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Abstract
Memory system is often the main bottleneck in chip-

multiprocessor (CMP) systems in terms of latency, bandwidth
and efficiency, and recently additionally facing capacity and
power problems in an era of big data. A lot of research works
have been done to address part of these problems, such as
photonics technology for bandwidth, 3D stacking for capac-
ity, and NVM for power as well as many micro-architecture
level innovations. Many of them need a modification of cur-
rent memory architecture, since the decades-old synchronous
memory architecture (SDRAM) has become an obstacle to
adopt those advances. However, to the best of our knowledge,
none of them is able to provide a universal memory interface
that is scalable enough to cover all these problems.

In this paper, we argue that a message-based interface
should be adopted to replace the traditional bus-based in-
terface in memory system. A novel message interface based
memory system (MIMS) is proposed. The key innovation of
MIMS is that processor and memory system communicate
through a universal and flexible message interface. Each
message packet could contain multiple memory requests or
commands along with various semantic information. The
memory system is more intelligent and active by equipping
with a local buffer scheduler, which is responsible to process
packet, schedule memory requests, and execute specific com-
mands with the help of semantic information. The experimen-
tal results by simulator show that, with accurate granularity
message, the MIMS would improve performance by 53.21%,
while reducing energy delay product (EDP) by 55.90%, the
effective bandwidth utilization is improving by 62.42%. Fur-
ther more, combining multiple requests in a packet would re-
duce link overhead and provide opportunity for address com-
pression.

1. Introduction

The exponential growth of both the number of cores/threads
(computing resources) and the amount of data (working set)
demands high memory throughput and capacity. The number
of cores integrated into one processor chip is expected to dou-
ble every 18 months [2], many-core processors have been on

the market, such as 60-core Intel Xeon Phi Coprocessor [12],
and 100-core Tilera TILE-GX 64-bit processor [17]. The in-
creasing number of cores would result in severe bandwidth
pressure on the memory system. Memory requests from mul-
tiple cores would also interfere with each other and result in
low locality. Thus future DRAM architectures place a lower
priority on locality and a higher priority on parallelism [50].
On the other hand, the amount of data is predicted to grow
with a rate of 40% per year [14], it has become a hot topic in
both academic and industry communities recent years. Big
data processing requires more memory capacity and band-
width.

However main memory that acts as the bridge between
high level data and low level processor is failed to scale, lead-
ing memory system to be a main bottleneck. Besides the well-
known memory wall problem [53], the memory system also
faces many other challenges (walls), which are concluded as
followed:

Memory wall (Latency): The original "memory wall" re-
ferred to memory access latency problem [53] and it was
the main problem in memory system until mid-2000s when
the CPU frequency race slowed down. Then came the
multi/many core age. The situation has changed a bit that
queuing delays have become a major bottleneck, and might
contribute more than 70% of memory latency [50]. Thus for
future memory architecture, it should place a higher prior-
ity to reduce queuing delays. Exploiting higher parallelism
in memory system could reduce queuing delays because it is
able to de-queue requests faster [50].

Bandwidth wall : The increasing number of concurrent
memory requests along with the increasing amount of data,
result in heavy bandwidth pressure. However the bandwidth
of memory is failing to scale due to the relatively slow growth
of pin counts of processor module (about 10% per year [2]).
This has been concluded as bandwidth wall [46]. The aver-
age memory bandwidth for each core is actually decreasing.
In DDRx memory system, the memory controller (often in-
tegrated on processor chip) connects directly with DRAM
devices through wide synchronous DDRx bus, each chan-
nel costs hundreds of processor pins. Using narrower and
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higher speed serial bus between processor and memory de-
vices could alleviate the pin count limitation, such as Full-
buffered DIMM and its successors. Optical interconnection
and 3D stacking are supposed to solve this problem substan-
tially in the future.

Efficiency problem: Latency and bandwidth are only
physical factors of a memory system while the efficiency of
memory access really counts for Processor. Current memory
controller normally accesses a cache-block data (64B) in a
BL burst (BL is 8 for DDR3) and DRAM modules activates
a whole row (e.g. 8KB) in a bank. These large and fixed-size
designs help to increase the peak bandwidth when memory ac-
cess has a good spatial locality. However, in multiple core sys-
tem, the locality both in row buffer and cache line is decreased
[50, 55]. It has been shown that large data cache had almost
no benefit for scale-out workload performance [34, 41]. For
data access without spatial locality, coarse-grained dataunit
would waste activate power and reduce effective bandwidth
since it may move data that never be used. This is known as
overfetch problem. Memory system that supports fine granu-
larity access [55, 56] could improve bandwidth efficiency.

Capacity wall: Big data requires higher memory capacity.
But the slowly growing of pin count limited the number of
memory channels each processor could support. Furthermore
the number of DIMM (dual in-line memory module) could be
supported in each channel is limited due to signal integrityre-
striction. For instance, only one DIMM is allowed in DDR3-
1600 while four DIMMs are allowed for DDR1[35]. And the
capacity each DIMM could provide is growing slowly due
to the difficulties in decreasing the size of a DRAM cell’s
capacitors[27]. To increase the DIMM counts in single chan-
nel, registers and buffers are added to the memory interfac-
eRDIMM,LRDIMM. There are also various proposals to pro-
vide big memories, such as BOB (Buffer On Board) Memory
[27], HMC (Hybrid Memory Cube) [11], high density non-
volatile memory (e.g. PCM) [40] and 3D-Stacked memory
[49].

Power wall: memory system has been reported to be the
main power consumer in servers, contributing about 40% to
the total system power [38, 28]. Capacitor-based memory cell
contributes the main power to the DRAM system which is not
an architectural issue. However, due to the overfetch problem,
a large part of the dynamic power of DRAM is wasted. Im-
proving memory system to support Sub-Access in row buffer
and fine granularity memory access could alleviate the over-
ferch problem. To reduce static power, non-volatile memory
(e.g. PCM) could be investigated as potential alternativesfor
existing memory technologies. NV-memory has a totally dif-
ferent access parameters, so it can not work under a memory
interface designed for DRAM such as DDRx.

Besides all the above walls, there is a long trend to equip
the memory system with some simple processing logic to
make memory more autonomous. Logic in memory would
significantly reduce data movement between processor and

memory system, improve performance and decrease power
consumption. Many autonomous memory systems have been
proposed before, such as Processing in Memory (PIM) [29],
Active Memory Operation (AMO) [32, 33], and Smart Mem-
ory [43]. These technologies are limited to proprietary de-
signs and never get into a standard memory interface with
read and write operations only.

In summary, a lot of works have been done to alleviate var-
ious memory system bottlenecks. However each of them is
only focus on one or part of these walls. To the best of our
knowledge, none of them is able to address all these problems.
Table 1 lists different approaches and which problem each ad-
dressed (please refer to section 2 for detail). For example,
the BOB [27] memory system is focus on address bandwidth
and capacity wall, and the simpler controller is responsible
to schedule requests, makes the memory system a little au-
tonomous.

LY BW CY EY PR AS

Sub-Access * × × *
√

×

FGMS * × ×
√ √

×

Buffer-Chip × ×
√

× × ×

BOB MS ×
√ √

× × *
AMO/Smart × × × ×

√ √

NVM × ×
√

×
√

*
3D-Stacked × *

√
×

√
*

Photonics ×
√ √

* × *
Mobile-DRAM × × * ×

√
*

Note:
√

-Yes,×-No, *-Maybe.
LY: Latency, BW: Bandwidth, EY: Efficiency,
CY: Capacity, PR: Power, AS: Autonomous

Table 1: Comparison of different approaches to alleviate di ffer-
ent walls.

In this work, we argue that traditional synchronous bus-
based memory interface should be redesigned to incorporate
future innovations. In contrast to traditional read or write bus
transaction based memory interface, a flexible asynchronous
message based memory interface will bring more design op-
portunity. We propose a uniform message interface based
memory system (MIMS): Memory request and response are
sending via asynchronous messages. A local buffer sched-
uler is put between memory controller and memory devices.
Device-specific scheduling is decoupled from CPU memory
controller, which is only responsible to compose memory
requests for packet. The memory controller communicates
with buffer scheduler over high-speed serial point-to-point
link with a flexible message packet protocol. Each message
could contain multiple memory requests or responses as well
as semantic information such as granularity, thread id, pri-
ority, timeout. The buffer scheduler act as the traditional
memory controller: it needs to track status of local memory
devices, schedule requests, generate and issue specific DDR
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commands, meanwhile meeting the timing constraints (such
as DDR3 for DRAM devices). Additionally, buffer scheduler
can use various semantic information from the CPU to help
its scheduling.

MIMS will bring at least the following advantages:
1. It provides a uniform, scalable message interface to ac-

cess different memory system. The status tracking and
request scheduling is decoupling from memory controller
and pushed down to buffer scheduler. Thus the integrated
memory controller has no timing limitations and could eas-
ily scale to other emerging memory technologies. Also the
memory capacity is only restricted by the buffer scheduler,
which is decoupled with memory controller.

2. It could naturally support variable granularity memory re-
quests. Each memory request is transferred with the exact
size of really useful data. This could significantly improve
data/bandwidth effectiveness and reduce memory power
consumption.

3. It enables inter-requests optimization during the memory
access such as combining multiple operations in a packet
and compressing memory address for a sequence of re-
quests.

4. It is easy to add additional semantic information to the
message to help the buffer scheduler to make decisions
when doing local scheduling. Local computation or intel-
ligent memory operation requests can also be added as part
of the message.
To demonstrate the benefits of using a message interface,

we have implemented a cycle-detailed memory system sim-
ulator, MIMSim. Experiments on fine-granularity access,
trunk memory request and address compression are taken.
The results provide elementary proof for the benefits of
MIMS.

The rest of the paper is organized as follows. Section 2
gives background on memory system and related work, while
Section 3 presents the Message Interface based Memory Sys-
tem, includes architecture, packet format, address compres-
sion and challenge. Section 4 presents the experimental setup,
and the results are presented in section 5. Section 6 gives a
conclusion of this paper.

2. Background and Related Work

In this section, we first give a brief description of the most
commonly used JEDEC DDRx SDRAM memory systems,
and then discuss some optimizations on memory architec-
ture, including Sub-Access, buffer-chip memory, autonomous
memory, and some aggressive memory system, such as non-
volatile memory (NVM), 3D-stacked memory, photonics in-
terconnect memory and mobile-DRAM in server.

2.1. DDRx Memory System

The JEDEC standardized DDR (Double Data-Rate) [7] syn-
chronous DRAM is dominated nowadays. In DDRx memory
system, memory controller could be considered as the bridge

logic between processor and DRAM devices, which is respon-
sible to receive memory requests from last level cache (LLC).
The memory controller needs to track the status of DRAM
devices (e.g., bank states) and generates DRAM commands
for each selected requests meanwhile meeting the DDRx tim-
ing constraints. The integrated memory controller commu-
nicates directly with DRAM devices over wide synchronous
DDR bus with separate data, command, and address bus. This
directly-connected design would result in high processor pin-
count cost, and this has become a main bottleneck to support
large memory capacity, because the growth of processor pin-
count is failed to keep up with demand.

The memory system has a hierarchical organization, with
different level parallelism. Each memory controller might
support multiple memory channels, while each channel has
separate DDR bus. Thus each channel could be accessed inde-
pendently. Within a memory channel, there might be multiple
DIMMs (Dual Inline Memory Module). Each DIMM might
comprise with multiple ranks (1-4), and each rank provides a
logical 64-bit data-path (bus) to memory controller (72-bit in
ECC-DIMM). Multiple DRAM devices within a rank need to
be operated in tandem. The x8 DRAM devices are commonly
used today and they will be used in this work by default.

A prevalent DRAM device (chip) consists of multiple
DRAM banks (8 in DDR3) which can be processed concur-
rently. There is a two dimensional array, consisting of rows
and columns, within each DRAM bank. A row buffer is ded-
icated to each bank, which is usual 4-16KB. Before each col-
umn access, a row needs to be loaded into the row buffer by
an active command. If latter requests are hit in the row buffer,
it could be accessed directly by read/write command. Other-
wise, the row buffer needed firstly to be precharged back to
array before issuing a new request.

2.2. Sub-Access Memory

Sub-Access memory refers to dividing a whole component
into multiple sub-components, so that each memory request
only needs to access a portion of data. Here component could
be rank, row buffer and cache line (FGMS).

Sub rank memory divides a memory rank into multiple log-
ical sub-ranks, which could be accessed independently. Data
layout might be adjusted so that each cache line is put in a
sub-rank. Each memory access would only require a part
of memory devices (in the same sub-rank) to be involved.
Many different approaches could be classified as sub-rank, in-
cluding Rambus’s Module threading [52], Multicore DIMM
(MCDIMM) [ 20, 19], and mini-rank [59, 31], heterogeneous
Multi-Channel [57]. Sub-rank technology could save mem-
ory power by alleviating the over-fetch problem and improve
memory level parallelism (MLP). The downside of it is that
the memory access latency will increase since part of the to-
tal device bandwidth can be utilized, because they still use
coarse granularity memory access.

Udipi et.al [50] proposed SSA to reduce power. An entire
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cache line is fetched from a single subarray by re-organizing
the data layout in SSA. Cooper-Balis and Jacob [26] proposed
a fine-grained activation approach to reduce memory power,
which only actives a smaller portion of row within the data
array by utilizing posted-CAS command.

FGMS: AGMS and DGMS [55, 56] adopted sub-rank
memory system to allow dynamically use fine or coarse gran-
ularity memory access. They also proposed some smart data
layouts to support high reliability with low overhead. Convey-
designed Scatter-Gather DIMMs [24] are promising to allow
8 bytes (fine granularity) access that could reduce the inef-
ficiencies in nonunity strides or randomly memory accesses,
however the implementation detail of SGDIMM is lack. Cray
Black Widow [18] adopted many 32-bit wide channels, allow-
ing it to support 16B minimum access granularity.

2.3. Buffer-Chip Memory

To alleviate memory capacity problem, a common way is to
put an intermediate buffer (logic) between the memory con-
troller and DRAM devices, which could reduce the electrical
load on the memory controller and improve signal integrity.

In Registered DIMM (RDIMM) [3], a simple register is in-
tegrated on DIMM to buffer control and address signals. Load
Reduced DIMM (LRDIMM) [6] further buffers all signals
that go to DRAM devices, including all data and strobes. De-
coupled DIMM [60] adopts a synchronization buffer to con-
vert between low speed memory devices and high data rate
memory bus. With a similar idea, BOOM [54] adds a buffer
chip between the fast DDR3 memory bus and wide internal
bus, which enable the use of low-frequency mobile DRAM
devices, thus BOOM could save memory.

In Fully-Buffered DIMM (FBDIMM) [36, 4] memory mod-
ule, there is an AMB (Advanced Memory Buffer) integrated
on each DIMM module, multiple FBDIMMs are organized as
a daisy chain which could support high capacity. The memory
controller communicates with AMB through point-to-point
narrow, high-speed channels with some simple packet pro-
tocol. Intel Scalable Memory Interface (SMI) [8] and IBM
power 7 memory system [39, 51] also place logic buffers
between the DRAM and the processor, which could support
more memory channels.

Cooper-Balis et. al [27] proposed a generalized Buffer On
Board (BOB) memory system. In BOB, intermediate logic is
placed (on motherboard) between on-chip memory controller
and DRAM devices. The memory controller communicates
with the intermediate buffer through serial link. The memory
controller is decoupling from scheduling, and the intermedi-
ate buffer actually acts as a traditional memory controller: it
tracks status of its local memory devices and schedules mem-
ory requests, issues corresponding DRAM commands mean-
while meets timing constraints. The BOB memory system is
promising to alleviate the capacity and bandwidth problem.

UniMA [ 30] aims to enable universal interoperability be-
tween processors and memory modules. Each memory mod-

ule was equipped with a Unified DIMM Interface Chip
(UDIC). The memory controller sends read/write requests to
UDIC through the unified interface without worrying about
any devices status or timing constraints.

2.4. Autonomous Memory

There has been a long time effort to make memory au-
tonomous by equipping main memory with processing logic
to support some local computations. Processor-in-memory
(PIM) systems incorporate processing units on modified
DRAM chips [29, 37]. Active memory controller [33, 32]
adds an active memory unit to support active memory oper-
ation (AMO), such as scalar operations (e.g. inc, dec) and
stream operations (e.g. sum, max). Smart Memory [43] at-
taches simple compute and lock with data, thus reduces chip
I/O bandwidth and achieves high performance and low la-
tency.

2.5. Aggressive Memory System

Non-volatile memory (such as PCM) [40, 44, 61, 58] has been
considered as a potential replacement for DRAM chip in the
future. NVM devices could remove static power consumption
and promise to provide higher capacity. Recent result shows
that some NVM has comparable latency to the DRAM. How-
ever NVM chip usually have a different timing requirement
so that it can not be incorporated into the DDRx memory in-
terface directly.

On Chip optical interconnection is expected to provide
enough bandwidth for memory system. Udipi et al. [49]
proposed a novel memory architecture uses photonics inter-
connects among memory controller with 3D memory stacked
dies, they also proposed a novel packet based interface to re-
linquish the memory controller and allow the memory mod-
ules to be more autonomous. Each packet only contains one
memory requests and is processed in a FCFS order.

Hybrid Memory Cube (HMC) [11] Utilizes 3D intercon-
nect technology. A small logic layer that sits below vertical
stacks of DRAM die connected by through-silicon via (TSV)
bonds. This logic layer is responsible to control memory de-
vices. The memory controller communicate to HMC logic
chip via abstracted high-speed interface, logic layer flexibil-
ity allows HMC cubes to be designed for multiple platforms
and applications without changing the high-volume DRAM.

3. Message Interface based Memory System

3.1. Why use a Message-based Interface?

The current bus-based memory interface can be dated back to
the 1970s when the first DRAM chip in the world was pro-
duced. After 40 years the main characteristics remains un-
changed: separated data, address and control signals; fixed
transfer size and memory access timing (latency); CPU being
aware and take care of every bit of storage on the memory
chip; limited on-going operations on the interface. One may
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argue that a simple and raw interface for DRAM keeps the
minimum latency for memory access, but it also brings obsta-
cles to improve memory performance as described in Intro-
duction section. Nowadays with more and more parallelism
in computer system, single memory access latency is not the
main issue for overall performance any more. Is it the right
time to change this decades-old interface?

Decoupling is the common trend of many previous works
mentioned in section 2. That is to separate the data trans-
fer and data organization. The CPU should only take care of
sending requests and receiving data while a buffer controller
takes charge of scheduling and local DRAM chip organiza-
tion. A packet-based interface will enable this separationby
encapsulating data, address and control signals. If we just
stop here, then packeting is only a low-level encapsulation
for bus transactions.

We can go a further step from packet to message. Here mes-
sage means the content of a packet is not predefined or fixed
but programmable. Message also means CPU can put more
semantic information on a packet other than simple read/write
operations. Then the buffer controller can make use of this in-
formation to get better performance. The information maybe
size, sequence, priority, process id, etc. or even array, link and
lock. It is like that the buffer controller is integrated with CPU
virtually to get all those necessary information for memory
optimization. A message-based interface will provide many
opportunities to help solve memory system issues.

For latency problem, though a message interface may in-
crease the latency of single operation, it helps to increasepar-
allelism and do better prefetching and scheduling with seman-
tic information, so contributes to decrease the overall latency.

For bandwidth problem, message interface will support bet-
ter memory parallelism to full utilize the bandwidth; packet
interface enables new interconnection technologies. Message
also enables effective compression.

For efficiency problem, exact data size information will
help reduce waste of over-fetch; message also enables exact
prefetching to reduce unnecessary operations.

For capacity problem, decoupling enables special design
for large capacity memory systems; message even enables a
network of extended memory systems.

For power problem, message enables fine-grained control
of active DRAM regions. Decoupling also enables low power
NVRAM to be included in memory system transparently.

For autonomous operation, message provides a natural sup-
port with semantic information.

To demonstrate the benefits of message interface, a draft
architecture design and evaluation are given as following.It
should be noted that the design and evaluation are elementary
and incomplete to cover all the advantage of message -based
interface.

3.2. MIMS Architecture

Figure 1 shows the architecture of the Message Interface
based Memory System (MIMS). As in the Buffer-On-Board
(BOB) memory system [27], the memory controller in pro-
cessor does not directly communicate with memory devices
(DRAM), instead, it communicates with the buffer sched-
uler via serialized point-to-point link which is narrower and
could work at a much higher frequency. Each memory con-
troller could support multiple buffer schedulers. Each buffer
scheduler consists of memory request buffer, packet genera-
tor, packet decoder, return buffer and link bus.

The memory controller receives variable-granularity mem-
ory requests from multiple processor cores. The memory con-
troller firstly chooses the target buffer scheduler based onthe
address mapping scheme, and then put it into on-chip net-
work. The NOC routes each memory request into its target
request buffer. For each buffer scheduler, the request buffers
are divided into Read Queue and Write Queue, which is used
to buffer read and write requests respectively. Read requests
have high priority when scheduling requests to pack until
the number of write requests in the write queue exceeds the
high water mark [48, 25]. Then write requests get high pri-
ority, and write requests would be contiguously selected to
be packed and sent to the corresponding buffer scheduler un-
til the number of write requests return below the low water
mark.

The Packet Generator is responsible to select multiple
memory requests to put into a packet, send it to SerDes Buffer,
construct the packet head, which containing meta data of a
packet. Note that, the packing operation is not in the critical
path, because the Packet Generator keeps tracking the status
of the serialized link bus, and could start packing process in
advance before the link bus become available (free). After the
packet has been constructed and the link bus become avail-
able, the packet would be sent to the target buffer scheduler.

After receiving a message packet, the packet decoder on
the buffer scheduler would unpack the packet and retrieve
all memory requests integrated in the packet, and then send
them to the scheduler. The scheduler acts as a traditional
memory controller: it communicates with the DRAM mem-
ory module through wide and relative low frequency bus with
the synchronous DDR3 protocol as in the traditional memory
system. The scheduler needs to track all the memory mod-
ule states (e.g. bank state, bus state) attached to it, schedules
the memory requests and generates DRAM commands (such
as ACTIVE, PRECHARGE, READ, WRITE etc.) based on
the memory states, and issues the DRAM commands to the
memory module meanwhile fulfills the DDR3 protocol con-
straints.

Sub-rank memory system is used to support variable-
granularity memory access, which is similar as DGMS [56].
We use x8 DRAM devices, and each rank is separated into
8 sub-ranks, with one device per sub-rank. The data burst
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Figure 1: The Message Interface Memory System architecture .

length (BL) is 8 in DDR3, thus the minimum granularity is
8B.

3.2.1. Packet FormatMessage packet is the essential and
critical component in MIMS, and packet should be designed
to easily scale to support various memory optimizations.
Each packet could support multiple memory requests. Each
packet contains some Link Overhead (LKOH) which is gen-
erated and processed at lower layer such as link layer and
physical layer. The LKOH is necessary for serial bus commu-
nication protocol, which usually contains reliability-related
data such as Start, End signal, Sequence ID, and checksum
codes (CRC).

The overhead of LKOH would be high if each packet only
contains a small amount of data (payload). Especially for a
read request, which only contains address and operation, the
overhead of the LKOH would be near 50% for a size of 8B
LKOH (as in PCIe protocol). Combining multiple memory
requests into a packet would increase the payload size.

To support multiple memory requests in a packet, we pro-
pose a variable-length packet format for MIMS. The packet
has three basic types: Read Packet, Write Packet and Read-
Return Packet, which might contain multiple read memory
requests, write requests and return data respectively. Since
each packet might contain variable number of requests, each
packet is added a packet head (PKHD) which contains Meta
data of the packet, the detail format of packet is shown in
figure 4. We can see in figure2 that a Read Packet has a
packet head and multiple Request Messages (RTMSG), and
it should contain LKOH. The packet head contains Destina-
tion Buffer Scheduler Identifier (DESID), Packet Type (PT,
such as Read), the Count (CNT) of requests and some other
Reserved (RSV) fields. Note that all the requests in a packet
are sent to the same Destination Buffer Scheduler. After
packet head, multiple request messages are closely aligned,
each request message (RTMSG) represents a memory request

Figure 2: Read packet format.

Figure 3: Write packet format.

with some other semantic message, it basically contains ad-
dress (ADDR), granularity (GY) for each memory request,
and could salable to contain more semantic message such as
request timeout (TO), thread id (TID). The timeout require
the longest acceptable latency (queue delay) that it must be
scheduled and return, this is valuable to implement QoS for
requests, other message that is valuable for scheduling could
also be integrated in the RTMSG. All the RTMSGs in a packet
are in the same format and same length, which makes to en-
code and decode reading packet easily and effectively.

In a write packet, as shown in figure3, the format is nearly
in the same, it also contains LKOH, a packet head and multi-
ple write requests, where the packet head is just the same as
in the read packet, except that the packet type (PT) is Write
Packet. Besides a RTMSG, each write request need also con-
tains write data (WTDA). The RTMSG is the same with read
request. Write data might be variable-length, and the length
is determined by the granularity (in RTMSG) of the request.
For example, the length of data is 8B for a fine granularity
write, and it is 64B for a coarse granularity write.

Read-return packet has the same format with write packet.
The request address needs to be returned since memory re-
quests are scheduled out-of-order both in packet encoding
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Figure 4: Parallel decoding for Read Packet. Each batch (4
in the figure) of RTMSGs are decoded in parallel, each RTMG
could be decoded with a simple MASK operator.

and in buffer scheduler. In order to reduce the overhead of re-
turning address, each read request could be assigned a request
id, which is much smaller (10 bits is enough 1024 requests).
3.2.2. Packet DecodingAfter the buffer scheduler received a
packet, the Packet Decoder firstly reads the packet head and
gets the meta data of the packet, such as DESID (Destination
Buffer Scheduler ID), Packet Type, memory requests count
and other reserved data. The DESID is used to check whether
the packet was routed correctly. Then the type of the packet
and the count of memory requests are checked.

Read packet: Since each read request messages has fixed-
length fields, including address, granularity etc., it could be
processed in parallel easily. Figure4 shows the process of par-
allel decoding for read packet. In this example, 4 RTMSGs
are decoded once a time. Since the format for each RTMSG is
same, they could be decoded with a single mask, the address,
granularity and other message of each read request could be
extracted. After that, the next batch RTMSGs are ready to be
decoded.

Write Packet: Each write request has the Request Mes-
sage along with variable length of data, where the length
could be determined by the granularity of the memory request.
For example, if the granularity is 4, then the length of data is
32B (8B * 4). The decoder process the requests in serial due
to variable size: it extracts address, granularity and other mes-
sage of the first write request, then it calculates the lengthof
data base on the granularity, retrieves the write data, advances
to the next request, until all the write requests are retrieved.
3.2.3. Address Compression in a message packetPutting
multiple memory requests in a packet provides a good oppor-
tunity to address compression. It is also enables to compress
data in write packet and return packet. A lot of work had
contributed to data compression. Motivated by that address
would contribute about 39% of packet (section 5.1 for more
detail), we focus on compressing multiple address in a read
packet which has not been investigated before, and we will
show that with some simple compression algorithms, the ad-
dress could be compressed efficiently.

The example in figure5 illustrates how involving multiple
requests in a packet could reduce packet overhead and how

address compression could further reduce the size of payload,
thus reduce the demand to the bandwidth of link bus.Figure
5(a) shows the simplified FIFO one request per packet, we
can see that for 8 memory requests, it totally induces 8 packet
overhead (PKT_OH). And figure5(b) shows if the packet sup-
port to involve multiple requests, such as 4 requests in each
packet, then there are 2 packets with induced 2 packet over-
heads, it could save 6 PKT_OHs space. However since it
still packet requests in FIFO, the addresses in each packet
has relatively poor locality, which is obstacle to perform ad-
dress compression. Thus in figure5(c), we selects memory
requests in en-packet in an out-of-order and compress-aware
manner, which firstly re-order memory requests and group
multiple adjacent requests which is preferred to be selected
in the same packet. Finally, figure5(d) shows the base-delta
address compression in each packet, we choose a base, and
all the address are then represented as the difference (DIFF)
to the base, where the DIFF could have variable length, such
as 2B in the first packet and 1B in the second packet.

3.3. The challenge of designing a message interface based
memory system

Message based interface for memory system will bring chal-
lenges to all system levels that concerned with memory.
Many challenges remain to be solved. Here is an incomplete
list.

1. Complexity: Message processing is more complex than
simple packet. Both the memory controller and buffer
scheduler need more complex logic to accomplish the task,
e.g. longer queue management and consistence checking.
Although logic is becoming cheaper, it still needs to inves-
tigate whether the cost, power consumption, and increased
latency can be controlled within an acceptable level.

2. ISA extension: To full utilizing the flexibility of message,
CPU needs to provide more semantic information along
with read/write request. This may bring extensions need
to the ISA. For example, how to provide the size informa-
tion for variable granularity memory requests; how to de-
liver process information such as thread id, priority, time-
out and prefetch; how to generate Active Memory Opera-
tion request to the memory controller.

3. Cache Support: To better support variable granularity
memory accesses, variable-sized cache line is preferred
though with difficulty. Sector cache for fine granularity
and SPM (Scratchpad memory) for large granularity can
also be used with a redesign.

4. Programming: The semantic information may also be dis-
covered and generated by software and sent via message.
Application can be implemented with some hint API, or
with the help of an aggressive compiler to generate MIMS
special instructions automatically.
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Figure 5: Conceptual example showing the benefit of involvin g multiple requests in a packet: packet overhead reduction a nd
address compression. (a) FIFO with one request in each packe t. (b) FIFO with multiple requests in each packet. (c) Out-of -order
compressed-aware requests grouping. (d) Address compress ion in each packet.

4. Experiments Setup

4.1. Simulator and Workloads

To evaluate MIMS, we have implemented a cycle-detailed
Message Interface Memory System simulator which is named
MIMSim. We adopted DRAM modules (devices) based on
DRAMSim2 [47], which is a cycle accurate DDR2/3 mem-
ory system simulator. The DRAMSim2 models all aspects of
the memory controller and DRAM devices, including trans-
action queue, command queue and read-return queue, ad-
dress mapping scheme, DDR data/address/command bus con-
tention, DRAM device power and timing, and row buffer man-
agement. We add re-order buffer (ROB) to make simulation
more accurate, the DRAM module is modified to support sub-
rank. Channel interleaving address mapping is adopted as the
default (baseline) configuration to maximum MLP (Memory
Level Parallelism), and FRFCFS [45] scheduling policy with
closed-page row buffer management.

Pin [42] is used to collect memory access traces from vari-
ous of workloads running with 2-16 threads. We choose sev-
eral multi-thread memory intensive applications from BFS in
Graph500 [9], PARSEC [23], Listrank [21], Pagerank [10],
SSCA2 [22], GUPS [15], NAS [13], STREAM [16]. Table
2 lists the main characteristics of these workloads. We clas-
sify the workloads into three categories based on the access
granularity: fine granularity (FINE: <=3), Middle granular-
ity (MID: 3-6), and coarse granularity (COR: 6-8). Memory
read and write requests are reported separately, includingthe
read memory requests per kilo instruction (RPKI), the aver-
age read granularity (RG), the write memory requests per kilo
instruction (WPKI), the average write granularity (WG), and
the read/write ratio (RD/WT). The reason to separate the read
and write characteristics is that we find the granularity distri-
bution of read and write might different for some FINE and
MID benchmarks. Figure6 shows their granularity distribu-
tion. For example, in the canneal benchmark, the rate of 1-

granularity is about 72.85% for read requests, but it is about
97.59% for write requests. And in the listrank benchmark,
the rate of 2-granularity and 4-granularity is about 52.99%
and 31.54% respectively for read requests, but they are about
76.51% and 0.90% respectively for write requests.

Cate. Bench. RPKI RG WPKI WG R/T
FINE GUPS 69.67 1.78 69.62 1.78 1.00
FINE SSCA2 20.89 1.68 20.42 1.56 1.02
FINE canl. 17.79 1.64 8.64 1.10 2.06
FINE park. 9.76 2.42 6.14 2.74 1.59
MID lirk. 22.56 3.56 15.45 3.37 1.46
MID BFS 22.36 3.10 2.44 3.49 9.16
COR STRM. 33.33 8.00 16.63 8.00 2.00
COR bt 7.68 7.98 7.63 7.98 1.01
COR ft 31.85 8.00 31.72 8.00 1.00
COR sp 8.04 7.98 7.89 7.98 1.02
COR ua 4.42 7.19 3.80 7.92 1.16
COR ScPC. 11.00 5.65 3.85 5.74 2.86
COR perM 2.62 6.28 2.40 6.12 1.09

Note, canl.: canneal, park.: pagerank,
lirk.: listrank, STRM.: STREAM, ScPC: ScaleParC.

Table 2: Workloads Characteristics.

To collect granularity message for each memory request,
we implement a 3-level cache simulator as a Pin-tool. The
detail configuration is listed in table3. We start the cache
simulator after each application enters into a representative
region. After warm-up the cache simulator with 100 million
memory requests, we collect memory traces with granularity
and cache access type message. For PARSEC benchmark,
we naturally choose the ROI (Region-of-Interest) codes as
the region for PARSEC benchmarks; and for all the other
benchmarks, we manually skip the initialization phase (such
as graph-generation in BFS) and collect memory traces after

8



0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

rd wt rd wt rd wt rd wt rd wt rd wt

BFS GUPS SSCA2 canneal listrank pagerank

G
r
a
n
u
la
r
it
y
D
is
t
r
ib
u
t
io
n

8

4

2

1

Figure 6: The read and write granularity distribution of FIN E
and MID memory-intensive workloads.

meaningful work.

Reorder Buffer
2.7GHz, 256-entry,

max fetch/retire per cycle: 4/2,
5 pipeline (latency of non-mem instr)

L1 Cache
Private, 32KB, 4-way, 64B cache line,

9 CPU cycles hit (4+5)

L2 Cache
Private, 256KB, 8-way, 64B cache line,

15 CPU cycles hit (10+5)

L3 Cache
Shared, 16-way, 64B cache line,

1MB/core, 45 CPU cycles hit (40+5)
Memory 2 buffer schedulers/MC,

Controller Read/Write Queue: 64/64

Link Bus
2.7GHz, point-to-point,

read/write bus width: 16/16
Buffer FRFCFS [45], closed page

Scheduler Channel-interleave mapping
DRAM Parameters

Memory
2 64-bit Channels, 2 Ranks/Channel,

8 devices/Rank, 8 sub-ranks/rank,
x8-width sub-rank, 1 device/sub-rank

DRAM Device

DDR3-1333MHz, x8, 8 banks,
32768 Rows/bank, 1024 Columns/Row

8 KB Row Buffer per Bank, BL=8,
Time and power parameters from

Micron 2Gb SDRAM [1]

Table 3: System Configurations

4.2. System configurations

Table 3 lists the main parameter settings used in the cycle-
detailed simulators. Note, the non-memory instruction la-
tency and cache hit latencies listed here are used as the la-
tency of the instruction need to wait in the ROB (in MMAsim)
before it could be committed. For example, a L2 cache hit
memory access instruction could be committable only after
15 CPU cycles when it is added in the ROB. The baseline
memory system has 2 DDR3-1333MHZ channels with dual

ranks with 8 DRAM x8 chips each. Each DRAM chip has
8 banks. We fast forward 64 million memory traces for each
core (thread), simulate until all the threads have executedat
least 100 million instructions.

To evaluate the MIMS, we use the following memory sys-
tem configuration:
• DDR: traditional DDRx (3) memory system with fixed

coarse access granularity (cache line: 64B), this is the base-
line.

• BOB: Buffer On Board memory system, fixed coarse ac-
cess granularity, 1 memory request (read/write) per packet,
simple packet format without any extra message.

• MIMS_one (MI_1): Message Interfaced based memory
system, adopts sub-rank memory organization to support
variable-granularity access, 1 request per packet, contains
granularity message in packet.

• MIMS_multiple (MI_mul): Message Interfaced based
memory system, supports variable-granularity access, mul-
tiple requests in a packet.
DRAM and Controller Power : we evaluate memory

power consumption with DRAMsim2 [47] power calculator,
which uses the power model developed by Micron Corpo-
ration based on the transitions of each bank. The DRAM
power is divided into 4 components: background, refresh, ac-
tivation/precharge, and burst, where background and refresh
power is often concluded as static power, activation/precharge
and burst power is concluded as dynamic power. Besides
DRAM devices, we also take the memory controller power
into consider, for it would contribute a significant amount to
overall consumption [28] (about 20%). In BOB and MIMS,
the controller power is actually referred to simpler controller
and buffer scheduler power respectively. For DDR, we adopt
the MC power to 8.5W from [5]; for BOB and MIMS, we
adopt the intermediate controller power to 14W as in [27].
The controller idle power is set to 50% of its peak power.

5. Experimental Results

In this section, We first present the performance and power
impacts of MIMS in Section 5.1, and then evaluate the effec-
tiveness of combining big-granularity memory requests. We
present the effect of memory addresses compression in sec-
tion 5.3.

5.1. Performance and power impacts

In this section, we present simulation results of 16-core sys-
tems on FINE and MID granularity workloads. All the work-
loads are in multiple-thread mode, with each core running one
thread. We use the total number of submitted instructions as
the metric of performance.

Figure7 shows the normalized performance speedup and
effective bandwidth utilization of different memory system,
where the baseline is DDR. For these FINE or MID work-
loads, such as BFS, canneal, GUPS, fine granularity access
would benefit. The BOB performance degrades range from
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Figure 7: Normalized Speedup and Effective Bandwidth Uti-
lization of different memory system in 16-core configuratio n,
the baseline is DDR

49.38% to 78.38%. This is because that the BOB still uses
coarse granularity access, and the intermediate controller
would introduce packet overhead and extra latency. On the
other side, MIMS_1 and MIMS_mul could improve perfor-
mance because they support variable-granularity, the normal-
ized speedups of MIMS_1 range from 1.11 to 1.53, and of
MIMS_mul range from 1.29 to 2.08, this indicates that in-
tegrating multiple requests in a packet could reduce packet
head overheard, thus improve memory performance. The ef-
fective bandwidth utilizations nearly have the same variation
trend with the speedups in different memory systems. For
DDR, they range from 15.58% to 31.55%; for BOB, the effec-
tive bandwidth utilization is decreased, since each memoryre-
quest would introduce a packet overhead, along with the wast-
ing bandwidth for transferring useless data in a cache line.
The MIMS_1 could eliminate wasting data but still suffer sig-
nificant packet overhead. The MIMS_mul could achieve the
best efficiency bandwidth utilization, ranging from 21.15%to
44.49%.

Figure8 shows the memory power breakdown and the nor-
malized EDP in different memory systems. Here we also
consider the power of controller. The average total power
for DDR is about 23.38W, and the BOB has a little more
power (26.36W), since the intermediate simple controller con-
sumes more power than the on chip MC, the DRAM power
of them are nearly the same. The MIMS_1 and MIMS_mul
could effectively reduce the Activation/Precharge power be-
cause each (fine) request only activate/prechare a sub-rank
(one DRAM device in our work) with smaller row, and re-
duce the Burst power because it only read/write the really
useful part of data in a cache line (such as 8B data in 64B
cache line). Thus the power of MIMS_1 and MIMS_mul re-
duced to 16.90W and 17.13W respectively. The normalized
EDP (Energy Delay Product) of BOB reduces about 1.78, this
is mainly because the introducing latency. MIMS_one and
MIMS_multiple could improve EDP by 0.53 and 0.44 respec-
tively, this is because sub-rank could improve memory paral-
lelism and thus reduce queuing delays.

Memory Latency:In DDR memory system, the memory
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Figure 8: Memory power breakdown and the normalized EDP
(Energy*Delay Product, lower is better)

latency is categorized into two major categories: Queuing and
DRAM Core Access Latency. The Queuing Latency repre-
sents latency of a memory request waiting to be scheduled in
the Transaction Queue, which has been proved to be the main
component of memory latency [50]. The DRAM Core Access
Latency represents the latency of executing DDR commands
of a memory request in DRAM devices. In MIMS memory
system, there is an additional Scheduling latency, which rep-
resents the extra processing latency induced by Buffer Sched-
uler, it includes the SerDes latency, scheduling latency and
packet encoding/decoding latency. The Queuing Latency con-
tains both in memory controller (waiting to be packed) and in
buffer scheduler (waiting to be issued to DRAM devices) in
MIMS.

Figure9 shows the memory latency breakdown in 16-core
configuration. We can see that for these memory intensive
workloads, the Queuing Latency dominates the memory la-
tency, especially for GUPS and SSCA2 application, which
could achieve about 1185.67 ns and 933.0 ns respectively in
DDR memory system, meanwhile the DRAM Core Access
Latency is only 22.22 ns. The reason for it is that these two
applications suffer high MPKI as shown in table2 and the
traditional DDR memory system is failed to serve them due
to its limited MLP. However, the Queuing Latency could re-
duce significantly in MIMS, for instance, it reduce to 234.81
ns for GUPS and 147.41 ns for SSCA2, that is because the
MIMS adopted sub-rank and it could provide more MLP
since each narrow aub-rank could be accessed independently.
Even though the intermediate buffer scheduler would induce
extra Scheduling Latency, the whole memory latency is re-
duced for all workloads.

Figure10shows the percentage of different components in
packets in MIMS_multiple memory system. Here we only
show the packets in downside (from cpu) bus. For a read
packet, it only contains packet overhead (PKT_OH) and ad-
dress; for a write packet, it contains data also. We can see that,
the address contributes a large portion of packet, it ranges
from 39.15% to 67.39%, and Data contributes range from
8.24% to 55.26%. The BFS benchmark contributes the max
address portion, that is because it has a read/write ratio of
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Figure 10: The percentage of data in both Read and Write
Packet in MIMS with multiple requests.

9.16 (please refer to Table2). The packet overhead has a rel-
atively small portion, because each packet allows to integrate
multiple requests, and more requests in a packet, less of the
packet overhead. For example, there are about 31.51 requests
in each packet, thus the packet overhead is only 1.42%; but
in BFS, there are only about 3.57 requests in each packet, re-
sult in about 24.38%. Observation that address contributes
a large portion in a packet gives a good reason for address
compression.

Latency proportionality of the buffer scheduler in
MIMS . Buffer scheduler would introduce extra latency for
memory requests, since the memory controller needs firstly
send requests to buffer scheduler, including: packing multiple
requests in the memory controller, SerDes transition, packet
transferring on the link bus and packet decoding. Due to
different implementation and craft, the introduced latency of
buffer scheduler might have proportionality possibilities. In
this section, we varied the latency from 0 (perfect) to 200
CPU cycles with a step of 20 CPU cycles to study how the
introduced latency would affect the overall memory system
performance. Figure11shows the results.

We can see that the latency proportionality of buffer sched-
uler has a significant impact on the MIMS performance, and
the impact is different for different applications. The SSCA2
has the largest slowdown at about 1.07 every 20 more CPU
cycles, and the normalized speedup (based on DDR) reduce
from 2.12 (with 0) to 1.09 (with 200 cycles). and pagerank
even reduced to 0.89, worse than the DDR. All applications
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Figure 11: The Normalized Speedup of MIMS as the introduced
latency varied from 0 to 200 CPU cycles.
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Figure 12: The percentage of combined big granularity mem-
ory requests.

still have good speedup with 100 cycls delay.

5.2. Large Granularity Access

Besides fine granularity memory access, the MIMS could
also support big granularity memory access. For COR ap-
plications, continuous memory addresses could be merged
into a big access. To simulate a program that can send the
trunk information to memory controller, we preprocess mem-
ory access traces and merge the memory access traces that
access continuous memory address into one request within
a instruction-window. We set the preprocess-window size to
256, which means we can combined 256 traces once, but the
merged trace should not be larger than 4KB for read, and
512B for write. Figure12shows the size of combined request
in our experiments.

Figure13 shows the speed up result. It can be seen that
MIMS can gain better performance through large granular-
ity. Compared to the original memory access, the bigger pro-
portion of large granularity is, the better performance MIMS
can achieve. STREAM has 50% improvement. To get the
large granularity information from application, softwarehint
or compiler support will be better than hardware detection.

5.3. Address Compression

In this section, we evaluate the address compression in packet.
We will show that even with some simple compression algo-
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Figure 13: Normalized Speedup with combining big granular-
ity memory requests.

rithms, it would achieve substantial compression ratio. This
is due to the natural locality among adjacent addresses, espe-
cially for coarse granularity workloads. 3 compression algo-
rithms are evaluated:

• Single_Base: the first address in a packet is chosen as the
single base, all the other address would be represented as
the difference to the base (delta value). The base address
needs to be placed in the packet.

• Multi_Base_Inline: the Packet Generator and Packet De-
coder synchronously maintain a base address table which
contains multiple base addresses. Each address is repre-
sented as an index and a difference if it could matches one
of the base. otherwise, this address would serve as a base
address, and the LRU old entry in the table is selected to
evict. This new base address needs to be sent to the Packet
Decoder, and make the two table keep synchronous.

• Multi_Base_Offline: extended from the multi_base_inline
algorithm. At each packet, each base would automatically
updated by the last address that could be compressed. This
simple learning strategy would keep base address in step
and increase the possibility to hit with compression.

In our experiments, for coarse granularity applications, the
number of base address is 8 (requires 3 bits index), and the
bits of difference is set to 8; and for fine granularity applica-
tions, the number of base address is 8, and the bits of differ-
ence is 24. Figure14 shows the compression ratio with the
above three compression algorithm. For coarse granularity
applications (left part), the Single_Base could achieve about
1.66, the Multi_Base_Inline could achieve about 2.19, and
the Multi_Base_Offline could achieve about 3.68, where the
STREAM application could get the highest compression ra-
tio of 4.56. These indicate that there exists many opportunity
to exploit address compression. However, for fine granularity
applications, since the memory access pattern is random, the
compression ratio is relatively low, the Single_Base is only
1.08, and the Multi_Base_Inline and the Multi_Base_Offline
nearly achieve the same compression ratio, about 1.44.
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Figure 14: Address Compression Ratio.

6. Conclusions and Future Work

In this paper, a Message Interface based Memory System
(MIMS) is proposed. By decoupling memory access with
memory organization and associating semantic information
with memory request, MIMS provides new opportunities to
solve existing memory problems. Experimental results show
that MIMS is able to improve parallelism and bandwidth uti-
lization for fine granularity applications, to keep locality for
trunk memory access and enable effective inter-requests ad-
dress compression.

Using message interface instead of traditional bus might
open a new road for memory system design. In the futre we
will extend MIMS to support more operations and investigate
on implementation issues.
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