arXiv:1706.07145v1 [cs.CV] 22 Jun 2017

Balanced Quantization: An Effective and Efficient
Approach to Quantized Neural Networks

Shuchang Zhou'?3 | Yuzhi Wang?®, He Wen? , Qinyao He? and Yuheng Zou?
1University of Chinese Academy of Sciences,
Beijing 100049, China
2State Key Laboratory of Computer Architecture,
Institute of Computing Technology,
Chinese Academy of Sciences,
Beijing 100190, China
3 Megvii Inc., Beijing 100190, China
shuchang.zhou@gmail.com, yz-wangl2@mails.tsinghua.edu.cn,
{wenhe,hqy,zouyuheng}@megvii.com

December 20, 2016; revised Mar. 5, 2017

Abstract

Quantized Neural Networks (QNNs), which use low bitwidth num-
bers for representing parameters and performing computations, have
been proposed to reduce the computation complexity, storage size and
memory usage. In QNNs, parameters and activations are uniformly
quantized, such that the multiplications and additions can be accel-
erated by bitwise operations. However, distributions of parameters in
Neural Networks are often imbalanced, such that the uniform quanti-
zation determined from extremal values may under utilize available
bitwidth. In this paper, we propose a novel quantization method
that can ensure the balance of distributions of quantized values. Our
method first recursively partitions the parameters by percentiles into
balanced bins, and then applies uniform quantization. We also intro-
duce computationally cheaper approximations of percentiles to reduce
the computation overhead introduced. Overall, our method improves
the prediction accuracies of QNNs without introducing extra compu-
tation during inference, has negligible impact on training speed, and is
applicable to both Convolutional Neural Networks and Recurrent Neu-
ral Networks. Experiments on standard datasets including ImageNet
and Penn Treebank confirm the effectiveness of our method. On Ima-



geNet, the top-5 error rate of our 4-bit quantized GoogLeNet model is
12.7%, which is superior to the state-of-the-arts of QNNs.

1 Introduction

Deep Neural Networks (DNNs) have attracted considerable research inter-
ests over the past decade. In various applications, including computer vi-
sion [11, 2,3, 4], speech recognition [5] 6], natural language processing 7,8, 9],
and computer games [10, II], DNNs have demonstrated their ability to
model nonlinear relationships in massive amount of data and their robust-
ness to realworld noise. However, the modeling capacities of DNNs are
roughly proportional to their computational complexity and number of pa-
rameters [12]. Hence many DNNs, like VGGNet [13], GoogLeNet [14] and
ResNet [15], which are widely used in computer vision applications, require
billions of multiply-accumulate operations (MACs) even for an input im-
age of width and height of 224. Moreover, as these DNN models use many
channels of activations (feature maps) for intermediate representations, they
have a large runtime memory footprint and storage size. Such vast amount
of resource requirement impedes the adoption of DNNs on devices with lim-
ited computation resource and power supply [16], and in user-interactive
scenarios where instant responses are expected. A similar argument also
applies to Recurrent Neural Networks (RNNs). In particular, the transition
and embedding matrices in a Long Short Time Memory (LSTM) [17] or a
Gated Recurrent Units (GRU) [I8] model have dense connections that make
them particularly demanding in both computation and storage.

Many approaches have been proposed to accelerate the computation or
reduce the memory footprint and storage size of DNNs. One approach from
the hardware perspective is designing hardware accelerators for the compu-
tationally expensive operations in DNNs [19) 20} 21]. From the algorithmic
perspective, a popular route to faster and smaller models is to impose con-
straints on the parameters of a DNN to reduce the number of free parameters
and computational complexity, like low-rankness [22, 23], 24 [25], 26, [27], spar-
sity [28] 29, [30} 31], circulant property [32], and sharing of weights [33, [34].
However, these methods use high bitwidth numbers for computations in
general, which requires availability of high precision MAC instructions that
incur high hardware complexity [35]. In contrast, several previous works
have demonstrated that low bitwidth numbers may be sufficient for per-
forming inferences with DNNs. For example, in [36] 37, 38|, trained DNNs
are quantized to use 8-bit numbers for storing parameters and performing



computations, without incurring significant degradation of predition quality.
Gong et al. [39] also applied vector quantization to speed up inferences of
DNNs. However, these works [36], 37, 38, 39] did not integrate the quantiza-
tion operations into the training process of a DNNs, as the discrete quantized
values necessarily would have zero gradients, which would break the Back-
Propagation (BP) algorithm. Applying quantization as a post-processing
step is far from satisfactory as the quantized DNNs do not have a chance
to adapt to the quantization errors [40]. Consequently, 8-bit was generally
taken to be a limit for post-training quantization of DNNs [41].

Recently, Quantized Neural Networks (QNNs) [42] 43], [44], 145, [46] have
been proposed to further reduce the bitwidths of DNNs, by incorporating
quantization into the training process. The key enabling technique is a
trick called Straight Through Estimator (STE) [47, 48, 49], which is based
on the following observation: as the quantized value is an approximation
of the original value, we can substitute the gradient with respect to the
quantized value for the gradient of original value. Simple as it is, the trick
allows the inclusion of quantization into the computation graph of BP and
allows QNNs to represent parameters, activations and gradients with low
bitwidth numbers. The QNN technique has been successfully applied to both
CNNs and RNNs [50, 51], to successfully produce lower bitwidth versions
of AlexNet, ResNet-18 and GooglLeNet that have comparable prediction
accuracies as their floating point counterparts. However, the degradation
of prediction accuracy is still significant for most QNNs, especially when
quantizing to less than 4-bit [52) H3].

In this paper, we propose a Balanced Quantization method that improves
the prediction accuracies of QNNs. In general, QNNs employ uniform quan-
tization to eliminate floating point operations during the inference process
by exploiting the bitwise operations. However, the parameters of neural
networks often have a bell-shaped distribution and sporadic large outliers,
making the quantized values not evenly distributed among possible values
when uniform quantization is applied. In the extreme case, some of the
possible quantized values are never used. To remedy this, we propose to
use a novel quantization method that ensures the balanced distribution of
quantized values.

This paper makes the following contributions:

1. We propose a Balanced Quantization method for the quantization of
parameters of QNNs. The method emphasizes on producing balanced
distributions of quantized values rather than preserving extremal val-
ues, by using percentiles as quantization thresholds. As a result, effec-



tive bitwidths of quantized models are increased. (See Subsection [3.2))

2. To reduce the computation overhead introduced by computing per-
centiles, we approximate medians by means, which are computation-
ally more efficient on existing hardware. The efficacy of the approxi-
mation is empirically validated. (see Subsection

3. Experiments confirm that our method significantly improves the pre-
diction accuracies of CNNs and RNNs on standard datasets like Ima-
geNet and Penn Treebank. (see Section

4. The implementation of Balanced Quantization will be available on-
line, in TensorFlow [54] framework.

2 Quantized Neural Networks

In this section we introduce the notations and algorithms of QNNs. We also
show how QNNs can exploit bitwise operations for speeding up computations
and how to incorporate quantization steps into computation graphs of QNNs
during training.

2.1 Notations

We will use the rounding operation intensively in this paper. For tie-
breaking, we apply the “round half towards zero” rule, which rounds positive
numbers with fraction % down and negative numbers with fraction % up. We
assigns the name of “round-to-zero” for this variant of rounding;:

1
round-to-zero(x) def sgn(z) M:U| — 2-‘ .

Without loss of generality, we represent weight parameters of a neural
network as a matrix W. When doing k-bit uniform quantization with the
step length ﬁ, we can define a utility function @y that converts floating
point numbers in close interval [0, 1] to fixed point numbers as follows: .

def Tound-to-zero((2¥ —1)W)

w
Qx(W) ok 1 ;

0< wiy <1Vi,j. (1)
The outputs of Q) are the fixed point values 0, ﬁ, 2,6—24, - 1



In a Quantized Neural Network, we use Qi for the quantization of pa-
rameters, activation and gradients. When quantizing parameters, as the
utility function Qy requires the input to be in close interval [0, 1], we should
first map the parameters W to that value range. The method in [51) 53]
uses the following affine transform to change the value range:

Definition 1 (k-bit Uniform Quantization)

def w 1
wydt W2
W) = (W) T 2

quant, (W) 2= o7 (Qi(p(W))),

where the subscript k in quanty, stands for k-bit quantization, and |W|
s a matriz with values being the absolute values of corresponding entries in
W.

As —max(|W|) < w; j < max(|W1), we have 0 < ﬁ(\jﬂ’l) +1<1. We
can then apply Qy to get the fixed point values Qy(¢(W)), which are affine
transformed by ¢! to restore the value range back to the closed interval

[ max(|W), max(|W1)].

2.2 Simplistic View of Quantized Neural Network

QNNs are Neural Networks that use quantized values for computations. Be-
cause the convolutions between inputs and and convolution kernels can also
be represented as matrix products, w.l.o.g., we take a Multi-Layer Percep-
tron (MLP) as an example through out the rest of this paper.

Let the outputs, activation function, weight parameters and bias param-
eters of the i-th layer of a neural network be X;, ;, W and b;, respectively.
The i-th Convolution/Fully-Connected layer can be represented as:

Xi=0(W;X,_1+b;).

The corresponding formula for the i-th Convolution/Fully-Connected
layer of a QNN is:
X = Qaloi( WX, +bi))

Wi = Qw(W,), (2)

where W and X are quantized weights and activations respectively; Qw
and QQp are quantization functions. Note the bias parameters b; may not
need be quantized, for reasons we will explain in Appendix [A]



Other types of layers like pooling layers may also take quantized values
as inputs and outputs. The input to the first layer of a QNN may have
higher bitwidth than the rest of the network to preserve information [51].

2.3 Exploiting Bitwise Operations in QNN

Using quantized values for computation makes it possible to use fixed point
operations instead of floating point operations. We next show how to per-
form dot products between quantized numbers by bitwise operations.

We first consider the dot products between k-bit fixed point numbers. In
the extreme case of k£ =1, dot products are done between bit strings, which
allows for the following method of using bitwise operations:

x -y = bitcount(and(x,y)), Vi, z;,y; € {0,1},

where “bitcount” counts the number of 1 in a bit string, and “and” performs
bitwise AND operation.

In the multi-bit case (k > 1), we may also exploit the above kernel as
in [42]. Assume x is a sequence of M-bit fixed point integers s.t. x =
2%2—01 cm()2™ and y is a sequence of K-bit fixed point integers s.t. y =
SR fen(y)2F where (e (2))M =) and (cx(y))i,' are bit vectors, the dot
product of x and y can be computed by bitwise operations as:

M-1K-1

T y= Z Z 2™ bitcount[and(cm (), cr(y))],
m=0 k=0

cm ()i, cr(y)i € {0,114, m, k.

In the above equation, the computation complexity is O(M K), i.e., di-
rectly proportional to the product of bitwidths of  and y. Hence it is
beneficial to reduce the bitwidth of a QNN as long as the prediction accu-
racy is kept at the same level. It has been demonstrated that exploiting
dot-product kernels allows for efficient software [51] and hardware imple-
mentations [55), [H6].

In Formula [2] the matrix multiplication happens between the quantized
values Wi and X ;. When the activation function is monotone, the com-
putation of X can all be performed by operations on fixed-point numbers,
even when the bias parameters b; are floating point numbers. The method
is detailed in Appendix [A]



2.4 Training Quantized Neural Networks by Straight-Through
Estimator

Having quantization steps in computation prevents direct training of QNNs
with the BP algorithm, as mathematically any quantization function will
have zero derivatives. To remedy this, Courbariaux et al. [57] proposed
to use STE to assign non-zero gradients for quantization functions. As
the discrete parameters cannot be used to accumulate the high precision
gradients, they kept two copies of parameters, one consisting of quantized
values W ¢ and the other consisting of real values W. The real value version
W is used for accumulation, while W is used for computation in forward
and backward passes. We will refer to W as quantized parameters, or
simply parameters, of QNNs, and reserve W for the “floating point copy”
in the rest of this paper.

As STE introduces approximation noises into computations of gradients,
we would like to limit it to places where necessary. It can be observed that
the only function in Formula [I] that has the zero gradients is the rounding
function. Hence we construct its STE version, round-to-zerog,, as follows:

Forward: W < round-to-zero(W)

aC oC
Backward: W — ﬁ’

where W is the rounded value and C is the objective function used in
training of the neural network.

Functions using round-to-zero function, like the k-bit uniform quantiza-
tion function quant,, can be transformed into the STE version by replacing
round-to-zero with round-to-zeroge.

A QNN can then use quanty, to include quantization in its computation
graph. For completeness, we provide the inference and training algorithm
of an L-layer QNN as Algorithm [3] in Appendix

3 Balanced Quantization for Neural Network Pa-
rameters

In this section, we focus on more effective quantization of parameters of
QNNs to improve their prediction accuracies. We propose the Balanced
Quantization method, which induces the quantized parameters to have bal-
anced distributions. The method divides parameters by percentiles into bins



containing the same number of entries before the quantization. We also pro-
pose to use approximate thresholds in the algorithm to reduce computation
overhead during training.

3.1 Effective Bitwidth and Prediction Accuracy of QNN

Using QNNs can reduce computation resource requirements considerably.
However, QNNs usually have lower prediction accuracies than their floating
point counterparts, especially when bitwidths goes below 4-bit [51] [52] 53].

We investigate this inefficiency of using low bitwidth parameters by in-
specting the parameters of QNNs before and after the quantization. On
many such models, we observe that the parameters before the quantization
follow bell-shaped distributions, just as other DNNs [58, 59]. Moreover,
it is not rare to observe outliers. Consequently, the quantized values af-
ter uniform quantization will often follow imbalanced distributions between
possible values. An illustrative example is given in Fig. [I] and Fig. [2], where
histograms of weight parameters, before and after the quantization, of a
layer in a quantized ResNet model are shown. The quantized weights are
2-bit.

Frequency
© o o
i s

o
[
I

min max

o
@

-10 -5 0 5 10 15
Weight values

Figure 1: Floating point copy of weights in a QNN after 60 epochs of train-
ing. The weight values follow a bell-shaped distribution, and the minimum
and maximum values differ a lot from the other values.

A QNN with parameters following imbalanced distributions may be sub-
optimal. For example, the 2-bit weight model in Fig. [2| fails to exploit avail-
able value range, and may be well approximated with a 1-bit weight model.

Hence the “real” bitwidth of a QNN may be well below its specified
bitwidth. To quantitatively measure the “effective” bitwidth, we propose
to use the mean of entropy of parameters of each layer in a QNN as an



Frequency
©
e

©
N
1

O-O T T T T T
-15 -10 - .0 5 10 15
Weight values

Figure 2: Results of imbalanced quantization (no equalization). After uni-
form quantization of weight values to 2-bit numbers, the quantized values
concentrate on the central two out of four possible quantized values.

indicator as follows.
Definition 2

effective-bitwidth(x) def entropy(P(x))
entropy(P(x))

= bitwidth x
entropy( UniformDistribution)’

where entropy is defined with base-2 logarithm, and P(x) refers to the dis-
tribution of x.
The definition is in agreement with the following intuitions.

1. If the quantized values are concentrated in a few bins like in Fig. [2] in-
dicating poor utilization of the available bitwdith, the Effective Bitwidth
will be low, just as expected.

2. When the order of the bars standing for quantized values in histogram
is permuted, which does not increase bitwidth utilization, the Effective
Bitwidth will not change.

3. If « is drawn from a discrete uniform distribution with 28 possible
values, then effective-bitwidth(x) = B as desired.

Based on this definition of Effective Bitwidth, we make the following
conjecture that will be empirically validated in Subsection [£.2.1}

Conjecture 1 Assume other factors affecting prediction accuracies, like
learning rate schedules and model architectures, are kept the same. The



prediction accuracy of a converged QNN model is positively correlated with
its Effective Bitwidth.

Motivated by the conjecture, we propose a novel quantization algorithm
that can enforce the balanced distribution of quantized parameters, which
maximizes entropy of the converged model and consequently its Effective
Bitwidth.

3.2 Balanced Quantization Algorithm
3.2.1 Outline

In this subsection we propose an algorithm to induce parameters of QNNs to
have more balanced distributions, and consequently larger Effective Bitwidths.
The first step is histogram equalization, which can be implemented as a
piecewise linear transform. The second step performs quantization, and then
matches the value range with that of the input by an affine transformation.

median

zsmpercemile\i \i g % 75th percentile " count
histogram
equalization quantization
outlier\ —} _>
W o 4 12 341 W' W,
(a) (b) (c)

Figure 3: The schematic description of the Balanced Quantization algorithm
in presence of outliers, with the case of k =2 as an example. The histogram
of the weight values is first equalized by piecewise linear transform and then
mapped to a symmetric distribution. The subfigures are (a) the histogram
of floating-point weight values, (b) the histogram-equalized weight values,
and (c) the quantized weight values.

Fig. [3| gives a schematic diagram of the Balanced Quantization method.
The method starts by partitioning numbers into bins containing the same
number of entries. Each partition is then mapped to a evenly-divided inter-
val in the closed interval [0, 1]. Finally, the quantization step maps intervals
into discrete values and transforms the value range to be approximately the
same as input. There will be exactly the same number of quantized values
assigned to possible choices when percentiles are used as thresholds.

Algorithm [I] gives a more rigorous description of the whole process.

10



Algorithm 1: k-bit Balanced Quantization Algorithm of Matrix W
Require: W is a real matrix
Ensure : W is quantized weights.

1 scale <+ max(|W/])

{Histogram Equalization}

{The equalized values W, are in closed interval [0, 1].}
2 W < equalize, (W)

{Quantization and restoring value range}

{W; are fixed point numbers among 2% discrete values

11 1 1 2 1
T2t w2 T e gt
3 Wi+ ﬁround-to-zem(?kwe -5H-1

{Values of W are scaled fixed point numbers in closed
interval [—max(|W/|), max(|W])].}
4 Wy 2xscalex Wy

3.2.2 Histogram Equalization by Piecewise Linear Transform

In this subsection, we detail the histogram equalization step, which we adapt
from image processing literature [60].

Assume we are quantizing to k-bits values and N = 2. The input value
range is divided to N intervals, including N — 1 number of half open in-
tervals [t;,t;+1) and a closed interval [ty_1,tx]. To simplify notation, we
denote the -th interval as I;. Thresholds {tz‘}fig are determined by the
algorithm of histogram equalization. When exact equalization is desired, we
let thresholds t; be the %—th percentiles of the original distribution. The
formula of equalized values z. is as follows.

Definition 3 (Histogram equalization)

ze = equalizey () Aot i+ b;
ifeel;, 0<i<N-1i€eZ.

As equalizex maps I; to evenly spaced segments J; of target interval
[0,1], parameters of the affine transformations, a; and b;, can be determined

11



from the following constraints:

7
aiti+bi =+,
+ 1
az‘tz‘+1+bz‘=%, 0<i<N-1,

where ﬁ and % are the two endpoints of J;.
Let C be the objective function of the training, the back-propagation
formula for equalizey is straightforward:

1oc_oc
a; 0r  Oxe
ifzeed;,, 0<i<N-1,i€Z.

3.2.3 Rounding and Restoring Value Range

After the histogram equalization step, the values W are still floating point
values, and need be converted to discrete values. The conversion can be done
by the construction of fixed point version Wy = 2,}—_1round—t0—zero(2kWe —
%) — % Note the mapping between W, and Wt is different from Q. For

example, it maps the interval of [0, 2%] to 0, while Qx maps [0, ﬁ] to 0.
Finally, W, which has value range [—3, 3], can be scaled by 2max(|W|)

to match the original value range.

3.3 Approximation of Median and Efficient Implementation

The histogram equalization defined by the piecewise linear transform in
Definition [3| has well-defined gradients and can be readily integrated into
the training process of QNNs. However, a naive implementation using per-
centiles as thresholds would require sorting of weight values during each for-
ward operation in BP, which may slow down the training process of QNNs as
sorting is less efficient on modern hardware than matrix multiplications. In
this subsection, we discuss an approximate equalization that allows efficient
implementation. We first propose a recursive implementation of histogram
equalization that only requires computing medians. Noting that medians
can be well approximated by means, we construct Algorithm [2| that can
perform approximate histogram equalization without doing sorting.

12



Algorithm 2: Histogram Equalization of Matrix W by Recursive Par-
titioning

1

Function HistogramEqualize (W, M, level) Data:

W is a real-valued matrix;

M is a mask matrix with values in {0,1} and has the same shape
as W; It is used to note the “working set” of W.

level is an auxiliary variable recording recursion level.
Result: A matrix of the same shape as W with value range [0, 1]

{Sw is the subset of the elements of W with positive
masks. }

2 SW < {ww‘fv w;j € W;mm > O}
3 if level=0 then

{Affine transform W to the value range of [0,1].}
{* is element-wise (Hadamard) multiplication.}
W —min(S

min(Sw) -

return max (Sw ) — min(Sw)

end

{Construct two masks M' and MY using mean(Sy) as
threshold. }

{mean(Sw) is used to replace median(Sw) so as to
accelerate computation (see Section D .}

T + mean(Sw) = %

7 M0, M9+0
8 for w; ; € W;m;; >0do

10
11
12

13
14

15
16

17

if w; ; <7 then
‘ mij —1
else
| mi; 1
end
end
W! < HistogramEqualize(W, M', level—1)
WY + HistogramEqualize (W, MY, level—1)
{Value ranges of both W' and WY are [0,1].}
{1 is added to WY to shift the value range to [3,1].}
return W'+ (AW + 1yo MY

13



3.3.1 Recursive Partitioning

We first note that the 2% evenly spaced percentiles required in histogram
equalization can be computed from the recursive application of partitioning
of numbers by medians. For example, when doing histogram equalization
for the 2-bit quantization, we need to compute the 25-th, the 50-th and the
75-th percentiles as thresholds. However, the 50-th percentile is exactly the
median, while the 25-th percentile (25% of values are below this number)
is the median of those values that are below the median of the original
distribution. Hence we can replace the computation of percentiles with
recursive applications of partitioning by medians.

Moreover, we note that when a distribution has bounded variance o, the
mean p approximates the median m as there is an inequality bounding the
difference [61]:

lp—m| <o

Hence we may use means instead of medians in the recursive partitioning.
The results of partitioning by different methods are shown in Fig. [4] and
Fig.[5] It can be observed that partitioning by the median achieves perfect
balance, and partitioning by the mean achieves approximate balance.

OOI . I . I . I
0.0 0.5 1.

-1.0 -0.5 .
Weight values

o
N
N

Frequency
o
i

0

Figure 4: Balanced quantization with median (before matching value range)

3.3.2 Implementation

Based on the fact that the median approximates the mean, histogram equal-
ization can be implemented as in Algorithm [2} An auxiliary mask matrix
M, whose values are either 0 or 1, is introduced to help manipulate the

14



o
N
1

Frequency
o
in

il

-0.75 -0.50 -0.250.00 0.25 0.50 0.75
Weight values

o
Q

Figure 5: Balanced quantization with mean (before matching value range)

branching and selection operations. Note the mask M, which is an argu-
ment of HistogramEqualize at the top of call chain, is initialized to be 1, a
matrix with all values being 1.

When Algorithm [2] is used as the histogram equalization step in Algo-
rithm |1} we can prove the following proposition (see Appendix for proof):

Proposition 1 If during application of Algorithm [2| the following holds
after Line [I4}

!
ozt <7
vy~ S MY

then the most frequent entry of the quantized values will appear at most
v?K as often as that of the least frequent entry, when quantizing to K-bit

numbers with Algorithm [T}

4 Experiments

In this section we empirically validate the effectiveness of the Balanced
Quantization through experiments on quantized Convolutional Neural Net-
works and Recurrent Neural Networks.

In our implementations of QNNs, we convert parameters and input ac-
tivations of all layers in the network to low bitwidth number, which is in
line with the practice of Hubara et al. [5I]. The CNN models used in this
section are all equipped with Batch Normalization [62] to speed up conver-
gence. Experiments are done on Linux machines with Intel Xeon CPUs and
NVidia TitanX Graphic Processing Units.

15



4.1 Experiments on Convolutional Neural Networks
4.2 Datasets

For evaluation on CNNs, we conduct experiments on two datasets used for
the image classification task.

The SVHN dataset [63] is a real-world digit recognition dataset consisting
of photos of house numbers in Google Street View images. We consider the
“cropped” format of the dataset: 32-by-32 colored images centered around a
single character. We also include the “extra” part of labeled data in training.

The ImageNet dataset contains 1.2M images for training and 50K images
for validation. Each image in the dataset is assigned a label in one of the
1000 categories. While testing, images are first resized such that the shortest
edge is 256 pixels, and then the center 224-by-224 crops are fed into models.
Following the conventions, we report results in two measures: single-crop
top-1 error rate and top-5 error rate over ILSVRC12 validation sets [64].
For brevity, we will denote the top-1 and top-5 error rates as “top-1” and
“top-5”, respectively.

4.2.1 Effective Bitwdiths and Prediction Accuracies of Converged
Models

In Fig. [l and Fig. [7] we plot the prediction accuracies of several converged
QNNs against their Effective Bitwidths as defined in Definition The
QNNs are trained on the SVHN dataset and have the same 7-layer CNN
model architecture; hyper-parameters like learning rate schedule, numbers of
epochs are kept the same, such that the differences between these models are
only the specified bitwidths of parameters and the quantization methods. In
this way, we can evaluate the impact of Effective Bitwidths on the prediction
accuracies of converged models.

It can be observed from Fig6|that in general, accuracy grows with the in-
crease of Effective Bitwidth. However, the growth of the accuracy gradually
slows down to the right half of the diagram, when the prediction accuracy of
a quantized model approaches the upper bound set by floating point models.

4.2.2 Evaluation of Approximation of Median

In this subsection we validate the effectiveness of approximation of the me-
dian by the mean, as proposed in Subsection As computing the median
requires doing sorting of weight parameters of a layer, experiments on DNNs
with many parameters will be very slow. Hence we perform experiments on

16



0.96

0.94

.. - )
2

>
20.92 =
5 [ ]
(&)
£ °

0.90 °

[}
0.88
0 1 2 3 4 5 6

Effective Bitwidth

Figure 6: Relationship between Effective Bitwidths and prediction accu-
racies of several converged QNNs on the SVHN dataset. The models are
produced by different specified bitwidths (ranging from 1-bit to 8-bit) and
quantization methods (balanced or not), but all have the same architecture
and training settings.

9 P
’,
,
8 ,
’,
7 7’
- ,
S 6 <
E // °
55 L’
.g4 Pig o
83 //.
= ’,
LlJ2 s ® °
’,
Py ) ¢
1 i °
’,
0

’,
0 1 2 3 4 5 6 7 8 9
Bitwidth

Figure 7: Relationship between Effective Bitwidth and specified Bitwidth.
In general, Effective Bitwidths grow with Bitwidths. But Effective Bitwidths
of most of the models are significantly less than its specified Bitwidth.

17



Table 1: Evaluation of using means instead of medians when performing
Balanced Quantization, on Googl.eNet with 4-bit weights and 4-bit activa-
tions.

Thresholds Top-1 Top-5 Effective Bitwidth

mean 32.3% 12.7% 3.99
median 33.8% 13.3% 4.00

Table 2: Comparison of performances of quantized AlexNet and ResNet.

Method AlexNet ResNet-18

Top-1 Top-5 Effective Top-1 Top-5 Effective

Bitwidth Bitwidth

FP 42.9% 20.6% - 31.8% 12.5% -
equalized FP weights 42.7% 20.9% - 36.2% 15.3% -
FP weight + 2-bit fea- 43.5% 21.0% - 38.9% 17.3% -
ture
imbalanced 2-bit (differ- 46.4% 24.7% 1.89 46.6% 22.1% 0.99
ent settings)
imbalanced 2-bit 45.3% 22.3% 1.94 42.3% 19.2% 1.96
balanced 2-bit 44.3% 22.0% 1.99 40.6% 18.0% 1.99

FP stands for floating point. Results in rows prefixed with “imbalanced” are
produced from direct applications of uniform quantization. Results in rows
marked with “equalized FP weights” only perform equalization of weights
on FP models. As the floating point values do not have well-defined effective
bitwidths, we omit these entries by using the “-” symbols.

the GoogLeNet, which contains fewer than 7M parameters. From Table [T}
it can be seen that replacing medians by means does not degrade prediction
accuracies. In fact, the method using means as thresholds is even slightly
better than the method using medians, both in terms of top-1 and top-5
error rates.

As replacing medians with means is empirically found to be viable, we
will use means as thresholds in experiments in the rest of Section

18



4.2.3 Balanced Quantization of AlexNet, ResNet-18 and GoogLeNet

The experiment results on AlexNet and ResNet-18 are summarized in Ta-
ble[2] The results marked with “different settings” come from models trained
with a different learning rate schedule and clipping of weights. It can be seen
that results of the Balanced Quantization method consistently outperform
those of the uniform quantization methods (hereafter denoted as Imbalanced
Quantization) defined in Definition |1 In particular, the top-5 error rate of
the Balanced Quantized 2-bit AlexNet is within 2 percentages of that of
the floating point version, making the quantized network a good candidate
to replace the floating point version in practice. As the model size can be
reduced to % of the original and computations can be performed by 2-bit
numbers, the savings in resource requirements will be significant.

However, the improvements of accuracies due to Balanced Quantization
may not be large, as accuracies of models quantized without balance are
already close to the upper bounds set by models with floating point weights

and 2-bit features.

Table 3: Comparison of classification error rates with state-of-the-arts on
quantized GoogLeNet model with 4-bit weights and 4-bit activations.

Method Top-1 Top-5

Our float32 28.5% 10.1%

QNN 4-bit BI]  335%  16.6%
Ristretto 8-bit [65]  33.4% -

Our 4-bit 32.3% 12.7%

Table [3| compares QNNs quantized with our method with state-of-the-
arts. It can be seen that our method consistently outperforms the others.
In particular, our method reduces the top-5 accuracy degradation, which is
the difference in accuracy between a QNN and a floating point version, from
6.5 percentages to 2.6 percentages.

19



Table 4: Performance of Quantized RNNs on PTB datasets.

. . PPW Effective Bitwidth
Model w-bits  a-bits balanced imbalanced balanced imbalanced
GRU 2 2 142 165 1.98 1.56
GRU 4 4 116 120 3.86 3.26
GRU (tanh(W)) FP FP - 118 - -
GRU FP FP - 100 - -
LSTM 2 2 126 164 1.96 1.00
LSTM 2 3 123 155 1.95 1.00
LSTM [51] 2 3 220
LSTM 4 4 114 127 3.89 1.80
LSTM [51] 4 4 100
LSTM (tanh(W)) FP FP - 122 - -
LSTM FP FP - 106 - -
LSTM [51] FP FP 97

FP stands for 32-bit floating point. Results marked with tanh(W') are of models
that have their weights clipped by tanh before passing to quantization. The best
results for each bitwidth setting are marked in bold.

4.2.4 Break-down of Accuracy Degradation with Balanced Quan-
tization

Overall, the change in accuracy due to Balanced Quantization will be made
up of two parts:

AAccuracyyog,) = AAccuracy,, + AAccuracy guan

where AAccuracy,, stands for the change in accuracy due to equalization
and AAccuracy g,y is that of quantization.

The histogram equalization effectively imposes an additional constraint
on the neural network parameters. As the constraint limits the optimization
space of parameters, it will likely introduce additional errors into predictions
of neural networks.

Nevertheless, through the experiments in Table|2] we have observed that
the reduction in AAccuracy g,y outweighs the inclusion of additional term
AAccuracy,,. We leave it as future work to investigate the cause and further
reduction of AAccuracy,,-

20



4.3 Experiments on Recurrent Neural Networks

In this subsection we evaluate the effect of Balanced Quantization on a few
Recurrent Neural Networks. We take language modeling task as an example,
and use the Penn Treebank dataset [66], which contains 10K unique words.

For fair comparison, in the following experiments, all of our models use
one hidden layer with 300 hidden units, which is the same with [51]. A word
embedding layer is used at the input side of the network whose weights are
trained from scratch. The performance is measured in perplexity per word
(PPW) metric.

During experiments we find the magnitudes of weights often grow rapidly
with training when using small bitwidth, and may result in divergence. This
can be alleviated by adding tanh to constrain the value ranges [53] and
adding weight decays for regularization. However, we find using tanh to
clip parameters will degrade prediction accuracy of floating point Neural
Network. Further investigation of this drop of accuracy is out of the scope
of this paper, and will be left as future work.

Experiment results are reported in Table 4] Our result is in agreement
with [5I] in finding that using 4-bit weights and activations can achieve
comparable performance as floating point counterparts. However, we report
higher accuracy than [5I] when using less bits, such as 2-bit weight and
activations. In particular, our 2-bit weights and 3-bit activations LSTM
achieve 155 PPW for imbalanced quantization and 123 PPW for balanced
quantization, both of which outperform the counterparts in [5I] by large
margins, despite that our floating point models are worse than those of [51].

5 Conclusions

In this paper, we have introduced the method of Balanced Quantization,
which enforces the quantized values to have balanced distributions through
the use of histogram equalization. Our method breaks away from tradi-
tional quantization methods in that it emphasizes on shaping distributions
of quantized values. When incorporated into the training process of Quan-
tized Neural Networks, our method can improve the prediction accuracies
of converged models. We have also introduced Effective Bitwidth, which
measures the utilization of bitwidth in QNNs, that can help identify models
that can benefit more from the Balanced Quantization method.

To reduce the computation overhead introduced by the need to com-
pute percentiles when performing Balanced Quantization, we also propose
to use recursive application of mean as approximations of percentiles (see

21



Subsection . We have also applied the Balanced Quantization method
to several popular Neural Network architectures like AlexNet, GooglLeNet
and ResNet, and found that our method outperforms the state-of-the-arts of
QNN;, in terms of prediction accuracy (see Subsection . Experiments
on LSTM and GRU are also encouraging (see Subsection [4.3)).

As future work, it would be interesting to use the histogram transfor-
mation technique to induce distributions that have other benefits, like a
high ratio of zeros in quantized values. It would also be interesting to in-
vestigate whether inducing activations of neural networks to have balanced
distributions could improve the prediction accuracies of QNNs.

Appendix

A Eliminating All Floating Point Operations Dur-
ing Inference

Recall that the i-th layer of a QNN is like:

X =Qa(oi( WX | +b))
Wi =Qw(W;),

where o; is the activation function, and Q4 and Qw are quantization func-
tions.
Below we assume the following conditions:

1. Wi can be represented as fixed point numbers scaled by a floating
point scalar a, i.e. Wi = aW¢, where W is fixed point numbers.

2. X} | contains only fixed point numbers
3. o; is a monotone function

We next show that under these assumptions, the computation of X can be
done by operations between fixed point numbers.
First, by replacing the variables we have:

X? = QA(Ui(anX?_l —i—bi)).

As Q4 is a uniform quantization function, it can be computed by compar-
ing values of o;(aW X} | +b;) with a sequence of thresholds hq, ha, -+, hy,.

22



As o; is monotone, and w.l.o.g. assume « > 0, the comparison can equiva-
lently be done between WX} | and

(o () =), 2 (07 (o) ~0), -+~ (o7 () )

As W¢ and X7} | are fixed point numbers, their product is necessarily
made of fixed point numbers, hence there exists a sufficiently large integer K
such that 28 W X & | are integers. The comparison required for computing
QA can be done by comparing 2K WX 4 | with integers

K K
2 (o7 () = 0)), (o7 () 1)),
2K
[~ (o7 (hn) =)

Hence the computation of X can be done by the comparison between
fixed point numbers WX | with the following thresholds that can be pre-
computed and stored (hence eliminating need for floating point operations
during inference):

-K 2K —1 -K 2K —1

27K = (o7 ()~ b)), 27 = (07 (he) — 1),
28
27K (o ()~ b))

B Training Algorithm of QNN

For completeness we outline the training algorithm of QNNs in Algorithm [3
Weights, activations and gradients are quantized by quantization functions
Qw, Qa and Qg, that are applied to weights, activations and gradients re-
spectively. C' stands for the cost function of the neural network. backward_input
and backward_weight are functions derived from chain rule for computing
gradients with respect to inputs and weights, respectively. The Update
function is determined by the learning rule used. The algorithm extends
Algorithm 1 in Hubara et al. [51] to include the quantization of gradients,
and the multi-bit quantization.

23



Algorithm 3: Training a L-layer CNN with W-bit weights and A-bit
activations using G-bit gradients.

Require: a minibatch of inputs and labels (X¢,Y), previous weights
W, learning rate n
Ensure : updated weights Wit!

{1. Computing the parameter gradients:}
{1.1 Forward Propagation:}
fori=1— L do
W Qu(W,)
X+ o(X)
if £ <L then
| X Qa(X))
end
Optionally apply pooling
end

© 00 N O Ok W N

{1.2 Backward propagation:}
10 Compute g, = éfX% knowing X, and label Y.
11 fori=L — 1do
12 Back-propagate g; through activation function o
13 | gi < Qalg:)
14 gi—1 < backward_input (g}, W})
15 gw, <+ backward weight(g], X )
16 Back-propagate gradients through pooling layer if there is one
17 end

{2. Accumulating the parameters gradients:}

18 for k=1 — L do
q W3
19 9i = 9; aw,

20 W:f“ + Update(W ;,9i,m)
21 end

24



C Proof of Proposition

Proof The step after histogram equalization in Algorithm [I] maps the
following half open (close) intervals into quantization values:

1.1 2 2K —1
[07 27]()7 [27[{7 27)7 T [27](7 1]‘

Hence it is sufficient to prove the counting statements for these intervals
after application of Algorithm

First of all, as each call of HistogramEqualize either produces two re-
cursive calls or terminates depending on level variable, the call relation of
any invocation of HistogramEqualize will form a balanced binary tree. For
clarity, we note as M 2, MY the corresponding M L, M9 used for a depth k

node of the binary tree.

By the assumption of M!, MY, we have % < %ﬁ% <. At the leaf
nodes, the application will be at most K number of timesk, hence the number
of entries in leaf nodes will be different by at most ¥2* number of times.

What remains to be proved is that no two leaf nodes produce the same
quantized value. We create an auxiliary variable D € {0,1} to record
whether a depth k£ node is on the right branch of their depth k—1 par-
ent. We can prove that node n will map values to the interval >_, DF2F=1,
by observing that at Line of Algorithm % will only be added if the
right branch of the call tree is taken.

As 3, DE2F=1 is unique for all nodes, we complete the proof. O

D Quantization of GRU

We first investigate the quantization of GRU as it is structurally simpler.
The basic structure of GRU cell may be described as follows:

ze=0(W, - [hi—1,24])

ri=0(W, [hi1,2])

hy = tanh(W - [r,0 hy_1, )

h; = (l—zt)oht_l—l-ztoiz,vt,
where 1 is a vector with all entries being 1, ¢ stands for the sigmoid function,

“.” stands for the dot product, [x,y] stands for the concatenation of two
vectors  and y, and o stands for the Hadamard product.

25



Recall that to benefit from the speed advantage of bit convolution ker-
nels, we need to multiply the two matrix inputs in low bit forms, such that
the dot product can be calculated by bitwise operation. For plain feed for-
ward neural networks, as the convolutions take up most of computation
time, we can get decent acceleration by the quantization of inputs of con-
volutions and their weights. But when it comes to more complex structures
like GRU, we need to check the bitwidth of each interlink. .

Except for matrix multiplications needed to compute z;, ¢ and hy, the
gate structure of h; and h; brings in the need for element-wise multiplica-
tion. As the outputs of the sigmoid function may have higher bitwidths,
the element-wise multiplication may need be done between floating point
numbers (or in higher bitwidth format). As h; and h; are also the inputs
to computations at the next timestamp, and noting that a quantized value
multiplied by a quantized value will have a larger bitwidth, we need to insert
additional quantization steps after element-wise multiplications.

Another problem with the quantization of GRU structure is that the
value ranges of gates are different. The range of tanh is [—1,1], which is
different from the value range [0,1] of z; and 7. If we want to preserve the
original activation functions, we will have the following quantization scheme:

Zt = O'(Wz : [htflaxt])
T = O'(Wr : [htflvmt])

—~ 1 1

h; = tanh(W - [ZQk(i(rt ohy_1)+ 5) —1,24])
1 —~ 1

ht = QQk(i((l _Zt) Ohtfl +Ztoht) + 5) — 1,

where we assume the weights W, W,., W have already been quantized to the
closed interval [—1,1], and input x; have already been quantized to [—1,1].

However, we note that the quantization function already has an affine
transform to shift the value range. To simplify the implementation, we
replace the activation functions of i‘l; to be the sigmoid function, so that
(1—2z¢)ohi1+2z,0h €]0,1].

Summarizing the above considerations, the quantized version of GRU
could be written as

(W - [hi—1,24])

Tt (W -[hi—1,24])

he = o(W - [Qi(riohi_1),2))

hi =Qu((1—z¢)ohi—1+2¢ ohNt),

Zt=0
=0

26



where we assume the weights W, , W ,.. W have already been quantized to
[—1,1], and input @; have already been quantized to [0, 1].

E Quantization of LSTM
The structure of LSTM can be described as follows:

fi=0(Wg-[hi_1, 2] + by)
tr=0(Wi-[hi_1,x] + by)

C, = tanh(W¢ - [hy_1, @] + by)

Ci=f10C +i,0C;

o, =0(W,-[hi—1,2] +bo)

h; = o;otanh(C)

Different from GRU, C; cannot be easily quantized, since the value has
not been bounded by activation functions like tanh. This difficulty comes
from structure design and cannot be alleviated without introducing extra
facility to clip value ranges. But it can be noted that the computations
involving C; are all element-wise multiplications and additions, which may
take much less time than computing matrix products. For this reason, we
leave C to be floating point numbers.

To simplify implementation, tanh activation for output may be changed
to the sigmoid function.

Summarizing above changes, the formula for quantized LSTM can be:

Fi=0(Wg-[hi1,2] + by)

i = o (Wi [he_1, 2]+ by)

C, = tanh(W¢ - [hy_1, @] + by)
CtzftoCt_lJritoa

o =0(W,-[hi—1,2] +bo)
hi = Qx(ot 00 (Ch)),

where we assume the weights W, Wi, W, W, have already been quantized
to [—1,1], and input x; have already been quantized to [0,1].

27



References

1]

Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification with
deep convolutional neural networks. In Proc. Advances in neural infor-
mation processing systems, Dec. 2012, pp. 1097-1105.

Zeiler M D, Fergus R. Visualizing and understanding convolutional
networks. In Proc. European Conference on Computer Vision, Sep.
2014, pp. 818-833.

Girshick R, Donahue J, Darrell T, Malik J. Rich feature hierarchies for
accurate object detection and semantic segmentation. In Proc. IEFE
conference on Computer Vision and Pattern Recognition, Jun. 2014,
pp. 580-587.

Long J, Shelhamer E, Darrell T. Fully convolutional networks for se-
mantic segmentation. In Proc. IEEE Conference on Computer Vision
and Pattern Recognition, Jun. 2015, pp. 3431-3440.

Hinton G, Deng L, Yu D, Dahl G E, Mohamed A r, Jaitly N, Senior
A, Vanhoucke V, Nguyen P, Sainath T N et al. Deep neural networks
for acoustic modeling in speech recognition: The shared views of four
research groups. Signal Processing Magazine, IEEE, 2012, 29(6):82-97.

Graves A, Mohamed A, Hinton G E. Speech recognition with deep
recurrent neural networks. In Proc. IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), May 2013, pp.
6645-6649.

Mikolov T, Sutskever I, Chen K, Corrado G S, Dean J. Distributed
representations of words and phrases and their compositionality. In
Proc. Advances in neural information processing systems, Dec. 2013,
pp- 3111-3119.

Sutskever I, Vinyals O, Le Q V. Sequence to sequence learning with
neural networks. In Proc. Advances in neural information processing
systems, Dec. 2014, pp. 3104-3112.

Bahdanau D, Cho K, Bengio Y. Neural machine translation by jointly
learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

Mnih V, Kavukcuoglu K, Silver D, Rusu A A, Veness J, Bellemare
M G, Graves A, Riedmiller M, Fidjeland A K, Ostrovski G et al.

28



[11]

Human-level control through deep reinforcement learning. Nature, 2015,
518(7540):529-533.

Silver D, Huang A, Maddison C J, Guez A, Sifre L, Van Den Driessche
G, Schrittwieser J, Antonoglou I, Panneershelvam V, Lanctot M et al.

Mastering the game of go with deep neural networks and tree search.
Nature, 2016, 529(7587):484-489.

He K, Zhang X, Ren S, Sun J. Identity mappings in deep residual
networks. In Proc. the 14th European Conference Computer Vision
(ECCYV), Oct. 2016, pp. 630-645.

Simonyan K, Zisserman A. Very deep convolutional networks for large-
scale image recognition. CoRR, 2014, abs/1409.1556.

Szegedy C, Liu W, Jia Y, Sermanet P, Reed S E, Anguelov D, Erhan
D, Vanhoucke V, Rabinovich A. Going deeper with convolutions. In
Proc. IEEE Conference on Computer Vision and Pattern Recognition,
Jun. 2015, pp. 1-9.

He K, Zhang X, Ren S, Sun J. Deep residual learning for image recog-
nition. In Proc. IEEE Conference on Computer Vision and Pattern
Recognition, Jun. 2016, pp. 770-778.

Galal S, Horowitz M. Energy-efficient floating-point unit design. IEEE
Trans. Computers, 2011, 60(7):913-922.

Hochreiter S, Schmidhuber J. Long short-term memory. Neural com-
putation, 1997, 9(8):1735-1780.

Chung J, Giilgehre C, Cho K, Bengio Y. Empirical evaluation of
gated recurrent neural networks on sequence modeling. CoRR, 2014,
abs/1412.3555.

Pham P H, Jelaca D, Farabet C, Martini B, LeCun Y, Culurciello E.
Neuflow: Dataflow vision processing system-on-a-chip. In Proc. IEEE
the 55th International Midwest Symposium on Clircuits and Systems

(MWSCAS), 2012, pp. 1044-1047.

Chen T, Du Z, Sun N, Wang J, Wu C, Chen Y, Temam O. Diannao:
a small-footprint high-throughput accelerator for ubiquitous machine-

learning. In Proc. Architectural Support for Programming Languages
and Operating Systems (ASPLOS), Mar. 2014, pp. 269—-284.

29



[21]

[22]

Luo T, Liu S, Li L, Wang Y, Zhang S, Chen T, Xu Z, Temam O,
Chen Y. Dadiannao: A neural network supercomputer. IEEE Trans.
Computers, 2017, 66(1):73-88.

Denton E L, Zaremba W, Bruna J, LeCun Y, Fergus R. Exploiting lin-
ear structure within convolutional networks for efficient evaluation. In

Proc. Advances in Neural Information Processing Systems, Dec. 2014,
pp- 1269-1277.

Jaderberg M, Vedaldi A, Zisserman A. Speeding up convolutional neu-
ral networks with low rank expansions. In Proc. British Machine Vision

Conference (BMVC), Sep. 2014.

Tai C, Xiao T, Wang X, E W. Convolutional neural networks with
low-rank regularization. CoRR, 2015, abs/1511.06067.

Zhou S, Wu J, Wu Y, Zhou X. Exploiting local structures with the kro-
necker layer in convolutional networks. CoRR, 2015, abs/1512.09194.

Novikov A, Podoprikhin D, Osokin A, Vetrov D P. Tensorizing neural
networks. In Proc. Advances in Neural Information Processing Systems,
Dec. 2015, pp. 442-450.

Zhang X, Zou J, He K, Sun J. Accelerating very deep convolutional
networks for classification and detection. IEEE Transaction on Pattern
Analysis and Machine Intelligence, 2016, 38(10):1943-1955.

Anwar S, Hwang K, Sung W. Structured pruning of deep convolutional
neural networks. CoRR, 2015, abs/1512.08571.

Han S, Pool J, Tran J, Dally W J. Learning both weights and connec-
tions for efficient neural network. In Proc. Advances in Neural Infor-
mation Processing Systems, Dec. 2015, pp. 1135-1143.

Han S, Mao H, Dally W J. Deep compression: Compressing deep neural
network with pruning, trained quantization and huffman coding. CoRR,
2015, abs/1510.00149.

Liu B, Wang M, Foroosh H, Tappen M F, Pensky M. Sparse convolu-
tional neural networks. In Proc. IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), Jun. 2015, pp. 806-814.

30



32]

[37]

[38]

Cheng Y, Yu F X, Feris R S, Kumar S, Choudhary A N, Chang S.
An exploration of parameter redundancy in deep networks with circu-
lant projections. In Proc. IEEE International Conference on Computer
Vision, Dec. 2015, pp. 2857-2865.

Chen W, Wilson J T, Tyree S, Weinberger K Q, Chen Y. Compressing
neural networks with the hashing trick. In Proc. the 32nd International
Conference on Machine Learning, Jul. 2015, pp. 2285-2294.

Chen W, Wilson J T, Tyree S, Weinberger K Q, Chen Y. Compress-
ing convolutional neural networks in the frequency domain. In Proc.
the 22nd International Conference on Knowledge Discovery and Data
Mining, Aug. 2016, pp. 1475-1484.

Anguita D, Carlino L, Ghio A, Ridella S. A fpga core generator for
embedded classification systems. Journal of Circuits, Systems, and
Computers, 2011, 20(02):263-282.

Vanhoucke V, Senior A, Mao M Z. Improving the speed of neural
networks on cpus. In Proc. Deep Learning and Unsupervised Feature
Learning Workshop, NIPS, Dec. 2011.

Alvarez R, Prabhavalkar R, Bakhtin A. On the efficient representation
and execution of deep acoustic models. In Proc. the 17th Annual Con-

ference of the International Speech Communication Association, Sep.
2016, pp. 2746-2750.

Zen H, Agiomyrgiannakis Y, Egberts N, Henderson F, Szczepaniak P.
Fast, compact, and high quality LSTM-RNN based statistical para-
metric speech synthesizers for mobile devices. In Proc. the 17th An-
nual Conference of the International Speech Communication Associa-
tion, San Francisco, Sep. 2016, pp. 2273-2277.

Gong Y, Liu L, Yang M, Bourdev L D. Compressing deep convolutional
networks using vector quantization. CoRR, 2014, abs/1412.6115.

Merolla P, Appuswamy R, Arthur J V, Esser S K, Modha D S. Deep
neural networks are robust to weight binarization and other non-linear
distortions. CoRR, 2016, abs/1606.01981.

Gupta S, Agrawal A, Gopalakrishnan K, Narayanan P. Deep learn-
ing with limited numerical precision. arXiv preprint arXiv:1502.02551,
2015.

31



[42]

[43]

[44]

[45]

[47]

[48]

Courbariaux M, Bengio Y. Binarynet: Training deep neural networks
with weights and activations constrained to +1 or -1. CoRR, 2016,
abs,/1602.02830.

Wu J, Leng C, Wang Y, Hu Q, Cheng J. Quantized convolutional neural
networks for mobile devices. CoRR, 2015, abs/1512.06473.

Kim M, Smaragdis P. Bitwise neural networks. CoRR, 2016,
abs/1601.06071.

Hubara I, Courbariaux M, Soudry D, El-Yaniv R, Bengio Y. Binarized
neural networks. In Proc. Advances in Neural Information Processing
Systems, Dec. 2016, pp. 4107-4115.

Rastegari M, Ordonez V, Redmon J, Farhadi A. Xnor-net: Imagenet
classification using binary convolutional neural networks. In Proc. the
14th European Conference Computer Vision, Oct. 2016, pp. 525-542.

Hinton G, Srivastava N, Swersky K. Neural networks for machine learn-
ing. Coursera, video lectures, 2012, 264.

Bengio Y, Léonard N, Courville A C. Estimating or propagating gra-
dients through stochastic neurons for conditional computation. CoRR,
2013, abs/1308.3432.

Hwang K, Sung W. Fixed-point feedforward deep neural network de-
sign using weights +1, 0, and -1. In Proc. IEEE Workshop on Signal
Processing Systems, Oct. 2014, pp. 174-179.

Shin S, Hwang K, Sung W. Fixed-point performance analysis of re-
current neural networks. In Proc. IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), Mar. 2016, pp. 976
980.

Hubara I, Courbariaux M, Soudry D, El-Yaniv R, Bengio Y. Quantized
neural networks: Training neural networks with low precision weights
and activations. CoRR, 2016, abs/1609.07061.

Miyashita D, Lee E H, Murmann B. Convolutional neural networks us-
ing logarithmic data representation. arXiv preprint arXiv:1603.01025,
2016.

Zhou S, Wu Y, Ni Z, Zhou X, Wen H, Zou Y. Dorefa-net: Training low
bitwidth convolutional neural networks with low bitwidth gradients.
CoRR, 2016, abs/1606.06160.

32



[54]

[58]

Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Cor-
rado G S, Davis A, Dean J, Devin M et al. Tensorflow: Large-scale
machine learning on heterogeneous systems. Software available from
tensorflow.org, 2015.

Andri R, Cavigelli L, Rossi D, Benini L. Yodann: An ultra-low power
convolutional neural network accelerator based on binary weights. In
Proc. IEEE Computer Society Annual Symposium on VLSI, Jul. 2016,
pp- 236-241.

Lee M, Hwang K, Park J, Choi S, Shin S, Sung W. Fpga-based low-
power speech recognition with recurrent neural networks. In Proc. IEEE
International Workshop on Signal Processing Systems, Oct. 2016, pp.
230-235.

Courbariaux M, Bengio Y, David J. Binaryconnect: Training deep
neural networks with binary weights during propagations. In Proc.
Advances in Neural Information Processing Systems, Dec. 2015, pp.
3123-3131.

Saxe A M, Koh P W, Chen Z, Bhand M, Suresh B, Ng A Y. On
random weights and unsupervised feature learning. In Proc. the 28th
International Conference on Machine Learning, Jun. 2011, pp. 1089—
1096.

Giryes R, Sapiro G, Bronstein A M. Deep neural networks with random
gaussian weights: A universal classification strategy? IEEE Transac-
tions on Signal Processing, 2015, 64(13):3444-3457.

Heckbert P S. Color image quantization for frame buffer display. In
Proc. the 9th Annual Conference on Computer Graphics and Interactive
Techniques, Jul. 1982, pp. 297-307.

Mallows C. Another comment on o’cinneide. The American Statistician,

1991, 45(3):257.

Toffe S, Szegedy C. Batch normalization: Accelerating deep net-
work training by reducing internal covariate shift. arXiv preprint
arXiv:1502.03167, 2015.

Netzer Y, Wang T, Coates A, Bissacco A, Wu B, Ng A Y. Reading
digits in natural images with unsupervised feature learning. In Proc.
Workshop on deep learning and unsupervised feature learning, NIPS,
volume 2011, 2011.

33



[64] Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang Z,
Karpathy A, Khosla A, Bernstein M et al. Imagenet large scale visual
recognition challenge. International Journal of Computer Vision, 2015,
115(3):211-252.

[65] Gysel P, Motamedi M, Ghiasi S. Hardware-oriented approximation of
convolutional neural networks. CoRR, 2016, abs/1604.03168.

[66] Taylor A, Marcus M, Santorini B. The Penn Treebank: An Overview,
pp- 5—22. Springer Netherlands, Dordrecht, 2003.

34



	1 Introduction
	2 Quantized Neural Networks
	2.1 Notations
	2.2 Simplistic View of Quantized Neural Network
	2.3 Exploiting Bitwise Operations in QNN
	2.4 Training Quantized Neural Networks by Straight-Through Estimator

	3 Balanced Quantization for Neural Network Parameters
	3.1 Effective Bitwidth and Prediction Accuracy of QNN
	3.2 Balanced Quantization Algorithm
	3.2.1 Outline
	3.2.2 Histogram Equalization by Piecewise Linear Transform
	3.2.3 Rounding and Restoring Value Range

	3.3 Approximation of Median and Efficient Implementation
	3.3.1 Recursive Partitioning
	3.3.2 Implementation


	4 Experiments
	4.1 Experiments on Convolutional Neural Networks
	4.2 Datasets
	4.2.1 Effective Bitwdiths and Prediction Accuracies of Converged Models
	4.2.2 Evaluation of Approximation of Median
	4.2.3 Balanced Quantization of AlexNet, ResNet-18 and GoogLeNet
	4.2.4 Break-down of Accuracy Degradation with Balanced Quantization

	4.3 Experiments on Recurrent Neural Networks

	5 Conclusions
	A Eliminating All Floating Point Operations During Inference
	B Training Algorithm of QNN
	C Proof of Proposition 1
	D Quantization of GRU
	E Quantization of LSTM

