Skip to main content
Log in

Satisfiability with Index Dependency

  • Published:
Journal of Computer Science and Technology Aims and scope Submit manuscript

Abstract

We study the Boolean satisfiability problem (SAT) restricted on input formulas for which there are linear arithmetic constraints imposed on the indices of variables occurring in the same clause. This can be seen as a structural counterpart of Schaefer’s dichotomy theorem which studies the SAT problem with additional constraints on the assigned values of variables in the same clause. More precisely, let k-SAT\( \left( {m,\mathcal{A}} \right) \) denote the SAT problem restricted on instances of k-CNF formulas, in every clause of which the indices of the last k − m variables are totally decided by the first m ones through some linear equations chosen from \( \mathcal{A} \). For example, if \( \mathcal{A} \) contains i 3 = i 1 +2i 2 and i 4 = i 2− i 1 +1, then a clause of the input to 4-SAT(2, \( \mathcal{A} \)) has the form yi 1yi 2yi 1 + 2i 2yi 2− i 1 + 1, with y i being x i or \( \overline {xi} \). We obtain the following results: 1) If m ≥ 2, then for any set \( \mathcal{A} \) of linear constraints, the restricted problem k-SAT(m, \( \mathcal{A} \)) is either in P or NP-complete assuming P ≠ NP. Moreover, the corresponding #SAT problem is always #P-complete, and the Max-SAT problem does not allow a polynomial time approximation scheme assuming P  NP. 2) m = 1, that is, in every clause only one index can be chosen freely. In this case, we develop a general framework together with some techniques for designing polynomial-time algorithms for the restricted SAT problems. Using these, we prove that for any \( \mathcal{A} \), #2-SAT(1, \( \mathcal{A} \)) and Max-2-SAT(1, \( \mathcal{A} \)) are both polynomial-time solvable, which is in sharp contrast with the hardness results of general #2-SAT and Max-2-SAT. For fixed k ≥ 3, we obtain a large class of non-trivial constraints \( \mathcal{A} \), under which the problems k-SAT(1, \( \mathcal{A} \)), #k-SAT(1, \( \mathcal{A} \)) and Max-k-SAT(1, \( \mathcal{A} \)) can all be solved in polynomial time or quasi-polynomial time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Cook S A. The complexity of theorem proving procedures. In Proc. ACM STOC, May 1971, pp.151–158.

  2. Aspvall B, Plass M F, Tarjan R E. A linear-time algorithm for testing the truth of certain quantified boolean formulas. Inf. Process. Lett., 1979, 8(3): 121–123.

    Article  MathSciNet  MATH  Google Scholar 

  3. Valiant L G. The complexity of computing the permanent. Theoret. Comput. Sci., 1979, 8(2): 189–201.

    Article  MathSciNet  MATH  Google Scholar 

  4. Valiant L G. The complexity of enumeration and reliability problems. SIAM J. Comput., 1979, 8(3): 410–421.

    Article  MathSciNet  MATH  Google Scholar 

  5. Arora S, Lund C, Motwani R, Sudan M, Szegedy M. Proof verification and the hardness of approximation problems. J. ACM, 1998, 45(3): 501–555.

    Article  MathSciNet  MATH  Google Scholar 

  6. Håstad J. Some optimal inapproximability results. J. ACM, 2001, 48(4): 798–859.

    Article  MathSciNet  MATH  Google Scholar 

  7. Henschen L, Wos L. Unit refutations and Horn sets. J. ACM, 1974, 21(4): 590–605.

    Article  MathSciNet  MATH  Google Scholar 

  8. Yamasaki S, Doshita S. The satisfiability problem for the class consisting of Horn sentences and some non-Horn sentences in propositional logic. Infor. Control, 1983, 59(1–3): 1–12.

    Article  MathSciNet  MATH  Google Scholar 

  9. Schaefer T J. The complexity of satisfiability problems. In Proc. ACM STOC, May 1978, pp.216–226.

  10. Allender E, Bauland M, Immerman N, Schnoor H, Vollmer H. The complexity of satisfiability problems: Refining Schaefer’s theorem. J. Comput. System Sci., 2009, 75(4): 245–254.

    Article  MathSciNet  MATH  Google Scholar 

  11. Tovey C A. A simplified NP-complete satisfiability problem. Discrete Appl. Math., 1984, 8(1): 85–89.

    Article  MathSciNet  MATH  Google Scholar 

  12. Kratochvíl J, Savický P, Tuza Z. One more occurrence of variables makes satisfiability jump from trivial to NP-complete. SIAM J. Comput., 1993, 22(1): 203–210.

    Article  MathSciNet  MATH  Google Scholar 

  13. Gebauer H, Szabó T, Tardos G. The local lemma is tight for SAT. In Proc. the 22nd ACM-SIAM Symposium on Discrete Algorithms (SODA), Jan. 2011, pp.664–674.

  14. Lichtenstein D. Planar formulae and their uses. SIAM J. Comput., 1982, 11(2): 329–343.

    Article  MathSciNet  MATH  Google Scholar 

  15. Monien B, Sudborough I H. Bandwidth constrained NPcomplete problems. In Proc. ACM STOC, May 1981, pp.207–217.

  16. Georgiou K, Papakonstantinou P A. Complexity and algorithms for well-structured k-SAT instances. In Proc. the 11th International Conference on Theory and Applications of Satisfiability Testing (SAT), May 2008, pp.105–118.

  17. Rosen K H. Elementary Number Theory and its Applications (5th Edition), Addison Wesley, 2004.

  18. Borosh I, Flahive M, Rubin D, Treybig B. A sharp bound for solutions of linear diophantine equations. P. Am. Math. Soc., 1989, 105(4): 844–846.

    Article  MathSciNet  MATH  Google Scholar 

  19. Borosh I, Flahive M, Treybig B. Small solution of linear Diophantine equations. Discrete Math., 1986, 58(3): 215–220.

    Article  MathSciNet  MATH  Google Scholar 

  20. Bradley G H. Algorithms for Hermite and Smith normal matrices and linear diophantine equations. Math. Comput., 1971, 25(116): 897–907.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Yu Liang.

Additional information

This work was supported in part by the National Basic Research 973 Program of China under Grant Nos. 2011CBA00300, 2011CBA00301, and the National Natural Science Foundation of China under Grant Nos. 61033001, 61061130540, 61073174.

A preliminary version of this paper appeared in Proceedings of ISAAC 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, HY., He, J. Satisfiability with Index Dependency. J. Comput. Sci. Technol. 27, 668–677 (2012). https://doi.org/10.1007/s11390-012-1253-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11390-012-1253-9

Keywords

Navigation