Skip to main content
Log in

BCDC: A High-Performance, Server-Centric Data Center Network

  • Regular Paper
  • Published:
Journal of Computer Science and Technology Aims and scope Submit manuscript

Abstract

The capability of the data center network largely decides the performance of cloud computing. However, the number of servers in the data center network becomes increasingly huge, because of the continuous growth of the application requirements. The performance improvement of cloud computing faces great challenges of how to connect a large number of servers in building a data center network with promising performance. Traditional tree-based data center networks have issues of bandwidth bottleneck, failure of single switch, etc. Recently proposed data center networks such as DCell, FiConn, and BCube, have larger bandwidth and better fault-tolerance with respect to traditional tree-based data center networks. Nonetheless, for DCell and FiConn, the fault-tolerant length of path between servers increases in case of failure of switches; BCube requires higher performance in switches when its scale is enlarged. Based on the above considerations, we propose a new server-centric data center network, called BCDC, based on crossed cube with excellent performance. Then, we study the connectivity of BCDC networks. Furthermore, we propose communication algorithms and fault-tolerant routing algorithm of BCDC networks. Moreover, we analyze the performance and time complexities of the proposed algorithms in BCDC networks. Our research will provide the basis for design and implementation of a new family of data center networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Harris D. Ballmer’s millionserver claim doesn’t seem so crazy. https://gigaom.com/2013/07/17/ballmers-million-server-claim-doesnt-seem-so-crazy/#comments, July 2013.

  2. Dignan L. AWS financials on deck: The road to 3 million servers in operation. http://www.zdnet.com/article/aws-financials-on-deck-the-road-to-3-million-servers-in-operation/, April 2015.

  3. Al-Fares M, Loukissas A, Vahdat A. A scalable, commodity data center network architecture. In Proc. the ACM SIGCOMM Conf. Data Communication, August 2008, pp.63-74.

  4. Guo C X, Wu H T, Tan K, Shi L, Zhang Y G, Lu S W. DCell: A scalable and fault-tolerant network structure for data centers. In Proc. the ACM SIGCOMM Conf. Data Communication, August 2008, pp.75-86.

  5. Li D, Guo C X, Wu H T, Tan K, Zhang Y G, Lu S W. Fi-Conn: Using backup port for server interconnection in data centers. In Proc. IEEE INFOCOM, April 2009, pp.2276-2285.

  6. Guo C X, Lu G H, Li D, Wu H T, Zhang X, Shi Y F, Tian C, Zhang Y G, Lu S W. BCube: A high performance, server-centric network architecture for modular data centers. In Proc. the ACM SIGCOMM Conf. Data Communication, August 2009, pp.63-74.

  7. Greenberg A, Hamilton J R, Jain N, Kandula S, Kim C, Lahiri P, Maltz D A, Patel P, Sengupta S. VL2: A scalable and flexible data center network. In Proc. the ACM SIGCOMM Conf. Data Communication, August 2009, pp.51-62.

  8. Abu-Libdeh H, Costa P, Rowstron A, O’Shea G, Donnelly A. Symbiotic routing in future data centers. In Proc. ACM SIGCOMM, Aug.30-Sept.3, 2010, pp.51-62.

  9. Yu Y, Qian C. Space shuffle: A scalable, flexible, and high-performance data center network. IEEE Trans. Parallel and Distributed Systems, 2016, 27(11): 3351-3365.

    Article  Google Scholar 

  10. Zheng K, Wang L, Yang B H, Sun Y, Uhlig S. LazyCtrl: A scalable hybrid network control plane design for cloud data centers. IEEE Trans. Parallel and Distributed Systems, 2017, 28(1): 115-127.

    Article  Google Scholar 

  11. Bhuyan L N, Agrawal D P. Generalized hypercube and hyperbus structures for a computer network. IEEE Trans. Computers, 1984, C-33(4): 323-333.

    Article  MATH  Google Scholar 

  12. Leiserson C E. Fat-trees: Universal networks for hardware-efficient supercomputing. IEEE Trans. Computers, 1985, 34(10): 892-901.

    Article  Google Scholar 

  13. Dally W J. Performance analysis of k-ary n-cube interconnection networks. IEEE Trans. Computers, 1990, 39(6): 775-785.

    Article  MathSciNet  Google Scholar 

  14. Xiang D, Zhang Y L, Pan Y. Practical deadlock-free fault-tolerant routing in meshes based on the planar network fault model. IEEE Trans. Computers, 2009, 58(5): 620-633.

    Article  MathSciNet  MATH  Google Scholar 

  15. Xiang D. Deadlock-free adaptive routing in meshes with fault-tolerance ability based on channel overlapping. IEEE Trans. Dependable and Secure Computing, 2011, 8(1): 74-88.

    Article  Google Scholar 

  16. Lin D, Liu Y, Hamdi M, Muppala J. FlatNet: Towards a flatter data center network. In Proc. IEEE Global Communications Conf., December 2012, pp.2499-2504.

  17. Wang T, Su Z Y, Xia Y, Qin B, Hamdi M. NovaCube: A low latency Torus-based network architecture for data centers. In Proc. IEEE Global Communications Conf., December 2014, pp.2252-2257.

  18. Wang T, Su Z Y, Xia Y, Liu Y, Muppala J, Hamdi M. SprintNet: A high performance servercentric network architecture for data centers. In Proc. IEEE Int. Conf. Communications, June 2014, pp.4005-4010.

  19. Wang T, Su Z Y, Xia Y, Muppala J, Hamdi M. Designing efficient high performance server-centric data center network architecture. Computer Networks, 2015, 79: 283-296.

    Article  Google Scholar 

  20. Wang T, Su Z Y, Xia Y, Hamdi M. CLOT: A cost-effective low-latency overlaid Torus-based network architecture for data centers. In Proc. IEEE Int. Conf. Communications, June 2015, pp.5479-5484.

  21. Li D W, Wu J, Liu Z Y, Zhang F. Towards the tradeoffs in designing data center network architectures. IEEE Trans. Parallel and Distributed Systems, 2017, 28(1): 260-273.

  22. Efe K. A variation on the hypercube with lower diameter. IEEE Trans. Computers, 1991, 40(11): 1312-1316.

    Article  Google Scholar 

  23. Cull P, Larson S M. The Möbius cubes. IEEE Trans. Computers, 1995, 44(5): 647-659.

  24. Abraham S, Padmanabhan K. The twisted cube topology for multiprocessors: A study in network asymmetry. Journal of Parallel and Distributed Computing, 1991, 13(1): 104-110.

    Article  Google Scholar 

  25. Fan J X, He L Q. BC interconnection networks and their properties. Chinese Journal of Computers, 2003, 26(1): 84-90. (in Chinese)

    MathSciNet  Google Scholar 

  26. Wang D J. Hamiltonian embedding in crossed cubes with failed links. IEEE Trans. Parallel and Distributed Systems, 2012, 23(11): 2117-2124.

    Article  Google Scholar 

  27. Kulasinghe P, Bettayeb S. Embedding binary trees into crossed cubes. IEEE Trans. Computers, 1995, 44(7): 923-929.

    Article  MATH  Google Scholar 

  28. Fan J, Lin X, Jia X. Optimal path embedding in crossed cubes. IEEE Trans. Parallel and Distributed Systems, 2005, 16(12): 1190-1200.

    Article  Google Scholar 

  29. Efe K. The crossed cube architecture for parallel computation. IEEE Trans. Parallel and Distributed Systems, 1992, 3(5): 513-524.

    Article  Google Scholar 

  30. Chang C P, Sung T Y, Hsu L H. Edge congestion and topological properties of crossed cubes. IEEE Trans. Parallel and Distributed Systems, 2000, 11(1): 64-80.

    Article  Google Scholar 

  31. Efe K, Blackwell P K, Slough W, Shiau T. Topological properties of the crossed cube architecture. Parallel Computing, 1994, 20(12): 1763-1775.

  32. Kulasinghe P D. Connectivity of the crossed cube. Information Processing Letters, 1997, 61(4): 221-226.

    Article  MathSciNet  MATH  Google Scholar 

  33. Fan J X, Jia X H. Edge-pancyclicity and path-embeddability of bijective connection graphs. Information Sciences, 2008, 178(2): 340-351.

    Article  MathSciNet  MATH  Google Scholar 

  34. Yang X F, Dong Q, Tang Y Y. Embedding meshes/tori in faulty crossed cubes. Information Processing Letters, 2010, 110(14/15): 559-564.

    Article  MathSciNet  MATH  Google Scholar 

  35. Zhou S M. The conditional diagnosability of crossed cubes under the comparison model. International Journal of Computer Mathematics, 2010, 87(15): 3387-3396.

    Article  MathSciNet  MATH  Google Scholar 

  36. Dong Q, Zhou J L, Fu Y, Yang X F. Embedding a mesh of trees in the crossed cube. Information Processing Letters, 2012, 112(14/15): 599-603.

    Article  MathSciNet  MATH  Google Scholar 

  37. Cheng B L, Fan J X, Jia X H, Zhang S K. Independent spanning trees in crossed cubes. Information Sciences, 2013, 233: 276-289.

    Article  MathSciNet  MATH  Google Scholar 

  38. Cheng B L, Fan J X, Jia X H, Wang J. Dimension-adjacent trees and parallel construction of independent spanning trees on crossed cubes. Journal of Parallel and Distributed Computing, 2013, 73(5): 641-652.

    Article  MATH  Google Scholar 

  39. Chen H C, Kung T L, Hsu L Y. 2-disjoint-path-coverable panconnectedness of crossed cubes. The Journal of Supercomputing, 2015, 71(7): 2767-2782.

    Article  Google Scholar 

  40. Chen H C, Zou Y H, Wang Y L, Pai K J. A note on path embedding in crossed cubes with faulty vertices. Information Processing Letters, 2017, 121: 34-38.

    Article  MathSciNet  MATH  Google Scholar 

  41. Cheng B L, Wang D J, Fan J X. Constructing completely independent spanning trees in crossed cubes. Discrete Applied Mathematics, 2017, 219: 100-109.

    Article  MathSciNet  MATH  Google Scholar 

  42. Diestel R. Graph Theory (4th edition). Springer, 2010.

  43. Ghemawat S, Gobioff H, Leung S T. The Google file system. In Proc. the 19th ACM Symp. Operating Systems Principles, October 2003, pp.29-43.

  44. Dean J, Ghemawat S. MapReduce: Simplified data processing on large clusters. Communications of the ACM, 2008, 51(1): 107-113.

    Article  Google Scholar 

Download references

Acknowledgment

We thank the anonymous reviewers and editors for their valuable suggestions that help to improve the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Xi Fan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 301 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Fan, JX., Lin, CK. et al. BCDC: A High-Performance, Server-Centric Data Center Network. J. Comput. Sci. Technol. 33, 400–416 (2018). https://doi.org/10.1007/s11390-018-1826-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11390-018-1826-3

Keywords

Navigation