overhead achieved when
comparing ¢ composed instances of the same service
against a single instance. We have calculated and com-
pared two values: 1) the time required to process a
single instance of the LAK service that we denote with
Ts(1) and 2) the time required to apply 4 instances of
the LAK service, denoted by Ts(i), and applied ite-
ratively on SISI. These values correspond to the infras-
tructure and service time processing only, since we cal-
culated and isolated the network latency time. We plot
the scaled performance index (SPI) defined by:

Ts(i)

SPIG) = 3y

Vi € [1..1024]. (1)

As shown in Fig.8, the time of iteratively execut-
ing ¢ instances of the same service within SISI is very
close to the time needed to execute i copies of the ser-
vice separately (once eliminated the network overhead).
The small advantage in terms of performances of Ts(7)
can be explained: each service loads modules needed
for user profiling, image or text manipulations, HTML

parsing and so on. Obviously, for service composition
experiments, this modules loading is performed only
one time and shared for all the different instances of
the applied service, involving, therefore, better response
time.

Scalability Test

Scaled Performance Index

2 4 8 16 32 64 128 256 512 1024
Number of Service Invocations

Fig.8. Scaled performance index for 1024 services invocations.

In summary, we can conclude that the SISI frame-
work is able to provide and compose multiple edge ser-
vices and to guarantee stable performance and scala-
bility, without affecting users experience during their
navigation on the Web.

10 Conclusions

In this paper we present a new framework, namely
Scalable Intermediary Software Infrastructure (SISI),
that aims at facilitating the deployment of advanced
edge services and their dynamic composition to meet
users preferences and needs.

It is able to support dynamic edge service composi-
tion by creating at run-time complex applications start-
ing from a set of available edge services; service config-
uration is possible through a user-friendly interface.

SISI differs from existing intermediary frameworks
because it is able to offer per-user profiles and user au-
thentication. Users can define one or more personal
profiles, in such a way the requests of each user may
involve the application of specific edge services, that
can be dynamically composed at run-time. A future
work will focus on how to make automatic service ac-
tivation, allowing services to be automatically invoked
according to users’ needs, preferences and also contexts.
SIST also fills the gap between programmability and ef-
ficiency that are pursued separately by existing frame-
works. SISI leverages on a modular architecture that
allows an easy definition of new functionalities for a
wide range of application fields.

An important direction is about the distribution of
SIST on several machines to achieve better performance.
The idea is to implement a dispatching component, in-
side SISI, which invokes remote services, implemented
by exploiting the virtual host mechanism of Apache.

296

The SISI framework was extensively tested to veri-
fy that the capability of dynamically composing edge
services and the framework flexibility do not affect the
performance and the scalability of the offered services.
Our experiments demonstrate that SISI is able to ef-
ficiently compose edge services to allow complex func-
tionalities for a wide range of application fields, and
therefore, it represents a viable and efficient solution to
deploy advanced edge services for the ubiquitous Web.

Finally, SISI is an open source project, it can be
downloaded at the address http://isis.dia.unisa.it/pro-
jects/SISI/Downloads/SISI_EdgeServer.zip, and will
be placed on Sourceforge at the address http://so-
urceforge.net/projects/sisi-edgeserver/ for future
community-driven development.

Acknowledgment We would like to thank Anna
Pizzuti for her collaboration during the experimental
process.

References

[1] Bellavista P, Corradi A, Stefanelli C. Application-level QoS
control for video-on-demand. IEEE Internet Computing,
2003, 7(6): 16-24.

[2] Colajanni M, Lancellotti R, Yu P S. Web Content Delivery,
Tang X, Xu J, Chanson S (eds.), Springer USA, 2005, pp.285-
304.

[3] El-Khatib K, Bochmann G V, El Saddik A. A QoS-based
framework for distributed content adaptation. In Proc. the
1st International Conference on Quality of Service in Hetero-
geneous Wired/Wireless Networks, Washington, DC, USA,
Oct. 2004, pp.308-312.

[4] He J, Gao T, Hao W et al. A flexible content adaptation
system using a rule-based approach. IEEE Transactions on
Knowledge and Data Engineering, 2007, 19(1): 127-140.

[5] Jang M, Kim J H, Sohn J C. Web content adaptation and
transcoding based on CC/PP and semantic templates. In
Proc. the 12th International World Wide Web Conference
WWW (Posters), Budapest, Hungary, May 20-24, 2003.

[6] Wijnants M, Monsieurs P, Quax P, Lamotte W. Exploiting
proxy-based transcoding to increase the user quality of expe-
rience in networked applications. In Proc. the 1st Interna-
tional Workshop on Advanced Architectures and Algorithms
for Internet Delivery and Applications, Orlando, FL, USA,
June 15, 2005, pp.73-80.

[7] Krishnamurthy B, Malandrino D, Wills C E. Measuring pri-

vacy loss and the impact of privacy protection in web brows-

ing. In Proc. the 3rd Symposium on Usable Privacy and

Security (SOUPS 2007), Pittsburgh, PA, USA, July 18-20,

2007, pp.52-63.

Adblock plus. http://adblockplus.org/.

[9] Hoskins J. Exploring IBM accelerators for websphere portal,
IBM White Paper, 2009.

[10] Canali C, Colajanni M, Lancellotti R. A Two-level distributed
architecture for the support of content adaptation and deliv-
ery services. Cluster Computing, 2010, 13(1): 1-17.

[11] Hsiao J L, Hung H P, Chen H S. Versatile Transcoding proxy
for Internet content adaptation. IEEE Transactions on Mul-
timedia, 2008, 10(4): 646-658.

[12] Saddik A E. Performance measurements of Web services-
based applications. [IEEE Transactions on Instrumentation
and Measurement, 2006, 55(5): 1599-1605.

o

J. Comput. Sci. & Technol., Mar. 2012, Vol.27, No.2

[13] Kiingas P, Dumas M. Configurable SOAP proxy cache for
data provisioning web services. In Proc. the 2011 ACM Sym-
posium on Applied Computing (SAC 2011), Taiwan, China,
May 21-24, 2011, pp.1614-1621.

[14] Waleed A, Shamsuddin M S, Ismail A S. A survey of Web
caching and prefetching. International Journal of Advances
in Soft Computing and Its Applications, 2011, 3(1): 19-24.

[15] Kumar C, Norris J B. A new approach for a proxy-level Web
caching mechanism. Decision Support Systems, 2008, 46(1):
52-60.

[16] Krishnamurthy B, Rexford J. Web Protocols and Practice:
HTTP/1.1, Networking Protocols, Caching, and Traffic Mea-
surement. Addison Wesley, 2001.

[17] RabbIT proxy. http://khelekore.org/rabbit/.

[18] Webcleaner Filter Proxy. http://webcleaner.sourceforge.net/.

[19] Privoxy Web Proxy. http://www.privoxy.org/.

[20] Canali C, Colajanni M, Lancellotti R. Performance impact of
future mobile-Web based services on the server infrastructure.
IEEE Internet Computing, 2009, 13(2): 60-68.

[21] Chandra S. Content adaptation and transcoding. In Practical
Handbook of Internet Computing, Singh M P (eds.), Chapman
Hall & CRC Press, 2004.

[22] The Apache Software Foundation. http://www.apache.org.

[23] Web server survey. http://news.netcraft.com/archives/web_se-
rver_survey.html.

[24] mod_perl. http://www.perl.apache.org.

[25] Malandrino D, Scarano V. Tackling Web dynamics by pro-
grammable proxies. Computer Networks, 2006, 50(10): 1564-
1580.

[26] Grieco R, Malandrino D, Mazzoni F, Scarano V. Mobile
Web services via programmable proxies. In Proc. the IFIP
TC8 Working Conference on Mobile Information Systems
(MOBIS 2005), Leeds, UK, December 2005, pp.139-146.

[27] W3C working draft: Content selection for device indepen-
dence (DISelect) 1.0. http://www.w3.org/TR/cselection/.

[28] Erra U, Iaccarino G, Malandrino D, Scarano V. Personaliz-
able edge services for Web accessibility. Universal Access in
the Information Society, 2007, 6(3): 285-306.

[29] Taccarino G, Malandrino D, Percio M D, Scarano V. Effi-
cient edge-services for colorblind users. In Proc. the 15th
International Conference on World Wide Web (WWW 2006
Posters), Edinburgh, Scotland, May 23-25, 2006, pp.919-920.

[30] eSpeak text to speech. http://espeak.sourceforge.net/.

[31] The Lame Project. http://lame.sourceforge.net/.

[32] Williams C W A, Arlitt M, Barker K. In Web Content De-
livery, Tang X, Xu J, Chanson S (eds.), Springer USA, 2005,
pp.3-21.

[33] Faber A M, Gupta M, Viecco C H. Revisiting Web server
workload invariants in the context of scientific Web sites. In
Proc. the 2006 ACM/IEEE Conference on Supercomputing,
Tampa, Florida, USA, Nov. 2006, Article 110.

[34] Bent L, Rabinovich M, Voelker G M, Xiao Z. Characteri-
zation of a large Web site population with implications for
content delivery. In Proc. the 13th International Conference
on World Wide Web, New York, NY, USA, May 17-20, 2004,
pp-522-533.

[35] Yamakami T. A zipf-like distribution of popularity and hits in
the mobile web pages with short life time. In Proc. the 7th In-
ternational Conference on Parallel and Distributed Comput-
ing, Applications and Technologies (PDCAT 2006), Taiwan,
China, December 2006, pp.240-243.

[36] Hu J, Bagga A. Categorizing images in Web documents.
IEEE Multimedia, 2004, 11(1): 22-30.

[37] Alexa. http://www.alexa.com/.

[38] Mosberger D, Jin T. httperf: A tool for measuring Web server
performance. Performance Evaluation Review, 1998, 26(3):
31-37.

Claudia Canali et al.: An Intermediary for Dynamic Service Composition 297

[39] Markatchev N, Williamson C. WebTraff: A GUI for Web
proxy cache workload modeling and analysis. In Proc. the
10th IEEE International Symposium on Modeling, Analysis,
and Simulation of Computer and Telecommunications Sys-
tems, Washington, DC, USA, 2002, pp.356-363.

PerlMagick API 6.70. http://www.imagemagick.org/script/pe-
rl-magick.php.

[40

Claudia Canali is a researcher
at the University of Modena and
Reggio Emilia since 2008. She got
the degree with highest honor in
computer engineering from the same
university in 2002, and the Ph.D. de-
gree in computer engineering from
the University of Parma in March
2006. During the Ph.D. she spent
eight months as visiting researcher at
the AT&T Research Labs in Florham Park, New Jersey.
Her research interests include content adaptation and de-
livery, distributed architectures for Internet-based services,
and wireless systems for mobile Web access. Home page:
http://weblab.ing.unimo.it/people/canali.

Michele Colajanni is a full pro-
fessor in computer engineering at
the University of Modena and Reg-
gio Emilia since 2000. He re-
ceived the Master’s degree in com-
puter science from the University of
Pisa, and the Ph.D. degree in com-
' puter engineering from the Univer-

sity of Roma in 1992. He manages
the Interdepartment Research Cen-
ter on Security and Safety (CRIS), and he is the direc-
tor of the postgraduate master course in information se-
curity: Technology and Law. His research interests in-
clude performance and prediction models, information se-
curity, management of large scale systems. Home page:
http://weblab.ing.unimo.it/people/colajanni.

Delfina Malandrino received
the degree with highest honor in
computer science from the Univer-
sity of Salerno (Italy) in 2000 and
the Ph.D. degree in computer sci-
ence from the University of Salerno
in 2004. From October to Decem-
ber 2006 she visited the AT&T Re-
search Labs in Florham Park, New
Jersey, USA, working with Balachan-
der Krishnamurthy in the field of online privacy pro-
tection. From November 2007 she is an assistant pro-
fessor at the Department of Information of the Uni-
versity of Salerno. Her research activities mainly fo-
cus on the following research areas: distributed systems,
adaptive and collaborative systems, information visualiza-
tion systems, social networking, Internet traffic measure-
ment and benchmarking, privacy protection. Home page:
http://www.dia.unisa.it/professori/delmal.

Vittorio Scarano received the
degree in computer science from the
University of Salerno (Italy) in 1990
and he received the Ph.D. degree
in applied mathematics and com-
puter science from the University
of Naples (Italy) in 1995. Since
2001 he is an associate professor at
the University of Salerno. His re-
search focuses on multimedia and
distributed systems on the World Wide Web, covering
several aspects from a theoretical perspective (P2P sys-
tems and architectures) to applications (intermediaries,
cooperative systems and multimedia). Recently, his re-
search interests are also devoted to information visuali-
zation and interactive virtual environments. Home page:
http://www.dia.unisa.it /professori/vitsca.

Raffaele Spinelli received the
degree with highest honor in com-
puter science from the University of
Salerno (Italy) in 2010. He is cur-
rently a second year Ph.D. candidate
in computer science at the Univer-
sity of Salerno. His research focuses
on Internet traffic measurement and
benchmarking.

