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Abstract UML is a widely-used, general purpose modeling language. But its lack of a rigorous semantics forbids the

thorough analysis of designed solution, and thus precludes the discovery of significant problems at design time. To bridge the
gap, the paper investigates the underlying semantics of UML state machine diagrams, along with the time-related modeling
elements of MARTE, the profile for modeling and analysis of real-time embedded systems, and proposes a formal operational
semantics based on extended hierarchical timed automata. The approach is exemplified on a simple example taken from the
automotive domain. Verification is accomplished by translating designed models into the input language of the UPPAAL
model checker.
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1 Introduction

UML state machine diagrams have been widely used
to model the behavior of real-time reactive systems.
Besides the “standard” notation, the OMG (Object
Management Group) also proposes MARTE, the pro-
file for modeling and analysis of real-time embedded
systems[1], but all these notations do not go beyond a
standard syntax for rendering concepts. This is not
enough when we think of time-critical systems that
demand for rigorous analysis and verification even on
early-stage models. The underlying semantics of these
notations must be defined formally to both avoid am-
biguous interpretations and pave the ground to the
aforementioned rigorous verification.

Motivated by this common goal, much previous work
has attempted to augment UML, or rather subsets of
UML (e.g., behavioral diagrams), with different formal
semantics[2-5]. Among these approaches, quite a few ad-
dressed the time dimension (e.g., [4]), but they tended
to treat time aspects in a simplistic way. Time can ex-
ist in multiple representations and clocks are not nece-
ssarily only chronometric ones[6]. For example, Fig.1
illustrates the state machine diagram of an engine[7].

The occurrence of events depends on the rotation angle
of the engine’s camshaft. In this case, seconds (or mil-
liseconds) are not the time unit anymore, and the time
flow is measured in degrees of angles. Moreover, at de-
sign level, clocks are often logical ones[6] bound to the
occurrence of specific events (e.g., the execution cycles
of a processor) instead of being related to the physical
flow of time.

Fig.1. Example state machine with multiform time[7].

To support the aforementioned concept of time in a
broader sense, MARTE introduces a general framework
for representing time and time-related concepts. These
concepts are not bound to physical time anymore: the
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containers of instants are called time bases, and a sys-
tem can contain multiple time bases, even if they are
not fully independent. The partial ordering of instants
characterizes the time structure of the application[6,8].
MARTE accommodates both a simple form of time
structured as a totally ordered set of instants, which
share the same time base, and multiple time base
models.

Given the insufficient support offered by current
approaches, this paper exploits hierarchical timed
automata[9] to propose a formal operational semantics
for UML state machine diagrams along with MARTE
time-related aspects. The main reason why we use hie-
rarchical timed automata is that they can faithfully
render the structure and temporal behavior of com-
plex real-time systems. Moreover, their well-defined,
rigorous semantics paves the ground to further analy-
sis and verification. Since reachability is decidable for
timed automata, we prefer them over other tools, such
as Time Petri Nets[10].

As for state machines, we select a subset of the no-
tation guided by the relative importance and inher-
ent ambiguity of elements[11]. We only consider ba-
sic elements, do not take into account choice, junc-
tion, exit, and terminate pseudo-states, do not model
sub-machines, since they are semantically equivalent
to composite states[12], assume that transitions take
no time, and omit deferred events, state/transition re-
definitions, and entry/do/exit clauses. Moreover, pro-
posed notation also supports both inter-level transitions
and history states (shallow and deep history). As for
time, differently from previous work, the approach sup-
ports both logical clocks and multiform representations
of time. The resulting modeling notation, along with
its associated formal semantics, is then used for veri-
fication. To this end, the paper describes how to trans-
form designed models into the input language of the
UPPAAL model checker and provides some results on
the verification of the example system.

All these elements help us highlight the novel as-
pects of this paper, with respect to the many attempts
to augment UML with formal semantics:
• To the best of our knowledge, this proposal is

the first to formalize the concept of multiform time
with hierarchical timed automata in the context of
UML/MARTE profile. The resulting model can facili-
tate automated analysis and validation.
• The proposed approach supports modelling both

history pseudo-states and inter-level transitions.
• A translation algorithm is also included to com-

plement our presentation on verification based on hie-
rarchical timed automata.

The paper is organized as follows. The basic notions

of clocks and timed automata are given in Section 2.
The proposed extended hierarchical timed model with
its operational semantics is presented in Section 3. Sec-
tion 4 describes the process of translating designed
models into the input language of the UPPAAL model
checker. Section 5 re-examines our proposal, discussing
its advantages as well as limitations. Section 6 presents
some related approaches and Section 7 concludes the
paper.

2 Clocks and Timed Automata

Timed automata are an extension of finite state au-
tomata and were first introduced by Alur and Dill to
model real-time systems[9]. Given the introduction of
clocks, a run of the automaton along a sequence of con-
secutive transitions is of the form: (l0, ν0)→ (l1, ν1)→
· · · → (lp, νp), (li)0�i�p denotes the state (or location)
and (νi)0�i�p denotes the clock value. Specifically, li
is associated with some combinations of clock-related
Boolean expressions to denote time invariants, denoted
as Inv li(ν).

The general notion of a clock “CLK” is a pair (x, ν),
where x is a clock variable and ν is the corresponding
value. Usually ν ranges over real numbers to address
continuous time and it can only be reset by users. A
comparison with a given real value c results in an atomic
clock constraint g := x ∼ c, and ∼= {<, �, =, �, >};
the actual constraint is defined by combining some
Boolean expressions g := g|g ∧ g|¬g. If we consider
the domain of real numbers to model physical dense
time, the number of configurations would be infinite,
but several abstractions — e.g., region and zone —
have been proposed to keep the number finite and make
analysis feasible.

Formally, a timed automaton A is a tuple
〈Σ, S, S0, C, T 〉, where Σ is a finite alphabet of ac-
tions, S is a finite set of states, S0 is the finite set
of initial states, C is a finite set of clocks, and T ⊆
S × (Σ× CC × 2C)× S is a finite set of transition steps
in which CC is a finite set of clock constraints. For exa-
mple, if an action a happens and the valuation of clocks
satisfies the constraint g, it can cause a state s at time
t to change to s′. This transition trans can be formali-
zed as 〈s, a, g, κ, s′〉, where the clock c ∈ κ is reset and
restarts from 0 as soon as the transition happens. For
clarity, sometimes the transition step can also be writ-
ten as s

a,g,κ−−−→ s′. The source and target states can be
described as SRC (trans) = s and TGT (trans) = s′, re-
spectively. The sequence of trans’s describes the trace
of state transitions from the initial state as time ad-
vances. An interesting property of timed automata is
that reachability is decidable.
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In many cases, some state-based notations allow
states to be organized hierarchically (e.g., UML). This
means that if a contained state s1 is active, there
must be a containing state s0 that is active as well.
Hierarchical automata[5,13], along with their opera-
tional semantics, given by means of Kripke struc-
tures, reflect this concept. More precisely, hie-
rarchical timed automata (HTA) are a timed exten-
sion of hierarchical automata that is defined as a
tuple[4]: 〈S, S0, δ, σ, V, C, Inv ,Ch, T 〉, where S is a fi-
nite set of states, S0 is the set of initial states.
δ : S 	→ 2S is a function, mapping an ele-
ment in S onto its sub-states. δ∗(s) is the set of
all nested states of a super-state s. σ : S 	→
{AND,XOR,BASIC ,ENTRY ,EXIT ,HISTORY } as-
sociates a type to a state. V is a set of variables, C of
clocks, and Ch of channels, which is crucial for para-
llel composition. Inv relates a state to its invariant.
T ⊆ S × (Ch ∪ ∅) × CC × 2C × {true, false}) × S is
the set of transitions. {true, false} defines whether a
transition is urgent or not.

The operational semantics associated with HTA is
defined over the transitions between configurations. A
configuration represents an abstraction or a snapshot
of system settings. In [4], it is of the form: (ρ, μ, ν, θ).
ρ : S 	→ 2S maps a super-state onto its active sub-states
(self-included), μ : V 	→ (Z)∗ gives the values of the lo-
cal integer variables, ν : C 	→ (R+)∗ gives the values of
local clocks, and θ reflects history information. Since
history information is related to both states and vari-
ables, θ consists of two functions: θstate and θvar, which
denote the history information of state and variable re-
spectively.

These automata allow for three types of transitions
t := (l, v) → (l′, v′). We can have delays, that is the
time passes without changing states, synchronized tran-
sitions, labeled with the pair of actions send and re-
ceive, and non-synchronized transitions, labeled with
silent or event triggers. A predicate function Transi-
tionEnabled says whether t is enabled, while UrgentEn-
abled whether it is urgent. For space limitations, details
are not included here, interested readers can refer to [4]
for a complete presentation.

3 Proposed HTA Model

The HTA presented in the previous section can
give a concise and formal representation of UML state
diagrams[4]. However, the implicit binding of clocks
to physical ones and the lack of support for inter-level
transitions limit its application in settings with richer
clocks and complex transitions, and motivate the intro-
duction of our extended HTA model.

Instead of defining HTA through a single tuple, we

use a compositional notation, along with a refinement
function to associate a composite state with a set of au-
tomata. We also render Clock through a more complex
structure rather than a simple real-time value, and use a
separate history indicator function to elaborate on the
different history types since shallow and deep history
need different semantic interpretations.

All these concepts are illustrated through the exa-
mple of Fig.2, which describes the simplified behavior
of a vehicle. A car can move between states Stop and
Running. Running is further decomposed into three
orthogonal regions. The first region describes the state
transitions of the engine. The second region contains
the state transitions of the spark plug. The last region
contains another composite state, called Elec device,
which contains two further regions: one for the state
transitions of a light and one for the air conditioner.
Elec device also contains a shallow history pseudo-state
as the target of transition turn on. This means that the
first time one enters Elec device, the target of the tran-
sition returns the default entry sub-states; otherwise it
always returns the sub-states that were active when the
state was left. The behavior of Running is parametric
with respect to two clocks: camclk and chronclk. The
first clock measures the engine’s cycle by means of the
angles of camshaft, while the other one is the physical
clock for the spark plug. In this diagram, edges are an-
notated with some guards (after), synchronization (ig-
nite event of spark plug and engine cycle) and resets
(angle:=0 for the engine, t:=0 for the spark plug).

Fig.2. Example state machine.

3.1 Extended Clocks

A clock C can be represented as a tuple 〈V , ν0,≺
,D, λ, u〉, where V represents the set of possible clock
values, ν0 ∈ V is the lower bound and also the default
reset value of the clock, ≺ is the pre-order relation over
the set of values, (V ,≺) forms a total order relation.
This total ordered set of instants can model the simple
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form of time owned by a time base (corresponding to
the first type of concepts covered by MARTE). D is a
set of labels, λ : V 	→ D is a partial labeling function
that associates a meaningful name to a time instant.
These labels can model the entities bound to time (cor-
responding to the fourth type of concepts covered by
MARTE). u is a time unit. V can range over both
continuous and discrete domains, which can be used to
model physical and logical clocks. In physical clocks,
u can be second, millisecond and alike; while in log-
ical clocks, u can be any tick. Basic operations over
ν ∈ V also include advancement +. If we do not use
labels, a clock C can be written as 〈V ,≺, u〉. This ex-
tended notion of clock can model the access to the time
(corresponding to the third type of concepts covered by
MARTE.)

In presence of multiform time, different kinds of
clocks co-exist in one system. Our proposal borrows
from the MARTE notion of time structure, and we de-
fine a time structure W = 〈CS, �, ζ〉, where CS de-
notes a set of clocks, � establishes a partial order re-
lation between two clocks, and ζu1

u2
: ν1 	→ ν2 defines a

value mapping between two different time units and re-
turns undefined ⊥ if the two units are not comparable.
Therefore, with time structure, the multiple time bases
can be modeled (corresponding to the second type of
concepts covered by MARTE).

Usually, during transitions, clock values need to be
reset or updated. An evaluation function for clocks can
be defined as v : C 	→ V , in which V is the time do-
main. For ∀x of type C, clock advances and resets can
be defined: (v + t)(x) = v(x)+ t and v(x) = ν0, respec-
tively. Specifically, to update a subset of Y of type C
with value t, we can write ([Y ← t]v(x) = t); the clock
values that are not members of Y remain unchanged.
If t = ν0, the clocks in the set Y get reset.

Clock constraints are mainly used for time related in-
variants in states and guards for transitions. Normally,
a clock constraint g over variables x of C is defined by
g := x � c | x � c | x = c | ¬g | g ∧ g | true, where
c is a valid time value constant. g is a function from
Boolean expressions to Boolean values. CC is a finite set
of g. As a concrete example, Fig.2 shows two kinds of
clocks: camclk, and chronclk, measuring camshaft an-
gles and physical time, separately. camclk= 〈R+, 0, <
,D1, λ1, degree〉, and chronclk = 〈R+, 0, <,D2, λ2, ms〉.
We can select some representative angles for camclk and
associate them with meaningful labels. For example,
the labels intake bottom, compress top, combustion bot-
tom, exhaust top can denote 90, 180, 270, 360 degrees re-
spectively. Similarly, for chronclk, labels ignite start,
ignite stop can be defined and associated with particu-
lar time instants to denote the start and stop time for

the spark plug. If we assume that the revolution per
minute (RPM) of the engine is n, since one revolution of
the camshaft implies two revolutions of the crankshaft
mechanically, then by physical laws, we can get the
function ζdegree

ms (v) = (2 × 60 × 1000 × v)/(n × 360)
transforming the rotation of v degrees into the physi-
cal time duration. We can define a � relation between
two clocks, e.g., the instances of the following labels,
(intake bottomcamclk , ignite startchronclk)�, specifying
that the clock instance of ignite start should be no ear-
lier than that of the intake bottom.

Advancement Function for Multiform Clocks. When
multiform clocks co-exist in a system, that is, |W.CS | >
1, the synchronization among them becomes crucial.
Generally, these clocks can advance at their own paces
measured by separate clocks. However, to ease the
process of analysis, normalization is necessary, i.e., to
establish some relationship among these clocks. The
clock set in the time structure W is partitioned into
several blocks based on clocks’ property. We can have
both continuous and discrete clocks. For continuous
ones, a specific clock unit can be chosen as the base
unit, denoted by ubase. For logical clocks, the advance-
ment is represented by the occurrence of the events in
the sequence ordered by ticks. The precedence relation
R� establishes the connection between them. The ad-
vancement functions are given in the following (1). d is
the advancement value measured in the base clock, and
advT (ν + d) can be advTc or advTl

depending on the
properties of clocks in context. advTc is the advance-
ment function for continuous clock, and advTl

for logic
clock. νc is the clock value. Notice that in the case
of clocks incomparable with the base clock, νc is un-
changed, as d is the value measured in the base clock,
which is somehow orthogonal with νc. However, this
does not mean that νc cannot advance. In this case, νc

would advance independently of the base clock.
In our example, we can use physical time as the

base time and ζdegree
ms to establish the synchronization

between these two different kinds of clocks. The ad-
vancement d degrees of camshaft angles indicates the
d× ζdegree

ms pass of physical time.

advTc(ν, d) =

⎧⎪⎨
⎪⎩

νc + d, if uc = base,

νc + d× ζuc
ubase

, else if ζuc
ubase

�=⊥,

νc, otherwise.
(1)

Logical clock advancement is measured on the oc-
currences of events. If these occurrences refer to — ex-
plicitly or implicitly — some specific values of the base
clock, which can be specified by the pre-order relation
in the time structure, then we can derive the tick
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advancement function during d time measured in the
base clock unit and the result is the latest event occur-
rence. next(ν) denotes the event exactly happens after
ν.

advTl
(ν, d) =

⎧⎪⎨
⎪⎩

ν′
c, if ∃ν′

c, ν
′
c � (νbase + d)∧

(νbase + d) ≺ next(ν′
c),

νc (unchanged), otherwise.
(2)

In our example, if we abstract away the actual
degrees of camshaft, we can select the four critical
angles as described by the previously-introduced la-
bels: intake bottom, compress top, combustion bottom,
exhaust top. Since these labels correspond to four timed
events in a cycle, and they display an exact pre-order
relation, they constitute a logical clock. This clock is
denoted as clk1 in Fig.3. In mechanical engineering,
to keep the engine work, there are additional compo-
nents to participate, for example, spark plug, inlet (in-
take) valves, outlet (exhaust) valves. Generally, in one
working cycle of the engine, the inlet valves are opened
(inlet open) at the beginning of the intake stroke and
closed (inlet close) when the piston travels to the bot-
tom of the cylinder. The spark plug would ignite (ig-
nite start) when the piston reaches the top of the cylin-
der and the spark exists shortly (ignite stop) within
the combustion stroke. The outlet(exhaust) valve is
opened (outlet open) and the piston travels back up
expelling the exhaust gases through. When the pis-
ton reaches the top of the cylinder, the outlet valve is
closed (outlet close). Fig.3 describes the simultaneity of
these events by dashed lines, for example, compress top
and ignite start (i.e., compress top � ignite start ∧
ignite start � compress top).

Fig.3. Example clock synchronization.

In Fig.3, d1 is the period between labels inlet open
and inlet close, d2 is that between inlet close and ig-
nite start, and d3 between ignite start and ignite stop.
The measurement is bounded to physical time, and
therefore, clk2 denotes chronometric clock. In the exa-
mple, we use it as the base clock. Assume currently
value for clk1 is intake bottom and clk2 is inlet close,
after d2 time, the derived value for clk1 is compress top
according to (2). If all the clocks in the time struc-
ture are chronometric ones, this reduces to the case of

multiple clocks in ordinary timed automata.

3.2 Extended HTA

Since the hierarchy is mainly introduced by the
containment relation inside composite states, we use
the notion of sequential timed automata to accom-
modate states in the same level and the sub-states
of a composite state are delegated to another se-
quential timed automaton along the hierarchy. A re-
finement function is employed to establish the hie-
rarchical connection. A sequential timed automa-
ton is a tuple 〈S, s0, σ, C, Inv , μ, Σ, T 〉. S is a set
of states, s0 is the initial state, σ is a typing func-
tion, mapping a state s ∈ S to a specific type and
σ(s) ∈ {BASIC ,COMPOSITE ,HISTORY ,ENTRY }.
C, Inv denote sets of clocks and invariants respec-
tively. μ is a history indicator function, and μ :
S 	→ {N,DEEP ,SHALLOW }. It indicates whether a
given state contains history pseudo-state (i.e., DEEP,
SHALLOW) or not (N). Σ is the action set and con-
tains three kinds of actions, i.e., synchronized, non-
synchronized and internal actions, represented by Ch,
{action}, and {τ} respectively. Similar to [4], Ch con-
sists of channel action elements (synchronization), and
has two types, send and receive, represented by ! and
? respectively. CC is the set of clock constraints.
T ⊆ S × Σ × CC × 2C × S, is the set of transitions,
and can be written as t = s

a,g,r−−−→ s′.
We define an extended hierarchical timed automaton

as a tuple: 〈F, E, W, ρ〉 where:
• F is a finite set of sequential timed automata with

mutually disjoint sets of states, i.e., ∀Ai, Aj ∈ F, i �=
j, SAi ∩ SAj = ∅.

• E is a finite set of triggering events associa-
ted with related guards and reset clock sets, E ⊆
(
⋃

A∈F SA ×
⋃

A∈F CCA ×
⋃

A∈F 2CA × ⋃
A∈F ΣA ×⋃

A∈F SA), whose elements denote triggers satisfying
the clock constraints. E consists of local transitions as
well as inter-automata transitions.
• W is the time structure which is composed of the

underlying clocks and their relationship as described
previously.
• ρ is a refinement function, mapping a state to a

set of automata, i.e., ρ :
⋃

A∈F SA 	→ 2F . ρ constructs
a tree (hierarchical) structure to the related automata.
There is a unique root automaton which cannot be de-
rived by ρ, i.e., ∃1A ∈ F and A �∈ ⋃

s∈SA
ρ(s), and

this root automaton is denoted by Aroot; for simple
states, the refinement function returns an empty set,
i.e., ∀s, σ(s) = BASIC ⇒ ρ(s) = ∅. The hierarchy
should not introduce loops, i.e., ∀S ⊆ ⋃

A∈F SA, ∃s ∈ S
and S∩⋃

A∈ρ(s) SA = ∅. Besides, to be well-formed, for
every non-root automaton, there exists a unique ances-
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tor state, i.e., ∀Ai ∈ F \ {Aroot}, ∃1s ∈
⋃

A∈F\{Ai} SA.
Based on the definition of ρ, we recursively define a
function ρ∗(s) = ρ(s)∪ (

⋃
si∈Sρ∗(s) ρ(si)) which returns

all the descendant automata generated by s. Among
these descendant automata, the leaf automata sub-set
is of particular interest and is defined specifically as
ρleaf(s) = {A′|A′ ∈ ρ∗(s) ∧ (∀s′ ∈ A′, ρ(s′) = ∅)}.

Fig.4 illustrates the corresponding hierarchical
structure of Fig.2. It has five sub-automata, {Aroot,
A1, A2, A3, A4, A5}. E = {turn off, turn on, l on, l off,
ignite, a on, a off} ∪ {τ}�, ρ(Running) = {A1, A2,
A3}, and ρ(Elec device) = {A4, A5}. ρ∗(Running)
= {A1, A2, A3, A4, A5}, and ρleaf(Running) = {A1, A3,
A4, A5}. For all other states s, ρ(s) = ∅.
σ(Running) = σ(Elec device) = COMPOSITE , and
μ(Elec device) = SHALLOW . Fig.4 also illustrates
the invariants associated with the states, Intake, Com-
press, Combustion, Exhaust, Fire on and some transi-
tion guards. Dashed arrows represent the refinement
relation.

State Precedence. It is a pre-order relation describ-
ing the presence of one state in an automaton refined by
another state, i.e., for s1, s2 ∈

⋃
A∈F SA, s1 ≺s s2 ⇐⇒

s2 ∈ Sρ(s1). Automaton precedence can be derived simi-
larly, i.e., A1 ≺A A2 ⇐⇒ ∃s1, s2.s1 ∈ A1 ∧ s2 ∈
A2 ∧ s1 ≺s s2. The reflexive closure of ≺s is denoted
by �s (and ≺A by �A). In Fig.4, Running �s Intake,
and A root �A A1.

State Descendants. First we define the transitive clo-
sure of state precedence recursively. s ≺s∗ s′ = s ≺s

s′ ∨ (∃s′′.s ≺s∗ s′′ ∧ s′′ ≺s∗ s′). �s∗ is the reflexive
closure of ≺s∗ . The set of state descendants of s is
defined as S�s∗(s) = {s′|s �s∗ s′}. Similarly, opera-
tor �A∗ (and ≺A∗) can be applied to automata. Given

s, s′, and s ∈ A, s′ ∈ A′, if s �s∗ s′, then A �A∗ A′,
and the set of state descendants of automaton A is
S�A∗(A) = {s′|A �A∗ A′ ∧ s′ ∈ A′}. In our example,
S�s∗(Running) consists all the states except stop.

State Closure. Based on the notions of state de-
scendants, we define state closure function. The func-
tion yields a closure set of a state s in the designated
set S. It represents all states in the hierarchy be-
tween s and a state of S. closureS(s) = {s′|∃s′′ ∈ S.
s �s∗ s′ �s∗ s′′}. We regulate that if S is an empty set,
closureS(s) = {s}. In Fig.4, closureSA4

(Running) =
{Running, Elec device, Light off, Light on}.

State Ancestors. We define the set of state ancestors
of a given state s′ in an HTA as S≺−s∗(s′) = {s′′|s′′ ≺s∗

s′}. Similarly, S≺−A∗(A′) = {s′′|A′′ ≺A∗ A′ ∧ s′′ ∈ A′′}
returns a set of ancestors of states in A′. In our example
of Fig.4, S≺−A∗(A4) = {Elec device , Running}.

Orthogonal States. Given two states in an HTA,
s, s′ ∈ ⋃

Ai∈F SAi , s and s′ are orthogonal, written
as s ‖ s′, if and only if ∃s′′ ∈ ⋃

A∈F SA. A, A′ ∈
ρ(s′′) ∧ A �= A′ ∧ s ∈ S�A∗(A) ∧ s′ ∈ S�A∗(A′). Intui-
tively speaking, if two states are descendant states of
sibling sub-automata which have the same parent au-
tomaton, they are orthogonal. For instance, in Fig.4,
Intake ‖ Fire off . We can define orthogonal automata
similarly, A ‖ A′, given ∃s, s′. (s ∈ A∧ s′ ∈ A′ ∧ s ‖ s′).

Invariant Compatibility. Given two states in an
HTA, i.e., s, s′ ∈ ⋃

A∈F SA, s′ is compatible with s,
written as s′ � s if and only if inv(s′) entails inv(s).
Invariant compatibility is a partial order relation. Sup-
pose, for example, we have two invariants, x < 10 and
x < 6 ∧ y < 3, in state s and s′ respectively. inv(s)
states that the value of clock x should be smaller than
10, and inv(s′) asserts the value of x should be smaller

Fig.4. Example hierarchy illustration.

� For simplicity, we use event names in the diagram to represent elements of E instead of tuples, and τ denotes a silent transition.
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than 6 and the value of clock y should be smaller than
3. In this case, s′ � s. Obviously, to be well-formed, for
two states, s and s′, if s � s′, it entails that s′ � s.

Initial and History State Functions. We define two
functions init(s) and hist(s) to retrieve the set of ini-
tial sub-states and history sub-states of a composite
state s. init(s) = {s′|s′ ∈ ⋃

Ai∈ρ∗(s′) SAi ∧ σ(s′) =
ENTRY }. To define hist(s), we use an indicator func-
tion lactive(A) to denote the most recently active states
in an automaton A. If it is the first time to ac-
cess A, lactive simply returns a set of entry states.
If μ(s) = DEEP , hist(s) =

⋃
Ai∈ρ∗(s) lactive(Ai). If

μ(s) = SHALLOW , hist(s) =
⋃

Ai∈ρ(s) lactive(Ai) ∪
{s′|s′ ∈ ⋃

Ai∈ρ∗(s)/ρ(s) SAi ∧ σ(s′) = ENTRY }. In the
example, if it is the first time to access the compo-
site state Elec device, hist(Elec device) = {Elec device ,
Light off, Ac off}, but other possible combinations ex-
ist depending on the last active situation.

Inter-level transitions are those whose actual source
and target states are at different levels of the hierarchy.
It is desirable in the cases when we want a transition di-
rectly targeting at or originating from a particular state
inside a composite one. If such a transition is enabled,
not only is the source state exited but also the parent
of the source state is exited if it has. Similarly, enter-
ing a target state implies the fact that its parent state
is also entered. In hierarchical timed automata mod-
els, transitions normally stay in the same level. Since
inter-level transitions cross the boarders of hierarchy,
they cannot directly be supported. To simulate inter-
level transitions in hierarchical timed automata, we can
lift the transition to the upmost states which are exi-
ted or entered[13]. Meanwhile the actual source and
target state information are recorded and determined
by specific functions, i.e., source and target restriction
functions as described in the following.

Source and Target Restrictions. If a transition t is
involved with composite states, the source or target
is composed of several orthogonal basic states. This
corresponds to join and fork transitions. In A root
of Fig.4, the transition target of turn on is Running.
Since ρ(Running) = {A1, A2, A3}, the actual transi-
tion target is the set of states inside the above refined
automata separately. In this case, the default target
set is {Intake,Fire off } ∪ hist(Elec device). Similar
to [5], source and target restriction functions are de-
fined as sr : t → S where S ⊆ ⋃

Ai∈ρ∗(SRC (t)) SAi

and tr : t → T where T ⊆ ⋃
Ai∈ρ∗(TGT(t)) SAi . For

both sets, elements are pairwise orthogonal states if
any. As their names hint, these functions are mainly
to restrict the transitions involved with those compo-
site states, and they are yielding the actual sources or
targets of a transition. With these two functions, the

inter-level transitions can be supported[13]. But dif-
ferent from their notions, we also augment the func-
tion the ability to yield the history sub-states. Thus
there are three cases to derive the target restriction of
a transition which decides the entry set of a compo-
site state. If the transition terminates on the out-
side edge of the composite state, the target restriction
function will generate a set of initial sub-states of the
composite state: TGT (t), i.e., tr(t) = init(TGT (t)). If
the transition goes to a sub-state s′ of the composite
state directly, then tr(t) = {s′} ∪ init(s′) ∪ {s′′|(s′′ ‖
s′) ∧ TGT (t) ≺s∗ s′′ ∧ σ(s′′) = ENTRY }, and other-
wise, if the transition goes to a history state s of an au-
tomata, then tr(t) = hist(s)∪{s′|(s′ ‖ s)∧TGT (t) ≺s∗

s′ ∧ σ(s′) = ENTRY }. As an example, in Fig.2,
the transition turn on corresponds to our third case
and it points to the history pseudo-state contained
in Elec device, i.e., hist(Elec device). While in Fig.4,
TGT (turn on) = Running, and the set of {s′|(s′ ‖
Elec device) ∧ Running ≺s∗ s′ ∧ σ(s′) = ENTRY }
is {Intake,Fire off }, thus the real target informa-
tion returned by the restriction function tr(turn on)
is hist(Elec device) ∪ {Intake,Fire off }.
3.3 Operational Semantics

The operational semantics is closely related to the
notion of transition between configurations. Genera-
lly, a configuration denotes a snapshot of computation
which contains active states, values of related clocks
and history information. In this subsection, we present
the associated operational semantics based on the con-
cepts introduced above.

Configuration. A configuration (conf) of EHTA con-
tains a set of active states, clock values, and history,
represented as a tuple: (S, ν, θ). UML specifies that the
current active “state” is represented by a set of trees of
states along the hierarchy down to the innermost ac-
tive sub-state[12]. Therefore, for the active state set
S in a configuration, according to our aforementioned
concepts, the following properties hold. There is one
and only one state from the root automaton which is
in the active state set, i.e., ∃1s ∈ SAroot ∧ s ∈ S; for
any composite state in the active state set, there is one
and only one state from each of its refined automata
which is in the active state set, i.e., ∀s, A.(s ∈ S ∧A ∈
ρ(s)) ⇒ ∃1s′ ∈ A ∧ s′ ∈ S. The definitions of ν, θ are
similar to those of [4].

Conflict Transitions. According to UML 2.0, if the
intersection of the exit state sets of two transitions
is non-empty, we say the two transitions are in con-
flict, written as t1#t2

[5], i.e., t1, t2 ∈ E, t1 �= t2,
(SRC (t1) ∪ sr(t1)) ∩ (SRC (t2) ∪ sr(t2)) �= ∅.

Priority Schema. Priority schedule is a partial order
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relation over transitions. A priority schema is defined
by a tuple (E, �p, p). p is a function, mapping a tran-
sition t ∈ E to a specific priority. The default schema
states that the transition originating from sub-states
has higher priority over that originating from enclos-
ing states[12]. But it does not prohibit the application
of priority schemas from domain-specific profiles, e.g.,
MARTE[1].

Transition Selection. Due to the run-to-completion
(RTC) semantics required by UML, an event occurrence
will never be processed while the state machine is in
some intermediate and inconsistent situation. Thus at
one time, only one transition in the enabled set can be
selected for execution. The enabled transition set con-
tains maximal number of enabled and non-conflicting
transitions satisfying the following conditions: it is
prohibitive to have conflicting transitions within the
set and transitions outside the set with higher prio-
rity than a transition inside. Therefore, given a con-
figuration conf: (S, ν, θ), the enabled transitions un-
der action set ΣA is ETΣA which is the subset of:
{t|t ∈ T ∧ ({SRC (t)}∪ sr(t)) ⊆ conf .S ∧ ν � gt}�. Ac-
cordingly, the elements in the set satisfy the following
conditions: ∀t1, t2 ∈ ETΣA . ¬t1#t2; ∀t ∈ ETΣA , �t′.
t′ �∈ ETΣA ∧ t′#t ∧ ({SRC (t)} ∪ sr(t)) ⊆ conf .S ∧ ν �
gt′ ∧ p(t) ≺p p(t′). The enabled transition set under ac-
tion set local to ΣA is similarly defined as LETΣA , but
the transitions belonging to the descendants of A are
not included.

We use a Kripke structure k = (conf , conf 0,
STEP−−−−→)

to define the operational semantics of the EHTA. conf
is a tuple (S, ν, θ) defined as above. STEP−−−−→ has fur-
ther several cases, i.e., delay, progress, composition and
synchronization.

Similar to [4], a predicate Inv(S, ν) is defined to as-
sert whether all the invariants of S hold at the clock
values ν, i.e., InvS(ν) =

∧
s∈S Invs(ν).

Delays. Given a configuration (S, ν, θ), if the clocks
advance, and the invariants of states in the set S hold,
then it may not cause actual state transition. In this
case, states and history information do not change ex-
cept clock values.

InvS(ν + d)

(S, ν, θ) d−→(S, advTS (ν + d), θ)
.

Usually there is an upper limit value associated with
the clock invariant of a state. If a local clock advances
to this value and no enabled transitions exist, it will
cause a deadlock.

Progresses. Progress type denotes the transitions
which occur inside a sequential timed automaton[5,13].

In this case, the event dispatcher module selects a tran-
sition in the enabled transition set based on their prio-
rity if defined. As this step usually involves the exit
of composite state, it would modify the history in-
formation accordingly. In our example, if the transi-
tion turn off is triggered, the history information of
Elec device will be recorded. If the target composite
state has a history tag attached (i.e., shallow history
or deep history pseudo-state), the most recently ac-
tive sub-states should be restored. For example, the
transition turn on will cause the state change of con-
figurations from {Stop} to {Running, Intake, Fire off,
Elec device, Light off, Ac off}. To state formally,
the new history information θ′ is recorded as follows:⋃

Ai∈Ht
lactive(Ai), where Ht = {A|∃s. (SRC (t) �∗

s ∧ (μ(s) = DEEP ∨ μ(s) = SHALLOW ) ∧A ∈ ρ(s))}.
The update of history information is denoted by θ 	→ θ′

in the following rule.

t ∈ LETΣA

�t′ ∈ ETΣA .p(t) ≺ p(t′)
Inv tr(t)([reset(t)← v0]ν)

(S, ν, θ) t−→(closuretr(t)TGT (t), [reset(t)← v0]ν, θ′)
.

Composition Transitions. This step describes the
automaton A delegates the transitions to its descen-
dant automata, meaning that A collects the transitions
of its sub automata. This step happens on two con-
ditions, i.e., either there are no enabled transitions in
the LEAΣA, or the priority of the transitions in the de-
scendants are higher than any elements in LEAΣA. The
new configuration consists of the combined union of the
new active states caused by the underlying transitions
in the sub automata. Since the invariant compatibility
exists between the states along the hierarchy, the in-
variant still holds for the ancestor state s in the new
configuration.

{s} = Sconf ∩ SA, ρ(s) = {A1, . . . , Am} �= ∅

A1 :: (S1, ν1, θ1)
t1−→(S′

1, ν
′
1, θ

′
1)

...
Am :: (Sm, νm, θm) tm−−→(S′

m, ν′
m, θ′m)

(LETΣA = ∅ ∨ ∀t ∈ LETΣA ,
∃ti ∈ ETΣA , p(t) ≺ p(ti))

(S, ν, θ)
t1,...,tm−−−−−→(S′, ν′, θ′)

.

In the above semantic formula, (S′, ν′, θ′) = ({s} ∪
S′

1 ∪ · · · ∪ S′
m, ν′

1 ∪ · · · ∪ ν′
m, θ′1 ∪ · · · ∪ θ′m).

Synchronized Transitions. This is a special kind of
composite transition. There exists synchronized tran-
sitions, as the send and receive actions establish a

�ν � gt denotes the clock value of current configuration respects the transition guard of t.
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connected channel of actions.

{s} = Sconf ∩ SA, ρ(s) = {A1, . . . , Am} �= ∅

Ai :: (Si, νi, θi)
t?−→(S′

i, ν
′
i, θ

′
i) ∧Ai ∈ ρ(s)

Aj :: (Sj , νj , θj)
t!−→(S′

j , ν
′
j , θ

′
j) ∧Aj ∈ ρ(s)

(LETΣA = ∅ ∨ ∀t′ ∈ LEAΣA ,
∃t ∈ ETΣA , p(t′) ≺ p(t))

(S, ν, θ)
t!,t?−−−→(S′, ν′, θ′)

.

In the above semantic formula, (S′, ν′, θ′) = ({s} ∪
S′

i∪S′
j∪

⋃
k �=i,j Sk, ν′

i∪ν′
j∪

⋃
k �=i,j νk, θ′i∪θ′j∪

⋃
k �=i,j θk).

4 Translation

4.1 Algorithms

To translate UML/MARTE state machine diagrams
into the input language of existing model checkers, we
develop a prototype tool. It consists of three main com-
ponents: parser, model constructor, and target trans-
lator. The input state machine diagram is provided
in XMI (XML Metadata Interchange) format, and the
parser re-constructs the UML state machine encoded
in the XML file. The constructor produces the hie-
rarchical timed automata based on the operational se-
mantics presented previously; finally, the translator
produces the input code for the selected model checker.

In this paper, we use UPPAAL[14] as the test-bed
since its formalism is based on timed automata, and this
similarity eases both the translation process and the
later phase of mimicking the proposed semantics. How-
ever, as UPPAAL does not support multiform clocks,
a normalization procedure has to be performed. The
transformation is not straightforward but the space lim-
its a detailed explantation. Hence in the following, we
give a brief description of the normalization process.
A base clock needs to be designated first. For contin-
uous clocks, according to the relation specification of
the time structure, the clock associated constraints val-
ues (i.e., guards and invariants) are normalized sepa-
rately. If there exist clocks which are incomparable
to the base clock, this is contrary to the assumption
of UPPAAL that clocks advance with the same speed.
However, we can use a separate counter[14] to simulate
these clocks, the frequency of which can be set arbitra-
rily depending on the application context. For logical
clocks, since they actually describe the “happen-before”
relation among events[15], state machines naturally de-
scribe the ordered execution traces of these events (one
state machine considered as a process). However, to
model the pre-order relation of sending/receiving mes-
sages, since UPPAAL’s channel abstracts away the

delay, we add an intermediate location denoting the
state of transmitting the message. In this way, the pre-
order relation can be established. If there exists rela-
tionship between logic clock and the base clock speci-
fied by the time structure, we use specific channels to
synchronize the related states of different automata to
guarantee the order.

In our example, we use the ζdegree
ms function in the

previous section to model the relationship and norma-
lize the multiform clocks. Specifically, we choose mil-
lisecond (ms) as the base time unit. Moreover, since
UPPAAL only operates on the parallel composition of
“plain” timed automata, we have to flatten the hierar-
chy while carrying out the actual transformation.

Space limitations oblige us to require that readers
be familiar with UPPAAL and its features. The flat-
tening process — embedded in the target translator —
comprises three steps. The pseudo-code of the algorith-
mic steps is attached in appendix A1∼A3. Generally,
each sequential timed automaton of the EHTA is trans-
lated into an UPPAAL template�. Then the hierar-
chy is rendered as follows. A state inactive is added
to each generated template, but the root one, to de-
note its current status. Then, for each transition enter-
ing a composite state Scomp with no history, we add a
transition from its state inactive to all its default en-
try states in their corresponding templates. If Scomp

is an initial state, then the default entry states of the
templates generated from its sub automata are marked
as initial. Otherwise, the newly added inactive states
are as initial. To synchronize the transitions between
different templates, we use the facilities provided by
UPPAAL. The corresponding transition actions are an-
notated with broadcast channels. In our example, the
action associated with the transition entering Running
is turn on. We turned this transition into a broadcast
channel, and each template that corresponds to a sub-
state of Running has a transition synchronized with it
(i.e., with turn on?).

If there is a history pseudo-state Shist, we use a
Boolean variable associated with each sub-state to
record history information. The variable that corre-
sponds to the default entry state is initialized to true;
the others to false. Values change as transitions fire
and a true value always corresponds to the last visited
state. A selection state is added to each of the tem-
plates that correspond to the sub automata ρ(Shist),
and these templates are marked as TPρ(Shist). Again, we
use UPPAAL’s facility and mark the selection state as
committed [14], because we restrict it with no delays. For
any incoming transition t whose target restriction set�

�By UPPAAL, a template denotes an automaton that can be instantiated and composed to define a system.
�The set returned by the target restriction function of t.
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contains Shist, in each template of TPρ(Shist), we add a
transition from inactive to the selection state associa-
ted with corresponding channels and guards. Then we
add transitions from the selection state to the historical
sub-states of Shist guarded by the selection variables. If
Shist is a shallow history state, the process stops at the
first sub-level. If it is a deep history state, the process
continues recursively until the last level. Fig.5 shows
the UPPAAL model that corresponds to our example.
System is the parallel composition of the six templates.
In every template except A root, an inactive state has
been added. Elec device has a history pseudo-state,
thus templates A4 and A5 of Fig.5 are augmented with
a committed selection state and a set of Boolean vari-
ables. Since the target restriction set of turn on con-
tains Elec device, in A4 and A5, a transition from the
inactive state to the selection state annotated with a
broadcast channel is added respectively.

Eventually, we must add global join information.
For this purpose, a special state is added to each tem-
plate but the root one. Since this newly added state
requires no delay, it is marked as committed in UP-
PAAL. For any transition t whose source restriction
set� contains a composite state or a history pseudo-
state Shist, then in each of the templates TPρ(Shist),
there will be transitions from each of its states to this
global join state, and further there is a transition from
this join state to the inactive state marked with corre-
sponding channels, guards and temporal invariables. If
Shist has a history pseudo-state, the history selection
variables associated with the states in the templates
TPρ(Shist)(or TPρ∗(shist), depending on the types of the
history pseudo-state) will be set to true. Meanwhile,
the ones associated with other states are set to false

to assure that only the value of the variable associated
with the state that last exits is true.

In our example, transition turn off in A root triggers
a global join action in the templates which are gene-
rated from ρ(Running). There must be a transition
from every state to a committed join state synchro-
nized with turn off ?, and these committed states will
have transitions to the corresponding inactive states in
their templates. Since A2(elec device) has a history
pseudo-state, the transitions to the global join states in
A4 and A5 also set the corresponding Boolean history
variables.

4.2 Verification

This section presents an initial assessment of the
verification based on the semantics proposed above.
The experiments are based on the automotive example
used throughout the paper: to play with the size of the
example, we use the number of lights in the vehicle as
parameter. We measure the number of explored states,
the peak consumption of memory, and the time needed
to perform the complete verification. The experiments
are conducted on a PC with an AMD Athlon XP 2000+
processor and 1.0GB RAM running Ubuntu 8.04 OS.
The version of UPPAAL is 4.1.3 with an academic li-
cence.

In our example, the spark plug ignites when the
camshaft advances over 90 degrees, and triggers the
transition of the engine’s state from compression to
combustion. Meanwhile, the spark plug itself changes
from fire off to fire on. The channel action ignite es-
tablishes the synchronization of the two transitions.
The fire on state exists for a very short chronometric

Fig.5. Translated UPPAAL model (parallel composition of templates). (a) auto(A root). (b) engine(A1). (c) elec device(A2).

spark plug(A3). (e) light(A4). (f) ac(A5).

�The set returned by the source restriction function of t.
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time interval and goes back to state fire off again. The
example limits this interval to 3 milliseconds with an
invariant: t � 3. For the engine, initially, we set the
RPM value to 3 000. In this context, we want to check
whether the system can enter a problematic configura-
tion, for example, the co-existence of intake and fire on.
This safety property (SP1) can be rendered in CTL
as: (A[ ]¬(engine.exhaust∧spark plug.fire on)). As the
two timed events are associated with different forms of
clocks, the traditional assumption that clocks are of the
same type does not hold in this case. We need the time
structure presented in Section 3 to model the relation-
ships between the two clocks.

Since RPM can change while the engine is working,
we are interested in knowing whether SP1 keeps hold-
ing true. We increase the value gradually and discover
that when it becomes equal to 12 000, UPPAAL reports
an error and generates the trace of a counter example.
The error corresponds to the fact that the engine’s rota-
tion speed cannot exceed a certain upper limit. Above
the threshold, the spark plug and the engine would not
be coordinated properly: for example, the spark plug
may still be ignited while the engine already enters an
exhaust state. To distinguish the property in these two
settings, in our experiment, we mark SP1 as SP ′

1 when
the value of RPM is equal to 12 000.

Besides the aforementioned safety property, we are
also interested in probing the correctness of proposed
translation. To this end, we propose another example
property: we want to guarantee that whenever the root
template is in state Running, all the other templates
cannot be inactive. Rendered in CTL as SP2, this be-
comes: A[ ](auto.Running → (¬engine.a1 inactive ∧
¬elec device .a2 inactive ∧ ¬spark plug .a3 inactive ∧
¬light [1, N ].a4 inactive ∧ ¬ac.a5 inactive)).

Table 1 summarizes the different metrics when in-
crementing the number of lights (our parameter) from
1 to 15. When the parameter is equal to or below 12,
SP1 and SP2 hold for the multi-clock configurations of
interest. The verification of these two properties runs
out of memory when the parameter is equal to 15 or
greater. For SP ′

1, since UPPAAL can find a counter
example without exploring the whole state space, the
states listed in Table 1 are only those explored before

finding the counter example.

5 Discussion

Rigorous semantics is a prerequisite for formal anal-
ysis and verification. This is why the formalization
of UML diagrams has been an active research topic
over the last years. This paper defines a step-based
formal semantics for UML/MARTE state machine di-
agrams using extended hierarchical timed automata
model. Our proposal takes into account the basic ele-
ments of the diagrams and the new features of multi-
form time support introduced by MARTE: the notions
of logical and physical clocks are both covered by our
solution. Thus the approach can be seen as an exten-
sion (evolution) over the earlier work on the formal-
ization of UML state machine diagrams with real-time
extensions.

Our proposal concentrates on a sub-set of the ele-
ments of UML state machine diagrams and MARTE,
and this incomplete coverage is the main limitation
of the approach. This is mainly due to the feasibi-
lity nature of the work, aimed to pave the ground to
wider and more complete solutions, but the limita-
tion can also be alleviated by means of semantically-
equivalent transformations of models’ elements. For
example, UML defines three types of states: simple
states (basic states, in our context), composite states,
and submachine states[12]. Since submachine states are
semantically equivalent to composite states, their trans-
formation comes for free.

6 Related Work

Since MARTE is a new member of the UML family,
and the standard itself is still under development[1,8],
many efforts are devoted to improving the precision and
applicability of the profile. Thus there exist two para-
llel threads of research. The first emphasizes the for-
malization of the constituent components of the profile,
for example, the clock constraint language, inner pack-
ages. The second emphasizes the formal annotations on
UML diagrams to enable the formal verification. This
section discusses some representative approaches of the
two threads.

Table 1. Summary of Our Verification Efforts

N States R/V Memory (MB) Time (s)

1 (348, 12, 348) (3.3/21.78, 3.3/21.79, 3.4/21.79) (0.02, 0.02, 0.04)

2 (718, 18, 718) (3.9/22.31, 3.61/22.07, 3.9/22.32) (0.02, 0.02, 0.04)

4 (3118, 46, 3118) (4.41/22.8, 4.24/22.7, 4.66/22.6) (0.28, 0.02, 0.26)

8 (76318, 534, 76318) (8.76/25.66, 5.31/23.83, 9.06/25.96) (1.86, 0.06, 1.82)

12 (3353518, 8222, 3353518) (208.7/216.1, 7.4/25.2, 209.1/216.6) (110.6, 0.38, 112.7)

15 (NC, 65572, NC) (OM, 14.55/27.25, OM) (NC, 2.06, NC)

Note: N : number of lights, R/V : Residential/Virtual, NC: Not Concluded, OM: Out of Memory
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Mallet and André[16] provided a precise semantics for
the Clock Constraint Specification Language (CCSL)
associated with MARTE in terms of Time Petri Nets[10]

and synchronous languages with well-defined seman-
tics. This work focuses on a language of MARTE, while
our proposal focuses on the behavior of UML/MARTE
models. Clearly, high level behavior analysis benefits
from precise language-level semantic foundations. Also
Ge et al.[17] presented a model transformation based ap-
proach to analyzing and verifying UML/MARTE mod-
els based on Time Petri Nets[10]. Proposed verification
is mainly against time properties and a lot of time-
irrelevant parts are abstracted away. Moreover, as ad-
mitted by the authors, the correctness of the translation
itself cannot be proved, and reachability is undecidable
for Time Petri Nets.

As for the formal semantics of UML state machine
diagrams, Crane and Dingel[18] proposed a compari-
son framework organized around three main categories:
mathematical models, rewriting systems, and transla-
tion approaches. Since most of the translation-based
approaches concentrate on establishing the mapping,
instead of verification, the rest of this section only ad-
dresses the first two categories.

Harel and Naamad[19] proposed a step-based opera-
tional semantics for statecharts without considering the
time dimension. Mikk et al.[13] first introduced the no-
tion of hierarchical automata as intermediate represen-
tation for the implementation of tools for statecharts.
They also introduced the notion of source and target
restriction functions to model inter-level transitions.
Based on this work, Latella and Massink[5] explicitly
introduced priorities into the step-based transitions,
which allows flexible priority schemas to be associated
with transitions. Some of our concepts are based on
this work, which provides a concise semantics for state
machine diagrams, but this work does not model the
time dimension and history states explicitly[5,13].

David et al.[4,20-21] proposed an approach based on
hierarchical timed automata to model UML diagrams
with real-time extensions and also a solution for flatten-
ing the models into UPPAAL timed automata. How-
ever, their assumptions preclude the support to inter-
level transitions and the treatment of time is implic-
itly bounded to physical clocks. To overcome these
disadvantages, our proposal introduces the concept of
source/target restriction functions and time structures.
The former is to support inter-level transitions, while
the latter is to model multiform time. Moreover, we
gave a hierarchical definition of HTAs which to give
a more intuitive structural correspondence. André
et al.[6] provided a notion of rich clocks and multi-
form time representation similar to ours, but theirs is

restricted to discrete sets and is not equipped with a for-
mal operational semantics. Akshay et al.[22] proposed
distributed timed automata with independently evolv-
ing clocks. However, the assumption that the rates of
distributed clocks depend on some absolute time is not
necessary in our model.

There have been also proposals based on Petri nets
and graph rewriting. Baresi and Pezzè[2] proposed a
mapping from UML behavioral diagrams to high level
Petri nets through pairs of transformation rules. Al-
though the approach can exploit existing Petri net
theory and tools to support the automated analysis of
UML specifications, it does not address the temporal
aspects. Similarly Hu and Shatz[23] did not cover the
temporal dimension. Hölscher et al.[24] presented a se-
mantics for UML based on the translation of a model
into a graph transformation system. The graph trans-
formation system comprises both rules and an initial
graph that represents the current state of the system.
These states however are limited to simple states. Also
Kong et al.[25] proposed a graph-based formal model
to augment UML behavioral diagrams with formal se-
mantics. However, as summarized in [18], graphical
rewriting-based models are not too sophisticated in
covering the features of UML state machines.

7 Conclusions and Future Work

This paper presented a proposal for augmenting
UML state machine diagrams with MARTE clocks and
for ascribing the resulting notation with a formal oper-
ational semantics based on extended hierarchical timed
automata. Specifically, the approach addresses the core
concept of multiform clocks in MARTE, formalizes it,
and embeds it into the operational semantics associa-
ted with state diagrams. This is a progress over past
proposals that formalize (subsets of) UML through hie-
rarchical automata since, to the best of our knowle-
dge, this is the first proposal that embeds and formali-
zes multiform time in hierarchical timed automata. It
also deals with inter-level transitions and history states.
The result can be used for further analysis and veri-
fication: the paper explained how to translate produced
diagrams into the input language of UPPAAL.

The experiments provided interesting results and
also paved the ground to exploiting models’ hierarchy
during analysis. In fact, in some cases, when properties
predicate on states at a given level, there is no need to
also consider their sub-states: this reduces the number
of generated states and allows for more compositional
reasoning techniques[26]. The formalization of these op-
timizations is part of our future work.
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[20] David A, Möller M. From HUPPAAL to UPPAAL: A transla-
tion from hierarchical timed automata to flat timed automata.
Technical Report, University of Aarhus, 2001.

[21] Giese H, Burmester S. Real-time statechart semantics. Tech-
nical Report TR-RI-03-239, University of Paderborn, 2003.

[22] Akshay S, Bollig B, Gastin P, Mukund M, Kumar K N. Dis-
tributed timed automata with independently evolving clocks.
In Proc. the 19th International Conference on Concurrency
Theory, August 2008, pp.82-97.

[23] Hu Z, Shatz S. Explicit modeling of semantics associated with
composite states in UML statecharts. Automated Software
Engineering, 2006, 13(4): 423-467.

[24] Hölscher K, Ziemann P, Gogolla M. On translating UML mod-
els into graph transformation systems. Journal of Visual Lan-
guages & Computing, 2006, 17(1): 78-105.

[25] Kong J, Zhang K, Dong J, Xu D. Specifying behavioral se-
mantics of UML diagrams through graph transformations.
Journal of Systems and Software, 2009, 82(2): 292-306.

[26] Bindelli S, Di Nitto E, Furia C et al. Using compositionality
to formally model and analyze systems built of a high num-
ber of components. In Proc. the 15th Int. Conf. Eng. of
Complex Computer Systems, Mar. 2010, pp.85-94.

Yu Zhou is an assistant profes-
sor at Nanjing University of Aero-
nautics and Astronautics, China. He
received his Ph.D. degree in soft-

ware engineering from Nanjing Uni-
versity in 2009. In 2010, he was a
post-doc at DEEPSE (DEpendable,
Evolvable, Pervasive Software Engi-
neering) Research Group of Politec-
nico di Milano, Italy. His research

interests are mainly in software architecture, software evo-

lution and verification with particular emphasis on leverag-
ing domain-specific knowledge to verify large-scale software
systems.

Luciano Baresi is an associate
professor at Politecnico di Milano,
Italy, where he spent most of his pro-
fessional life and got both his Mas-
ter degree in electronic engineering
and Ph.D. degree in computer sci-

ence. Luciano is a regular mem-
ber of the program committee of im-
portant conferences. He was/will be
the program chair of ICECCS 2002,

FASE 2006, ICWE 2007, ICSOC 2009, SEAMS 2012 and
ESEC/FSE 2013. Luciano is also currently a member of

the editorial board of the Transactions on Autonomous and
Adaptive Systems (ACM) and of Service Oriented Comput-
ing and Applications (Springer). Luciano co-authored some
120 papers and his research interests touch different aspects
of software engineering: formal modeling approaches, spec-
ification languages, UML and distributed and ubiquitous
software systems.



Yu Zhou et al.: Formal Semantics for UML/MARTE 201

Matteo Rossi received his Laurea Degree in computer engineering from Politecnico di Milano
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Appendix Flattening Algorithms

A.1 Algorithm 1

Algorithm 1. Step 1: Generating Basic Elements in Templates

Data: M : model of EHTA

Result: T : set of templates

begin

T ←− ∅;

HashMap map;

forall Ai ∈M.F do

Create a template t;

Add locations and transitions based on Ai.S and Ai.Σ;

Normalize the multiform clock based on M.W ;

if Ai �= Aroot then

Add Ai inactive location in t;

Mark Ai inactive as committed;

T ←− T ∪ {t};
map.add(Ai, t);

forall Ai ∈M.F do

forall s ∈ Ai.S ∧ σ(s) = COMPOSITE do

forall Ai ∈ ρ(s) do

temp ←− map.get(Ai);

forall in tr ∈ {incoming transitions to s} do

Add transition trans from Ai inactive to the entry location in temp;

Augment the action of trans with broadcast channel;

if s is initial then

Default entry location in Ai is marked as initial in temp;

else

Ai inactive is marked as initial in temp

map.update;

T.update;
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A.2 Algorithm 2

Algorithm 2. Step 2: Augmenting History Information in

Templates

Data: map: Hashmap by step 1; M : model of EHTA

Result: T : set of templates

begin

AA: set of Automata ←− ∅;

T ←− ∅;

Template temp;

forall s ∈ ⋃
Ai∈M.F SAi ∧ σ(s) = HISTORY do

if μ(s) = SHALLOW then

AA←− ρ(s);

else

AA←− ρ∗(s);

forall Ai ∈ AA do

temp ←− map.get(Ai);

Add selection location Ai selection in temp;

Mark Ai selection as committed;

Add Boolean variable guards based on Ai.S;

Add transitions from Ai selection to locations

generated by Ai.S;

Attach the transitions with guards;

forall transition tt ∈M.Σ ∧ s ∈ tr(tt) do

Add transitions from Ai inactive to

Ai selection in temp;

Attach related channels, guards and clock

resets;

map.update;

T ←− ⋃
Ai∈M.Amap.get(Ai);

A3 Algorithm 3

Algorithm 3. Step 3: Add Global Joins in Templates

Data: map: Hashmap by step 2; M : model of EHTA

Result: T : set of templates

begin

template temp;

forall Ai ∈M.F ∧ Ai �= Aroot do

temp ←− map.get(Ai);

Add join location Ai join in temp;

Mark Ai join as committed;

forall t ∈ ⋃
Ai∈M.F ΣAi do

forall s ∈ sr(t) ∧ (σ(s) = COMPOSITE ∨ σ(s)

= HISTORY ) do

forall Aj ∈ ρ∗(s) do

temp = map.get(Aj);

Add transitions tt from each location

generated by Aj .S to Aj join in temp;

Add transitions tt ′ from Aj join to

Aj inactive;

Associate tt with channels, guards and

clock resets based on t;

if μ(s) = SHALLOW ∧ Aj ∈ ρ(s) then

Associate tt with actions setting

history variables;

if μ(s) = DEEP then

Associate tt with actions setting

history variables;

map.update;

T ←− ⋃
Ai∈M.Amap.get(Ai);
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