Skip to main content
Log in

A Multi-Channel Salience Based Detail Exaggeration Technique for 3D Relief Surfaces

  • Regular Paper
  • Published:
Journal of Computer Science and Technology Aims and scope Submit manuscript

Abstract

Visual saliency can always persuade the viewer's visual attention to fine-scale mesostructure of 3D complex shapes. Owing to the multi-channel salience measure and salience-domain shape modeling technique, a novel visual saliency based shape depiction scheme is presented to exaggerate salient geometric details of the underlying relief surface. Our multi-channel salience measure is calculated by combining three feature maps, i.e., the 0-order feature map of local height distribution, the 1-order feature map of normal difference, and the 2-order feature map of mean curvature variation. The original relief surface is firstly manipulated by a salience-domain enhancement function, and the detail exaggeration surface can then be obtained by adjusting the surface normals of the original surface as the corresponding final normals of the manipulated surface. The advantage of our detail exaggeration technique is that it can adaptively alter the shading of the original shape to reveal visually salient features whilst keeping the desired appearance unimpaired. The experimental results demonstrate that our non-photorealistic shading scheme can enhance the surface mesostructure effectively and thus improving the shape depiction of the relief surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Zatzarinni R, Tal A, Shamir A. Relief analysis and extraction. ACM Transactions on Graphics, 2009, 28(5), Article No.136.

  2. Kolomenkin M, Shimshoni I, Tal A. On edge detection on surfaces. In Proc. CVPR, June 2009, pp.2767-2774.

  3. Kolomenkin M, Shimshoni I, Tal A. Prominent field for shape processing and analysis of archaeological artifacts. International Journal of Computer Vision, 2011, 94(1): 89-100.

    Article  Google Scholar 

  4. Dischler J M, Ghazanfarpour D. A procedural description of geometric textures by spectral and spatial analysis of profiles. Computer Graphics Forum, 1997, 16(3): 129-139.

    Article  Google Scholar 

  5. Wang J, Dana K J. Relief texture from specularities. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(3): 446-457.

    Article  Google Scholar 

  6. De Toledo R, Wang B, Levy B. Geometry textures and applications. Computer Graphics Forum, 2008, 27(8): 2053-2065.

    Article  Google Scholar 

  7. Itti L, Koch C, Niebur E. A model of saliency based visual attention for rapid scene analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(11): 1254-1259.

    Article  Google Scholar 

  8. Tood J T. The visual perception of 3D shape. Trends in Cognitive Sciences, 2004, 8(3): 115-121.

    Article  Google Scholar 

  9. Agrawala M, Durand F. Guest editors' Introduction: Smart depiction for visual communication. IEEE Computer Graphics and Applications, 2005, 25(3): 20-21.

    Article  Google Scholar 

  10. Lee C, Varshney A, Jacobs D. Mesh saliency. ACM Transactions on Graphics, 2005, 24(3): 659-666.

    Article  Google Scholar 

  11. Cheng M, Zhang G, Mitra N J, Huang X, Hu S. Global contrast based salient region detection. In Proc. the 24th CVPR, June 2011, pp.409-416.

  12. Wang D, Li G, Jia W, Luo X. Saliency-driven scaling optimization for image retargeting. The Visual Computer, 2011, 27(9): 853-860.

    Article  Google Scholar 

  13. Lee H, Lavoué G, Dupont F. Rate-distortion optimization for progressive compression of 3D mesh with color attributes. The Visual Computer, 2012, 28(2): 137-153.

    Article  Google Scholar 

  14. Viola I, Feixas M, Sbert M, Gröller M. Importance-driven focus of attention. IEEE Transactions on Visualization and Computer Graphics, 2006, 12(5): 933-940.

    Article  Google Scholar 

  15. Kim Y, Varshney A. Saliency-guided enhancement for volume visualization. IEEE Transactions on Visualization and Computer Graphics, 2006, 12(5): 925-932.

    Article  Google Scholar 

  16. Kim Y, Varshney A. Persuading visual attention through geometry. IEEE Transactions on Visualization and Computer Graphics, 2008, 14(4): 772-782.

    Article  Google Scholar 

  17. Miao Y, Feng J, Wang J, Pajarola R. A shape enhancement technique based on multi-channel salience measure. In Lecture Notes in Computer Science 7633, Hu S M, Martin R R (eds.), 2012, pp.115-121.

  18. Cook R L. Shade trees. Computer Graphics, 1984, 18(3): 223-231.

    Article  Google Scholar 

  19. Wang L, Wang X, Tong X, Lin S, Hu S, Guo B, Shum H Y. View-dependent displacement mapping. ACM Transactions on Graphics, 2003, 22(3): 334-339.

    Article  Google Scholar 

  20. Zhou K, Huang X, Wang X, Tong Y, Desbrun M, Guo B, Shum H Y. Mesh quilting for geometric texture synthesis. ACM Transactions on Graphics, 2006, 25(3): 690-697.

    Article  Google Scholar 

  21. Blinn J F. Simulation of wrinkled surfaces. Computer Graphics, 1978, 12(3): 286-292.

    Article  Google Scholar 

  22. Cignoni P, Scopigno R, Tarini M. A simple normal enhancement technique for interactive non-photorealistic renderings. Computers & Graphics, 2005, 29(1): 125-133.

    Article  Google Scholar 

  23. Ritschel T, Smith K, Ihrke M, Grosch T, Myszkowski K, Seidel H P. 3D unsharp masking for scene coherent enhancement. ACM Transactions on Graphics, 2008, 27(3), Article No. 90.

    Google Scholar 

  24. Rusinkiewicz S, Burns M, DeCarlo D. Exaggerated shading for depicting shape and detail. ACM Transactions on Graphics, 2006, 25(3): 1199-1205.

    Article  Google Scholar 

  25. Vergne R, Pacanowski R, Barla P, Granier X, Schlick C. Light warping for enhanced surface depiction. ACM Transactions on Graphics, 2009, 28(3), Article No. 25.

  26. Vergne R, Pacanowski R, Barla P, Granier X, Schlick C. Radiance scaling for versatile surface enhancement. In Proc. Symposium on Interactive 3D Graphics and Games, Feb. 2010, pp.143-150.

  27. Zhang X, Chen W, Fang J, Wang R, Peng Q. Perceptually-motivated shape exaggeration. The Visual Computer, 2010, 26(6-8): 985-995.

    Article  Google Scholar 

  28. Lai Y, Zhou Q, Hu S, Wallner J, Pottmann H. Robust feature classification and editing. IEEE Transactions on Visualization and Computer Graphics, 2007, 13(1): 34-45.

    Article  Google Scholar 

  29. Wang H, Chen H, Su Z, Cao J, Liu F, Shi X. Versatile surface detail editing via Laplacian coordinates. The Visual Computer, 2011, 27(5): 401-411.

    Article  Google Scholar 

  30. Cipriano G, Phillips G N, Gleicher M. Multi-scale surface descriptors. IEEE Transactions on Visualization and Computer Graphics, 2009, 15(6): 1201-1208.

    Article  Google Scholar 

  31. Miao Y, Feng J. Perceptual-saliency extremum lines for 3D shape illustration. The Visual Computer, 2010, 26(6-8): 433-443.

    Article  Google Scholar 

  32. Taubin G. Estimating the tensor of curvature of a surface from a polyhedral approximation. In Proc. the 5th ICCV, June 1995, pp.902-907.

  33. Ohtake Y, Belyaev A, Seidel H P. Mesh smoothing by adaptive and anisotropic Gaussian filter applied to mesh normals. In Proc. Vision, Modeling and Visualization, Nov. 2002, pp.203-210.

  34. Press W H, Flannery B P, Teukolsky S A, Vetterling W T. Numerical Recipes in C: The Art of Scientific Computing (2nd edition). New York, USA: Cambridge University Press, 1992.

  35. Eigensatz M, Sumner R W, Pauly M. Curvature-domain shape processing. Computer Graphics Forum, 2008, 27(2): 241-250.

    Article  Google Scholar 

  36. Gonzalez R C, Woods R E. Digital Image Processing (2nd edition). New Jersey, USA: Prentice Hall, 2002.

    Google Scholar 

  37. Miao Y, Feng J, Pajarola R. Visual saliency guided normal enhancement technique for 3D shape depiction. Computers & Graphics, 2011, 35(3): 706-712.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Wei Miao.

Additional information

This work was supported by the National Natural Science Foundation of China under Grant Nos. 61272309, 61170138 and the Program for New Century Excellent Talents in University of China under Grant No. NCET-10-0728.

*The preliminary version of the paper was published in the Proceedings of the 2012 Computational Visual Media Conference.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miao, YW., Feng, JQ., Wang, JR. et al. A Multi-Channel Salience Based Detail Exaggeration Technique for 3D Relief Surfaces. J. Comput. Sci. Technol. 27, 1100–1109 (2012). https://doi.org/10.1007/s11390-012-1288-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11390-012-1288-y

Keywords

Navigation