arXiv:1301.0051v1 [cs.AR] 1 Jan 2013

MIMS: Towards a Message Interface based Memory System

Licheng Chen, Tianyue Lu, Yanan Wang, Mingyu Chen, Yuan Ruan
Zehan Cui, Yongbing Huang, Mingyang Chen, Jiutian Zhanggéng Bao
State Key Laboratory of Computer Architecture,
Institute of Computing Technology, Chinese Academy of Soés
{chenlicheng,lutianyue,wangyanan,cmy,ruanyuan}@uatn
{cuizehan,huangyongbing,chenmingyang,zhangjiutiaoyh}@ict.ac.cn

Abstract the market, such as 60-core Intel Xeon Phi Coprocessir [
and 100-core Tilera TILE-GX 64-bit processdr7]. The in-

multiprocessor (CMP) systems in terms of latency, bandiwidtcreasmg number of cores would result in severe bandwidth
’ pressure on the memory system. Memory requests from mul-

and efficiency, and recently additionally facing capacitga il Id also interf ith h oth d Iti
power problems in an era of big data. A lot of research works Ipie cores would aiso interiere with €ach other and resuit |

have been done to address part of these problems, such ‘lj‘%w locality. Thus future DRAM architectures place a lower

photonics technology for bandwidth, 3D stacking for c:apacpriority on locality and a higher priority on paral_lelisrﬁ([l.
ity, and NVM for power as well as many micro-architecture O_n the other hand, the amour_1t of data is predicted tp grow
with a rate of 40% per yeaff], it has become a hot topic in

level innovations. Many of them need a modification of cur . i - .
both academic and industry communities recent years. Big

rent memory architecture, since the decades-old synclusno ‘ . ) i d band
memory architecture (SDRAM) has become an obstacle tgzi;\d?hprocessmg requires more memory capacily and band-

adopt those advances. However, to the best of our knowledd’é,
none of them is able to provide a universal memory interface However main memory that acts as the bridge between
that is scalable enough to cover all these problems. high level data and low level processor is failed to scakede

In this paper, we argue that a message-based interfacé'g memory system to be a main bottleneck. Besides the well-
should be adopted to replace the traditional bus-based inknown memory wall problemd3], the memory system also
terface in memory system. A novel message interface basé&ces many other challenges (walls), which are concluded as
memory system (MIMS) is proposed. The key innovation dpllowed:

MIMS is that processor and memory system communicate Memory wall (Latency): The original "memory wall” re-
through a universal and flexible message interface. Eacherred to memory access latency problef§][and it was
message packet could contain multiple memory requests @he main problem in memory system until mid-2000s when
commands along with various semantic information. Thehe CPU frequency race slowed down. Then came the
memory system is more intelligent and active by equippingnulti/many core age. The situation has changed a bit that
with a local buffer scheduler, which is responsible to psxe queuing de|ays have become a major bottleneck, and m|ght
packet, schedule memory requests, and execute specific cq#Bntribute more than 70% of memory latené&g], Thus for
mands with the help of semantic information. The eXperimeﬁuture memory architecture’ it should p|ace a h|gher prior-
tal results by simulator show that, with accurate granugri ity to reduce queuing delays. Exploiting higher paraltelis

message, the MIMS would improve performance by 53.21%n memory system could reduce queuing delays because it is
while reducing energy delay product (EDP) by 55.90%, theaple to de-queue requests fastet][
effective bandwidth utilization is improving by 62.42%.ru . i . .
- . : Bandwidth wall: The increasing humber of concurrent
ther more, combining multiple requests in a packet would re- . . .
duce link overhead and provide opportunity for address compemory requests aloqg with the increasing amount of dgta,
) result in heavy bandwidth pressure. However the bandwidth
pression. A .
of memory is failing to scale due to the relatively slow grbwt
1. Introduction of pin counts of processor module (about 10% per y&Br [
This has been concluded as bandwidth wall][ The aver-
The exponential growth of both the number of cores/threadage memory bandwidth for each core is actually decreasing.
(computing resources) and the amount of data (working seth DDRx memory system, the memory controller (often in-
demands high memory throughput and capacity. The numbéegrated on processor chip) connects directly with DRAM
of cores integrated into one processor chip is expectedue dodevices through wide synchronous DDRx bus, each chan-

ble every 18 months?], many-core processors have been onnel costs hundreds of processor pins. Using narrower and

Memory system is often the main bottleneck in chip


http://arxiv.org/abs/1301.0051v1

higher speed serial bus between processor and memory deemory system, improve performance and decrease power
vices could alleviate the pin count limitation, such as full consumption. Many autonomous memory systems have been
buffered DIMM and its successors. Optical interconnectionproposed before, such as Processing in Memory (PBd), [
and 3D stacking are supposed to solve this problem substafetive Memory Operation (AMO)32, 33], and Smart Mem-
tially in the future. ory [43]. These technologies are limited to proprietary de-
Efficiency problem: Latency and bandwidth are only Signs and never get into a standard memory interface with
physical factors of a memory system while the efficiency ofread and write operations only.
memory access really counts for Processor. Current memory In summary, a lot of works have been done to alleviate var-
controller normally accesses a cache-block data (64B) in #éus memory system bottlenecks. However each of them is
BL burst (BL is 8 for DDR3) and DRAM modules activates only focus on one or part of these walls. To the best of our
a whole row (e.g. 8KB) in a bank. These large and fixed-siz&knowledge, none of them is able to address all these problems
designs help to increase the peak bandwidth when memory atable 1 lists different approaches and which problem eaeh ad
cess has a good spatial locality. However, in multiple cgse s dressed (please refer to section 2 for detail). For example,
tem, the locality both in row buffer and cache line is deceglas  the BOB 7] memory system is focus on address bandwidth
[50, 55]. It has been shown that large data cache had almostnd capacity wall, and the simpler controller is respossibl
no benefit for scale-out workload performangé,[41]. For  to schedule requests, makes the memory system a little au-
data access without spatial locality, coarse-grained glaita tonomous.
would waste activate power and reduce effective bandwidth

since it may move data that never be used. This is known a; | LY | BW | cY | EY | PR | AS |
overfetch problem. Memory system that supports fine granu{__ Sub-Access | * | x | x | * | v/ | X
larity access}5, 56] could improve bandwidth efficiency. FGMS * X X |V VX%
Capacity wall: Big data requires higher memory capacity. | Buffer-Chip | x X |V x| x ] X
But the slowly growing of pin count limited the number of BOB MS x |V IV x x| *
memory channels each processor could support. Furthermore  AMO/Smart | x | x x | x| VIV
the number of DIMM (dual in-line memory module) could be NVM X | x V[ x|V ]*
supported in each channel is limited due to signal integeity 3D-Stacked | x * Vx| VI]E
striction. For instance, only one DIMM is allowed in DDR3- Photonics X N X | %
1600 while four DIMMs are allowed for DDRBE]. And the Mobile-DRAM | x X * X | | *
capacity each DIMM could provide is growing slowly due Note: \/-Yes, x-No, *-Maybe.
to the difficulties in decreasing the size of a DRAM cell’s LY: Latency, BW: Bandwidth, EY: Efficiency,
capacitorsP7]. To increase the DIMM counts in single chan- CY: Capacity, PR: Power, AS: Autonomous

nel, registers and buffers are added to the memory interfac- ] ] ] ]
eRDIMM,LRDIMM. There are also various proposals to pro_Table 1: Comparison of different approaches to alleviate di ffer-
vide big memories, such as BOB (Buffer On Board) Memory
[27], HMC (Hybrid Memory Cube) 11], high density non-
volatile memory (e.g. PCM){(] and 3D-Stacked memory  |n this work, we argue that traditional synchronous bus-
[49]. based memory interface should be redesigned to incorporate
Power wall: memory system has been reported to be thguture innovations. In contrast to traditional read or eiius
main power consumer in servers, contributing about 40% taransaction based memory interface, a flexible asynchmnou
the total system poweBB, 28. Capacitor-based memory cell message based memory interface will bring more design op-
contributes the main power to the DRAM system which is notportunity. We propose a uniform message interface based
an architecturalissue. However, due to the overfetch prabl  memory system (MIMS): Memory request and response are
a large part of the dynamic power of DRAM is wasted. Im-sending via asynchronous messages. A local buffer sched-
proving memory system to support Sub-Access in row buffeuler is put between memory controller and memory devices.
and fine granularity memory access could alleviate the oveBevice-specific scheduling is decoupled from CPU memory
ferch problem. To reduce static power, non-volatile memorycontroller, which is only responsible to compose memory
(e.g. PCM) could be investigated as potential alternafives requests for packet. The memory controller communicates
existing memory technologies. NV-memory has a totally difwith buffer scheduler over high-speed serial point-toapoi
ferent access parameters, so it can not work under a memoliyik with a flexible message packet protocol. Each message
interface designed for DRAM such as DDRXx. could contain multiple memory requests or responses as well
Besides all the above walls, there is a long trend to equis semantic information such as granularity, thread id, pri
the memory system with some simple processing logic tarity, timeout. The buffer scheduler act as the traditional
make memory more autonomous. Logic in memory wouldmemory controller: it needs to track status of local memory
significantly reduce data movement between processor armtkvices, schedule requests, generate and issue specific DDR

ent walls.



commands, meanwhile meeting the timing constraints (suclogic between processor and DRAM devices, which is respon-
as DDR3 for DRAM devices). Additionally, buffer scheduler sible to receive memory requests from last level cache (LLC)
can use various semantic information from the CPU to helrhe memory controller needs to track the status of DRAM
its scheduling. devices (e.g., bank states) and generates DRAM commands
MIMS will bring at least the following advantages: for each selected requests meanwhile meeting the DDRXx tim-
1. It provides a uniform, scalable message interface to aéng constraints. The integrated memory controller commu-
cess different memory system. The status tracking andicates directly with DRAM devices over wide synchronous
request scheduling is decoupling from memory controlleDDR bus with separate data, command, and address bus. This
and pushed down to buffer scheduler. Thus the integratedirectly-connected design would result in high processor p
memory controller has no timing limitations and could eascount cost, and this has become a main bottleneck to support
ily scale to other emerging memory technologies. Also thdarge memory capacity, because the growth of processor pin-
memory capacity is only restricted by the buffer schedulercount is failed to keep up with demand.
which is decoupled with memory controller. The memory system has a hierarchical organization, with
2. It could naturally support variable granularity memoey r different level parallelism. Each memory controller might
quests. Each memory request is transferred with the exastupport multiple memory channels, while each channel has
size of really useful data. This could significantly improve separate DDR bus. Thus each channel could be accessed inde-
data/bandwidth effectiveness and reduce memory powegsendently. Within a memory channel, there might be multiple
consumption. DIMMs (Dual Inline Memory Module). Each DIMM might
3. It enables inter-requests optimization during the megmor comprise with multiple ranks (1-4), and each rank provides a
access such as combining multiple operations in a packébgical 64-bit data-path (bus) to memory controller (72ibi
and compressing memory address for a sequence of rECC-DIMM). Multiple DRAM devices within a rank need to
quests. be operated in tandem. The x8 DRAM devices are commonly
4. It is easy to add additional semantic information to theused today and they will be used in this work by default.
message to help the buffer scheduler to make decisions A prevalent DRAM device (chip) consists of multiple
when doing local scheduling. Local computation or intel-DRAM banks (8 in DDR3) which can be processed concur-
ligent memory operation requests can also be added as pagntly. There is a two dimensional array, consisting of rows
of the message. and columns, within each DRAM bank. A row buffer is ded-
To demonstrate the benefits of using a message interfadeated to each bank, which is usual 4-16KB. Before each col-
we have implemented a cycle-detailed memory system simimn access, a row needs to be loaded into the row buffer by
ulator, MIMSim. Experiments on fine-granularity access,an active command. If latter requests are hit in the row buffe
trunk memory request and address compression are takeéncould be accessed directly by read/write command. Other-
The results provide elementary proof for the benefits ofwise, the row buffer needed firstly to be precharged back to
MIMS. array before issuing a new request.
The rest of the paper is organized as follows. Section 2
gives background on memory system and related work, whilé-2- Sub-Access Memory

Section 3 presents the Message Interface based Memory Sy§ipn-Access memory refers to dividing a whole component

tem, includes architecture, packet format, address cosnprepo multiple sub-components, so that each memory request
sion and challenge. Section 4 presents the experimenti@l,set |y needs to access a portion of data. Here component could
and the results are presented in section 5. Section 6 gives| rank. row buffer and cache line (FGMS).

conclusion of this paper. Sub rank memory divides a memory rank into multiple log-

2. Background and Related Work ical sub-r_anks, whi(;h could be accessed indepgndgntl)a pat
layout might be adjusted so that each cache line is put in a
In this section, we first give a brief description of the mostsub-rank. Each memory access would only require a part
commonly used JEDEC DDRx SDRAM memory systems,of memory devices (in the same sub-rank) to be involved.
and then discuss some optimizations on memory archited¢dany different approaches could be classified as sub-rank, i
ture, including Sub-Access, buffer-chip memory, autonomo cluding Rambus’s Module threadingZ], Multicore DIMM
memory, and some aggressive memory system, such as ngmtCDIMM) [ 20, 19], and mini-rank B9, 31], heterogeneous
volatile memory (NVM), 3D-stacked memory, photonics in-Multi-Channel p7]. Sub-rank technology could save mem-
terconnect memory and mobile-DRAM in server. ory power by alleviating the over-fetch problem and improve
memory level parallelism (MLP). The downside of it is that
the memory access latency will increase since part of the to-
The JEDEC standardized DDR (Double Data-Ra#)syn-  tal device bandwidth can be utilized, because they still use
chronous DRAM is dominated nowadays. In DDRx memorycoarse granularity memory access.
system, memory controller could be considered as the bridge Udipi et.al (0] proposed SSA to reduce power. An entire

2.1. DDRx Memory System



cache line is fetched from a single subarray by re-orgagizinule was equipped with a Unified DIMM Interface Chip
the data layoutin SSA. Cooper-Balis and Jactd) proposed  (UDIC). The memory controller sends read/write requests to
a fine-grained activation approach to reduce memory powetDIC through the unified interface without worrying about
which only actives a smaller portion of row within the data any devices status or timing constraints.
array by utilizing posted-CAS command.
FGMS: AGMS and DGMS b5, 56 adopted sub-rank 2.4. Autonomous Memory
memory system to allow dynamically use fine or coarse grarnfhere has been a long time effort to make memory au-
ularity memory access. They also proposed some smart daénomous by equipping main memory with processing logic
layouts to support high reliability with low overhead. Cegv  to support some local computations. Processor-in-memory
designed Scatter-Gather DIMM24] are promising to allow (PIM) systems incorporate processing units on modified
8 bytes (fine granularity) access that could reduce the ineBRAM chips [29, 37]. Active memory controller $3, 32]
ficiencies in nonunity strides or randomly memory accessesidds an active memory unit to support active memory oper-
however the implementation detail of SGDIMM is lack. Cray ation (AMO), such as scalar operations (e.g. inc, dec) and
Black Widow [18] adopted many 32-bit wide channels, allow- stream operations (e.g. sum, max). Smart Meméf] ft-
ing it to support 16B minimum access granularity. taches simple compute and lock with data, thus reduces chip
2.3. Buffer-Chip Memory i/ecr)lct))/andwidth and achieves high performance and low la-
To alleviate memory capacity problem, a common way is to, .
put an intermediate buffer (logic) between the memory con?'S' Aggressive Memory System
troller and DRAM devices, which could reduce the electricalNon-volatile memory (such as PCM)(, 44, 61, 58] has been
load on the memory controller and improve signal integrity. considered as a potential replacement for DRAM chip in the
In Registered DIMM (RDIMM) B3], a simple register is in- future. NVM devices could remove static power consumption
tegrated on DIMM to buffer control and address signals. Loadand promise to provide higher capacity. Recent result shows
Reduced DIMM (LRDIMM) [6] further buffers all signals that some NVM has comparable latency to the DRAM. How-
that go to DRAM devices, including all data and strobes. Deever NVM chip usually have a different timing requirement
coupled DIMM [6Q] adopts a synchronization buffer to con- so that it can not be incorporated into the DDRx memory in-
vert between low speed memory devices and high data raterface directly.
memory bus. With a similar idea, BOONs4] adds a buffer On Chip optical interconnection is expected to provide
chip between the fast DDR3 memory bus and wide internaénough bandwidth for memory system. Udipi et alt9[
bus, which enable the use of low-frequency mobile DRAM proposed a novel memory architecture uses photonics inter-
devices, thus BOOM could save memory. connects among memory controller with 3D memory stacked
In Fully-Buffered DIMM (FBDIMM) [36, 4 memory mod-  dies, they also proposed a novel packet based interface to re
ule, there is an AMB (Advanced Memory Buffer) integrated linquish the memory controller and allow the memory mod-
on each DIMM module, multiple FBDIMMs are organized as ules to be more autonomous. Each packet only contains one
a daisy chain which could support high capacity. The memorynemory requests and is processed in a FCFS order.
controller communicates with AMB through point-to-point  Hybrid Memory Cube (HMC) 11] Utilizes 3D intercon-
narrow, high-speed channels with some simple packet prarect technology. A small logic layer that sits below veittica
tocol. Intel Scalable Memory Interface (SMi§][and IBM  stacks of DRAM die connected by through-silicon via (TSV)
power 7 memory system3p, 51] also place logic buffers bonds. This logic layer is responsible to control memory de-
between the DRAM and the processor, which could supportices. The memory controller communicate to HMC logic
more memory channels. chip via abstracted high-speed interface, logic layer Bigxi
Cooper-Balis et. al{7] proposed a generalized Buffer On ity allows HMC cubes to be designed for multiple platforms
Board (BOB) memory system. In BOB, intermediate logic isand applications without changing the high-volume DRAM.
placed (on motherboard) between on-chip memory controller
and DRAM devices. The memory controller communicates3- Message Interface based Memory System
with the intermediate buffer through serial link. The megnor
controller is decoupling from scheduling, and the interimed
ate buffer actually acts as a traditional memory controiter The current bus-based memory interface can be dated back to
tracks status of its local memory devices and schedules mente 1970s when the first DRAM chip in the world was pro-
ory requests, issues corresponding DRAM commands meaduced. After 40 years the main characteristics remains un-
while meets timing constraints. The BOB memory system ischanged: separated data, address and control signals; fixed
promising to alleviate the capacity and bandwidth problem. transfer size and memory access timing (latency); CPU being
UniMA [30] aims to enable universal interoperability be- aware and take care of every bit of storage on the memory
tween processors and memory modules. Each memory modhip; limited on-going operations on the interface. One may

3.1. Why use a Message-based Interface?



argue that a simple and raw interface for DRAM keeps the3.2. MIMS Architecture

minimum latency for memory access, but it also brings obsta-

cles to improve memory performance as described in Introfigure 1 shows the architecture of the Message Interface
duction section. Nowadays with more and more parallelisnPased Memory System (MIMS). As in the Buffer-On-Board
in computer system, single memory access latency is not tH&OB) memory systemZ7], the memory controller in pro-

main issue for overall performance any more. Is it the rightcessor does not directly communicate with memory devices
time to Change this decades-old interface? (DRAM), instead, it communicates with the buffer sched-

uler via serialized point-to-point link which is narrowenda

Depouplmg IS th.e common trgnd of many previous WorkScould work at a much higher frequency. Each memory con-
mentioned in section 2. That is to separate the data trans-

o oller could support multiple buffer schedulers. Eachféuf
fer ar_1d data organization. '_I'he CPU shopld only take care q cheduler consists of memory request buffer, packet genera
sending requests and receiving data while a buffer coetroll

takes charge of scheduling and local DRAM chip organizanr’ packet decoder, return buf_fer and I_|nk bus. .
The memory controller receives variable-granularity mem-

tion. A packet-based interface will enable this separatipn o f itiol Th
encapsulating data, address and control signals. If we jué)[ry requests from mutiple processor cores. 1ne memory con-

stop here, then packeting is only a low-level encapsulatioﬁm"erﬁrStIy chooses the target buffer scheduler basethen
for bus tra’nsactions address mapping scheme, and then put it into on-chip net-

work. The NOC routes each memory request into its target

We can go a further step from packet to message. Here megsquest buffer. For each buffer scheduler, the requesetsuff
sage means the content of a packet is not predefined or fixege divided into Read Queue and Write Queue, which is used
but programmable. Message also means CPU can put motg puffer read and write requests respectively. Read résjues
semantic information on a packet other than simple reatéwri haye high priority when scheduling requests to pack until
operations. Then the buffer controller can make use of this i the number of write requests in the write queue exceeds the
formation to get better performance. The information maybehigh water mark 48, 25]. Then write requests get high pri-
size, sequence, priority, process id, etc. orevenarrdyaind  ority, and write requests would be contiguously selected to
|OCk. It iS ||ke that the buffel‘ Controller iS integrated W@PU be packed and sent to the Corresponding buffer scheduler un-

virtually to get all those necessary information for memorytj| the number of write requests return below the low water
optimization. A message-based interface will provide manymark.

opportunities to help solve memory system issues. The Packet Generator is responsible to select multiple

For latency problem, though a message interface may inrmemory requests to putinto a packet, send it to SerDes Buffer
crease the latency of single operation, it helps to incrpase construct the packet head, which containing meta data of a
allelism and do better prefetching and scheduling with sema packet. Note that, the packing operation is not in the @fitic
tic information, so contributes to decrease the overahay. path, because the Packet Generator keeps tracking the statu

For bandwidth problem, message interface will support betc—)f the serialized Iink_ bus, and could star_t packing procass |
ter memory parallelism to full utilize the bandwidth; patke advance before the link bus become available (free). After t

interface enables new interconnection technologies. Mgss packet has been constructed and the link bus become avail-
also enables effective compression able, the packet would be sent to the target buffer scheduler

. . i . After receiving a message packet, the packet decoder on
For efficiency problem, exact data size information will y,e ) tfer scheduler would unpack the packet and retrieve
help red_uce waste of over-fetch; message also enables exagf memory requests integrated in the packet, and then send
prefetching to reduce unnecessary operations. them to the scheduler. The scheduler acts as a traditional
For capacity problem, decoupling enables special desigmemory controller: it communicates with the DRAM mem-
for large capacity memory systems; message even enablesgy module through wide and relative low frequency bus with
network of extended memory systems. the synchronous DDR3 protocol as in the traditional memory

For power problem, message enables fine-grained contr§yStem- The scheduler needs to track all the memory mod-

of active DRAM regions. Decoupling also enables low powerur:e states (e.g. bank statde, bus state) attached to it, lsldﬂsyed h
NVRAM to be included in memory system transparently. the memory requests and generates DRAM commands (suc
as ACTIVE, PRECHARGE, READ, WRITE etc.) based on

For autonomous operation, message provides a natural Syae memory states, and issues the DRAM commands to the
port with semantic information. memory module meanwhile fulfills the DDR3 protocol con-

To demonstrate the benefits of message interface, a dragtraints.
architecture design and evaluation are given as followihg.  Sub-rank memory system is used to support variable-
should be noted that the design and evaluation are elengentagranularity memory access, which is similar as DGNs§][
and incomplete to cover all the advantage of message -bas¥# use x8 DRAM devices, and each rank is separated into
interface. 8 sub-ranks, with one device per sub-rank. The data burst
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Figure 1: The Message Interface Memory System architecture
length (BL) is 8 in DDR3, thus the minimum granularity is LKOH PKHD RTMSG

o

3.2.1. Packet FormatMessage packet is the essential and
critical component in MIMS, and packet should be designed

‘DBSTD‘PT‘CNT‘RV‘ ‘ ADDR ‘GY 10 | T1D.

to easily scale to support various memory optimizations.

Each packet could support multiple memory requests. Each Figure 2: Read packet format.

packet contains some Link Overhead (LKOH) which is gen-

erated and processed at lower layer such as link layer an(ari . LKOH PKHD __GY_ RTMSG WTDA
physical layer. The LKOH is necessary for serial bus commup, ..« ‘ V% G

nication protocol, which usually contains reliabilitylaged

data such as Start, End signal, Sequence ID, and checksum
codes (CRC).

The overhead of LKOH would be high if each packet onlywith some other semantic message, it basically contains ad-
contains a small amount of data (payload). Especially for alress (ADDR), granularity (GY) for each memory request,
read request, which only contains address and operatien, ttand could salable to contain more semantic message such as
overhead of the LKOH would be near 50% for a size of 8Brequest timeout (TO), thread id (TID). The timeout require
LKOH (as in PCle protocol). Combining multiple memory the longest acceptable latency (queue delay) that it must be
requests into a packet would increase the payload size. scheduled and return, this is valuable to implement QoS for

To support multiple memory requests in a packet, we protequests, other message that is valuable for schedulidd cou
pose a variable-length packet format for MIMS. The packe!so be integrated in the RTMSG. Allthe RTMSGs in a packet
has three basic types: Read Packet, Write Packet and Rea&de in the same format and same length, which makes to en-
Return Packet, which might contain multiple read memorycode and decode reading packet easily and effectively.
requests, write requests and return data respectivelyceSin  In a write packet, as shown in figuéethe format is nearly
each packet might contain variable number of requests, eadh the same, it also contains LKOH, a packet head and multi-
packet is added a packet head (PKHD) which contains Metgle write requests, where the packet head is just the same as
data of the packet, the detail format of packet is shown irin the read packet, except that the packet type (PT) is Write
figure 4. We can see in figurz that a Read Packet has a Packet. Besides a RTMSG, each write request need also con-
packet head and multiple Request Messages (RTMSG), arfdins write data (WTDA). The RTMSG is the same with read
it should contain LKOH. The packet head contains Destinarequest. Write data might be variable-length, and the kengt
tion Buffer Scheduler Identifier (DESID), Packet Type (PT,is determined by the granularity (in RTMSG) of the request.
such as Read), the Count (CNT) of requests and some oth&pr example, the length of data is 8B for a fine granularity
Reserved (RSV) fields. Note that all the requests in a packatrite, and it is 64B for a coarse granularity write.
are sent to the same Destination Buffer Scheduler. After Read-return packet has the same format with write packet.
packet head, multiple request messages are closely alignéithe request address needs to be returned since memory re-
each request message (RTMSG) represents a memory requgsests are scheduled out-of-order both in packet encoding

Figure 3: Write packet format.



Parallel decoding address compression could further reduce the size of pdyloa

thus reduce the demand to the bandwidth of link bus.Figure
5(a) shows the simplified FIFO one request per packet, we
can see that for 8 memory requests, it totally induces 8 pgiacke
overhead (PKT_OH). And figurgb) shows if the packet sup-
port to involve multiple requests, such as 4 requests in each
packet, then there are 2 packets with induced 2 packet over-
heads, it could save 6 PKT_OHs space. However since it
still packet requests in FIFO, the addresses in each packet
has relatively poor locality, which is obstacle to perfordi a
dress compression. Thus in figusc), we selects memory
requests in en-packet in an out-of-order and compresseawar
manner, which firstly re-order memory requests and group
multiple adjacent requests which is preferred to be salecte
and in buffer scheduler. In order to reduce the overhead-of rén the same packet. Finally, figut¢d) shows the base-delta
turning address, each read request could be assigned arequaddress compression in each packet, we choose a base, and
id, which is much smaller (10 bits is enough 1024 requests).all the address are then represented as the difference YDIFF
3.2.2. Packet Decodind\fter the buffer scheduler received a to the base, where the DIFF could have variable length, such
packet, the Packet Decoder firstly reads the packet head a@ 2B in the first packet and 1B in the second packet.
gets the meta data of the packet, such as DESID (Destination
Buffer Scheduler ID), Packet Type, memory requests count o _
and other reserved data. The DESID is used to check whethar3: The challenge of designing a message interface based
the packet was routed correctly. Then the type of the packet MeMOry system
and the count of memory requests are checked.

Read packet Since each read request messages has fixe
length fields, including address, granularity etc., it cobé

RTMSG

Read Packet l‘ ‘ ‘ ‘ | ‘ ‘ ‘ ‘

Decoded read request:
address, granularity, RD
Figure 4: Parallel decoding for Read Packet. Each batch (4
in the figure) of RTMSGs are decoded in parallel, each RTMG
could be decoded with a simple MASK operator.

RI/Tessage based interface for memory system will bring chal-

di el iIv. Fiqureh th ¢ lenges to all system levels that concerned with memory.
processed in paraflef easlly. FIgurehows the process ol par- Many challenges remain to be solved. Here is an incomplete
allel decoding for read packet. In this example, 4 RTMSG ist

are decoded once a time. Since the format for each RTMSG is
same, they could be decoded with a single mask, the addreds, Complexity: Message processing is more complex than
granularity and other message of each read request could be simple packet. Both the memory controller and buffer

extracted. After that, the next batch RTMSGs are ready to be
decoded.

Write Packet: Each write request has the Request Mes-
sage along with variable length of data, where the length
could be determined by the granularity of the memory request

For example, if the granularity is 4, then the length of data i 2.

32B (8B * 4). The decoder process the requests in serial due
to variable size: it extracts address, granularity andraties-
sage of the first write request, then it calculates the lenfth
data base on the granularity, retrieves the write data,remb&

to the next request, until all the write requests are retdev
3.2.3. Address Compression in a message packetitting
multiple memory requests in a packet provides a good oppor-

tunity to address compression. It is also enables to corapres.

data in write packet and return packet. A lot of work had
contributed to data compression. Motivated by that address
would contribute about 39% of packet (section 5.1 for more
detail), we focus on compressing multiple address in a read

packet which has not been investigated before, and we wil-

show that with some simple compression algorithms, the ad-
dress could be compressed efficiently.
The example in figuré illustrates how involving multiple

scheduler need more complex logic to accomplish the task,
e.g. longer queue management and consistence checking.
Although logic is becoming cheaper, it still needs to inves-
tigate whether the cost, power consumption, and increased
latency can be controlled within an acceptable level.

ISA extension: To full utilizing the flexibility of messag
CPU needs to provide more semantic information along
with read/write request. This may bring extensions need
to the ISA. For example, how to provide the size informa-
tion for variable granularity memory requests; how to de-
liver process information such as thread id, priority, time
out and prefetch; how to generate Active Memory Opera-
tion request to the memory controller.

Cache Support: To better support variable granularity
memory accesses, variable-sized cache line is preferred
though with difficulty. Sector cache for fine granularity
and SPM (Scratchpad memory) for large granularity can
also be used with a redesign.

Programming: The semantic information may also be dis-
covered and generated by software and sent via message.
Application can be implemented with some hint API, or
with the help of an aggressive compiler to generate MIMS

requests in a packet could reduce packet overhead and how Special instructions automatically.
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Figure 5: Conceptual example showing the benefit of involvin g multiple requests in a packet: packet overhead reduction a nd
address compression. (a) FIFO with one request in each packe  t. (b) FIFO with multiple requests in each packet. (c) Out-of  -order

compressed-aware requests grouping. (d) Address compress ion in each packet.

4. Experiments Setup granularity is about 72.85% for read requests, but it is abou
_ 97.59% for write requests. And in the listrank benchmark,

4.1. Simulator and Workloads the rate of 2-granularity and 4-granularity is about 52.99%

nd 31.54% respectively for read requests, but they aretabou

To evaluate MIMS, we have implemented a cycle-detaile 6.51% and 0.90% respectively for write requests.

Message Interface Memory System simulator which is named
MIMSim. We adopted DRAM modules (devices) based o
DRAMSIm2 [47], which is a cycle accurate DDR2/3 mem-
ory system simulator. The DRAMSIm2 models all aspects o
the memory controller and DRAM devices, including trans FINE | SSCA2| 20.89 | 1.68) 20.42 | 1.56| 1.02
action queue, command queue and read-return queue, ad-'NE canl. | 17.79| 1.64| 8.64 | 1.10) 2.06
dress mapping scheme, DDR data/address/command bus coiNE p_ark. 9.76 | 2.42| 6.14 | 2.74| 1.59
tention, DRAM device power and timing, and row buffer man-| MID lirk. 22.56 | 3.56| 15.45 | 3.37| 1.46
agement. We add re-order buffer (ROB) to make simulatior MID BFS 22.36 | 3.10| 244 | 3.49] 9.16
more accurate, the DRAM module is modified to support sub- COR | STRM. | 33.33| 8.00| 16.63 | 8.00 | 2.00
rank. Channel interleaving address mapping is adopteckas th COR bt 7.68 | 7.98| 7.63 | 7.98] 1.01
default (baseline) configuration to maximum MLP (Memory COR ft 31.85| 8.00| 31.72 | 8.00| 1.00
Level Parallelism), and FRFCF89 scheduling policy with | COR Sp 8.04 | 7.98| 7.89 | 7.98)| 1.02
closed-page row buffer management. COR ua 442 1719 380 | 792|116
Pin [42] is used to collect memory access traces from varit COR | ScPC. | 11.00| 565) 3.85 | 5.74) 2.86
ous of workloads running with 2-16 threads. We choose se _COR | perM 262 | 6.28] 240 | 6.12] 1.09
eral multi-thread memory intensive applications from BRS i Note, canl.: canneal, park.: pagerank,
Graph500 §], PARSEC p3], Listrank [21], Pagerank 0], lirk.: listrank, STRM.: STREAM, ScPC: ScaleParC.
SSCA2 P2, GUPS [L5], NAS [13], STREAM [1€]. Table
2 lists the main characteristics of these workloads. We clas-
sify the workloads into three categories based on the access
granularity: fine granularity (FINE: <=3), Middle granular  To collect granularity message for each memory request,
ity (MID: 3-6), and coarse granularity (COR: 6-8). Memory we implement a 3-level cache simulator as a Pin-tool. The
read and write requests are reported separately, inclibding detail configuration is listed in tablg. We start the cache
read memory requests per kilo instruction (RPKI), the aversimulator after each application enters into a representat
age read granularity (RG), the write memory requests per kil region. After warm-up the cache simulator with 100 million
instruction (WPKI), the average write granularity (WG)dan memory requests, we collect memory traces with granularity
the read/write ratio (RD/WT). The reason to separate tha reaand cache access type message. For PARSEC benchmark,
and write characteristics is that we find the granularityrdis we naturally choose the ROI (Region-of-Interest) codes as
bution of read and write might different for some FINE andthe region for PARSEC benchmarks; and for all the other
MID benchmarks. Figuré shows their granularity distribu- benchmarks, we manually skip the initialization phasel{suc
tion. For example, in the canneal benchmark, the rate of las graph-generation in BFS) and collect memory traces after

Cate. | Bench. | RPKI | RG | WPKI | WG | RIT
FINE | GUPS | 69.67 | 1.78| 69.62 | 1.78 | 1.00

Table 2: Workloads Characteristics.
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Figure 6: The read and write granularity distribution of FIN E
and MID memory-intensive workloads.

meaningful work.

2.7GHz, 256-entry,
Reorder Buffer max fetch/retire per cycle: 4/2,
5 pipeline (latency of non-mem instr
L1 Cache Private, 32KB, 4-way, §4B cache ling
9 CPU cycles hit (4+5)
Private, 256KB, 8-way, 64B cache ling
L2 Cache 15 CPU cycles hit (10+5)
L3 Cache Shared, 16-way, 64B cache line,
1MB/core, 45 CPU cycles hit (40+5)
Memory 2 buffer schedulers/MC,
Controller Read/Write Queue: 64/64
. 2.7GHz, point-to-point,
Link Bus read/write bus width: 16/16
Buffer FRFCFS {5, closed page
Scheduler Channel-interleave mapping
DRAM Parameters
Memory 2 64-bi_t Channels, 2 Ranks/Channe
8 devices/Rank, 8 sub-ranks/rank,
x8-width sub-rank, 1 device/sub-ran
DDR3-1333MHz, x8, 8 banks,
. 32768 Rows/bank, 1024 Columns/Rd
DRAM Device 8 KB Row Buffer per Bank, BL=8,
Time and power parameters from
Micron 2Gb SDRAM [1]

Table 3: System Configurations

4.2. System configurations

€

W

ranks with 8 DRAM x8 chips each. Each DRAM chip has

8 banks. We fast forward 64 million memory traces for each

core (thread), simulate until all the threads have execated

least 100 million instructions.

To evaluate the MIMS, we use the following memory sys-
tem configuration:

e DDR: traditional DDRx (3) memory system with fixed
coarse access granularity (cache line: 64B), this is the-bas
line.

e BOB: Buffer On Board memory system, fixed coarse ac-
cess granularity, 1 memory request (read/write) per packet
simple packet format without any extra message.

e MIMS one (MI_1): Message Interfaced based memory
system, adopts sub-rank memory organization to support
variable-granularity access, 1 request per packet, amtai
granularity message in packet.

e MIMS_ multiple (MI_mul): Message Interfaced based
memory system, supports variable-granularity access, mul
tiple requests in a packet.

DRAM and Controller Power: we evaluate memory
power consumption with DRAMsim24[/] power calculator,
which uses the power model developed by Micron Corpo-
ration based on the transitions of each bank. The DRAM
power is divided into 4 components: background, refresh, ac
tivation/precharge, and burst, where background andgiefre
power is often concluded as static power, activation/paegph
and burst power is concluded as dynamic power. Besides
DRAM devices, we also take the memory controller power
into consider, for it would contribute a significant amoumt t
overall consumptionZ8] (about 20%). In BOB and MIMS,
the controller power is actually referred to simpler colo
and buffer scheduler power respectively. For DDR, we adopt
the MC power to 8.5W fromY]; for BOB and MIMS, we
adopt the intermediate controller power to 14W as ]|
The controller idle power is set to 50% of its peak power.

5. Experimental Results

In this section, We first present the performance and power
impacts of MIMS in Section 5.1, and then evaluate the effec-
tiveness of combining big-granularity memory requests. We
present the effect of memory addresses compression in sec-
tion 5.3.

5.1. Performance and power impacts

In this section, we present simulation results of 16-cose sy
tems on FINE and MID granularity workloads. All the work-

Table 3 lists the main parameter settings used in the cycleloads are in multiple-thread mode, with each core runnirgg on

detailed simulators.

Note, the non-memory instruction lathread. We use the total number of submitted instructions as

tency and cache hit latencies listed here are used as the the metric of performance.

tency of the instruction need to wait in the ROB (in MMASim)

Figure 7 shows the normalized performance speedup and

before it could be committed. For example, a L2 cache hieffective bandwidth utilization of different memory syste
memory access instruction could be committable only aftewhere the baseline is DDR. For these FINE or MID work-
15 CPU cycles when it is added in the ROB. The baselindoads, such as BFS, canneal, GUPS, fine granularity access
memory system has 2 DDR3-1333MHZ channels with dualvould benefit. The BOB performance degrades range from
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Figure 7: Normalized Speedup and Effective Bandwidth Uti- Figure 8: Memory power breakdown and the normalized EDP
lization of different memory system in 16-core configuratio n, (Energy*Delay Product, lower is better)

the baseline is DDR
latency is categorized into two major categories: Queuity a

49.38% to 78.38%. This is because that the BOB still use®RAM Core Access Latency. The Queuing Latency repre-
coarse granularity access, and the intermediate controllesents latency of a memory request waiting to be scheduled in
would introduce packet overhead and extra latency. On ththe Transaction Queue, which has been proved to be the main
other side, MIMS_1 and MIMS_mul could improve perfor- component of memory latencg(]. The DRAM Core Access
mance because they support variable-granularity, the @lerm Latency represents the latency of executing DDR commands
ized speedups of MIMS_1 range from 1.11 to 1.53, and obf a memory request in DRAM devices. In MIMS memory
MIMS_mul range from 1.29 to 2.08, this indicates that in-system, there is an additional Scheduling latency, whigh re
tegrating multiple requests in a packet could reduce packeesents the extra processing latency induced by Bufferd&sche
head overheard, thus improve memory performance. The efiler, it includes the SerDes latency, scheduling latenay an
fective bandwidth utilizations nearly have the same vammt packet encoding/decoding latency. The Queuing Latency con
trend with the speedups in different memory systems. Fotains both in memory controller (waiting to be packed) and in
DDR, they range from 15.58% to 31.55%; for BOB, the effec-buffer scheduler (waiting to be issued to DRAM devices) in
tive bandwidth utilization is decreased, since each memwry MIMS.
quest would introduce a packet overhead, along with the-wast Figureg shows the memory |atency breakdown in 16-core
ing bandwidth for transferring useless data in a cache lingonfiguration. We can see that for these memory intensive
The MIMS_1 could eliminate wasting data but still suffer-sig workloads, the Queuing Latency dominates the memory la-
nificant packet overhead. The MIMS_mul could achieve theency, especially for GUPS and SSCA2 application, which
best efficiency bandwidth utilization, ranging from 21.18% could achieve about 1185.67 ns and 933.0 ns respectively in
44.49%. DDR memory system, meanwhile the DRAM Core Access

Figure8 shows the memory power breakdown and the norkatency is only 22.22 ns. The reason for it is that these two
malized EDP in different memory systems. Here we alsaapplications suffer high MPKI as shown in taliteand the
consider the power of controller. The average total powetraditional DDR memory system is failed to serve them due
for DDR is about 23.38W, and the BOB has a little moreto its limited MLP. However, the Queuing Latency could re-
power (26.36W), since the intermediate simple controller-c  duce significantly in MIMS, for instance, it reduce to 234.81
sumes more power than the on chip MC, the DRAM powems for GUPS and 147.41 ns for SSCAZ2, that is because the
of them are nearly the same. The MIMS_1 and MIMS_mulMIMS adopted sub-rank and it could provide more MLP
could effectively reduce the Activation/Precharge power b since each narrow aub-rank could be accessed independently
cause each (fine) request only activate/prechare a sub-raflven though the intermediate buffer scheduler would induce
(one DRAM device in our work) with smaller row, and re- extra Scheduling Latency, the whole memory latency is re-
duce the Burst power because it only read/write the reallyguced for all workloads.

useful part of data in a cache line (such as 8B data in 64B Figure10shows the percentage of different components in
cache line). Thus the power of MIMS_1 and MIMS_mul re-packets in MIMS_multiple memory system. Here we only
duced to 16.90W and 17.13W respectively. The normalize@how the packets in downside (from Cpu) bus. For a read
EDP (Energy Delay Product) of BOB reduces about 1.78, thipacket, it only contains packet overhead (PKT_OH) and ad-
is mainly because the introducing latency. MIMS_one andyress; for a write packet, it contains data also. We can see th
MIMS_multiple could improve EDP by 0.53 and 0.44 respecthe address contributes a large portion of packet, it ranges
tively, this is because sub-rank could improve memory parafrom 39.15% to 67.39%, and Data contributes range from
lelism and thus reduce queuing delays. 8.24% to 55.26%. The BFS benchmark contributes the max
Memory Latency:In DDR memory system, the memory address portion, that is because it has a read/write ratio of
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Packet in MIMS with multiple requests. Figure 12: The percentage of combined big granularity mem-

9.16 (please refer to Tab®). The packet overhead has a rel-°"Y "€4uests:

atively small portion, because each packet allows to i@tegr || have good speedup with 100 cycls delay.
multiple requests, and more requests in a packet, less of the
packet overhead. For example, there are about 31.51 requeét2. Large Granularity Access

in each packet, thus the packet overhead is only 1.42%; but ides fi lari he MIMS d
in BFS, there are only about 3.57 requests in each packet, rgga es fine granularity memory access, the cou

sult in about 24.38%. Observation that address contribute@ls‘O support big granularity memory access. For COR ap-

a large portion in a packet gives a good reason for addreﬁ'cat'ons' continuous memory addresses could be merged
compression. into a big access. To simulate a program that can send the

Latency proportionality of the buffer scheduler in trunk information to memaory controller, we preprocess mem-
MIMS . Buffer scheduler would introduce extra latency for ory access t.races and merge the memory access traces that
memory requests, since the memory controller needs firstl ccess continuous memory address into one request within

send requests to buffer scheduler, including: packingiplalt |nstru<_:t|0n-wmdow. We set the_ preprocess-window size to

requests in the memory controller, SerDes transition, gack 256, which means we can combined 256 traces once, but the

transferring on the link bus and packet decoding. Due tdnerged trape Sh.OUId not be Iarger. than 4KB for read, and

different implementation and craft, the introduced lateaft: .5128 forwrlFe. Figurel.2shows the size of combined request

buffer scheduler might have proportionality possibibtidn n ogr experiments.

this section, we varied the latency from O (perfect) to 200 Figure 13 shows the speed up result. It can be seen that

CPU cycles with a step of 20 CPU cycles to study how the_MlMS can gain better _p(_arformance through large _granular—

introduced latency would affect the overall memory systenity: Compared to the original memory access, the bigger pro-

performance. Figuré1 shows the results. portion qf large granularity is, the b_etter performance N\EM
We can see that the latency proportionality of buffer sched®@n achieve. STREAM has 50% improvement. To get the

uler has a significant impact on the MIMS performance, andarge granularity information from application, softwariat

the impact is different for different applications. The &C  ©' compiler support will be better than hardware detection.

has the largest slode\_/vn at about 1.07 every 20 more CPY 3 aqdress Compression

cycles, and the normalized speedup (based on DDR) reduce

from 2.12 (with 0) to 1.09 (with 200 cycles). and pagerankin this section, we evaluate the address compression irepack

even reduced to 0.89, worse than the DDR. All application&Ve will show that even with some simple compression algo-

11



1.6 : . .o . .
L ENo Merge W Merge 5III Simple Base BMulti_Base_inline OMulti_Base_Offline
s o
2 12 €,
2 &
g 1
@ = 3
= 08 £
8 2 2
.% 0.6 )
=)
¢ E Ildwmd
z 0.2 S o
' PR IFSLAIDS MPPLEF S
& & 8 L&D e ¢ > PSS FIOP LY
y§\ Q < N S & N N S qg’ F o 9D N O N
S $ $ $ R &> P 3 d ¥S
5{5’ %Oq}e ¥ ¢ & é\*& o §

Figure 13: Normalized Speedup with combining big granular- Figure 14: Address Compression Ratio.

! - .
'ty memory requests 6. Conclusions and Future Work

In this paper, a Message Interface based Memory System
rithms, it would achieve substantial compression ratioisTh (MIMS) is proposed. By decoupling memory access with

is due to the natural locality among adjacent addresses; esgh€mory organization and associating semantic information
cially for coarse granularity workloads. 3 compressioroalg With memory request, MIMS provides new opportunities to
rithms are evaluated: solve existing memory problems. Experimental results show

that MIMS is able to improve parallelism and bandwidth uti-

Single_Base: the first address in a packet is chosen as ttigation for fine granularity applications, to keep locglfor
single base, all the other address would be represented §§nk memory access and enable effective inter-requests ad
the difference to the base (delta value). The base addre§§ess compression.

needs to be placed in the packet. Using message interface instead of traditional bus might
Multi_Base_Inline: the Packet Generator and Packet De2pen a new road for memory system design. In the futre we
coder synchronously maintain a base address table whighill extend MIMS to support more operations and investigate

contains multiple base addresses. Each address is repfélimplementation issues.

sented as an index and a difference if it could matches on
of the base. otherwise, this address would serve as a ba
address, and the LRU old entry in the table is selected to [1]
evict. This new base address needs to be sent to the Packet
Decoder, and make the two table keep synchronous. [2]
Multi_Base_Offline: extended from the multi_base_inline
algorithm. At each packet, each base would automatically [3]
updated by the last address that could be compressed. This
simple learning strategy would keep base address in stepyy;
and increase the possibility to hit with compression.

In our experiments, for coarse granularity applicatiohs, t 5]
number of base address is 8 (requires 3 bits index), and the

bits of difference is set to 8; and for fine granularity applic €]
tions, the number of base address is 8, and the bits of differ-
ence is 24. Figuré4 shows the compression ratio with the  [7]

above three compression algorithm. For coarse granularity [l
applications (left part), the Single_Base could achievauab
1.66, the Multi_Base_Inline could achieve about 2.19, and
the Multi_Base_Offline could achieve about 3.68, where the
STREAM application could get the highest compression ra-[10]
tio of 4.56. These indicate that there exists many oppdstuni
to exploit address compression. However, for fine granylari
applications, since the memory access pattern is rand@m, thyy2]
compression ratio is relatively low, the Single_Base isyonl
1.08, and the Multi_Base_Inline and the Multi_Base_Offline (13
nearly achieve the same compression ratio, about 1.44.
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