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Abstract Thanks to the emerging 3D integration technology, The multiprocessor system-on-chips

(MPSoCs) can now integrate more IP cores on chip with improved energy efficiency. However, several

severe challenges also rise up for 3D ICs due to the die-stacking architecture. Among them, power supply

noise becomes a big concern. In the paper, we investigate power supply noise (PSN) interactions among

different cores and tiers and show that PSN variations largely depend on task assignments. On the other

hand, high integration density incurs severe thermal issue on 3D ICs. In the paper, we propose a novel
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task scheduling framework considering both the PSN and the thermal issue. It mainly consists of three

parts. First, we extract current stimuli of running tasks by analyzing their power traces derived from

architecture level simulations. Second, we develop an efficient PDN solver to evaluate PSN magnitudes

efficiently. Third, we propose a heuristic algorithm to solve the formulated task scheduling problem.

Compared with the state-of-the-art task assignment algorithm, the proposed method can reduce PSN by

12% on a 2× 2× 2 3D MPSoCs and by 14% on a 3× 3× 3 3D MPSoCs. The end-to-end task execution

time also improves as much as 5.5% and 7.8% respectively due to the suppressed PSN.

Keywords power supply noise (PSN), power delivery network (PDN), task scheduling algorithm, tem-

perature, 3D MPSoCs

1 Introduction

With the exponential increase of transis-

tor count on-chip and insatiable demand of

high performance, the power density on-chip

increases dramatically. “Power Wall” issue be-

comes a serious concern for modern VLSI de-

signers [1]. The stringent power constraint

makes it extremely difficult to squeeze extra

performance by simply scaling the clock fre-

quency. As a result, MPSoCs (Multi-Processor

System on Chips) emerge as an effective tech-

nique to continue Moore’s law, especially in the

embedded system domain [2] because of their

better energy efficiency. Moreover, MPSoC de-

sign methodology facilitates integration of var-

ious IP cores from different vendors, which re-

duces the design complexity and accelerates

time-to-market greatly.

Recently, the emerging 3D integration

technology is adopted in the MPSoC design

(i.e., 3D MPSoCs) to approach higher inte-

gration density and more functionalities than

the 2D counterpart [3]. By stacking several

thinned tiers vertically, data communication

bandwidth and power consumption can be im-

proved greatly with the aid of through-silicon-

vias (TSVs). However, the 3D MPSoC archi-

tecture also presents several challenges due to

the die-stacking structure. Among them, sig-

nal integrity is a critical issue for chip reliabil-

ity. Since IP cores residing on different tiers

commonly share a power delivery network [4],

the activities on one core may propagate to

cores in its vicinity by the shared power deliv-

ery network. The shrinking power supply volt-

age and increasing magnitudes of current tran-

sients make the power supply noise (PSN) more

significant on 3D MPSoCs compared with their

2D counterparts. To constrain the PSN mag-

nitude, many effective methods are proposed
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from different optimization perspectives. To-

dri et al. investigated the PSN interactions on

a multi-processor platform, and derived several

guidelines for workload assignments to suppress

the PSN [5]. Wang et al. optimized the task

mapping and scheduling to minimize the PSN

induced by power gating [6]. Although their

work provides insights of the PSN effect in tra-

ditional MPSoCs, the proposed method can not

be simply extended to 3D MPSoCs due to the

following reasons. First, each tier manifests dif-

ferent characteristic impedance and may expe-

rience different voltage drop [7]. Second, the

PSN can propagate from one tier to other tiers

through TSVs, which introduces non-negligible

PSN couplings. As a result, the heterogeneity

of die-stacking structure and complicated PSN

interactions require a novel hardware-software

co-design methodology for 3D MPSoCs to sup-

press PSN effectively.

On the other hand, the reliability of 3D

MPSoCs is also threatened by the thermal is-

sue [8]. Stacking several tiers together presents

a severe challenge on thermal dissipation. High

temperature can aggravate the NBTI (Nega-

tive Bias Temperature Instability) and the hot

carrier injection effect [9]. Since upper tiers

are thinned before integration to facilitate die

stacking, the vertical thermal correlation dom-

inates the heat dissipation in 3D MPSoCs,

which makes the thermal modeling of 3D MP-

SoCs different from those of 2D counterparts.

In the paper, we explore to deal with the

above two reliability concerns from the task as-

signment perspective for hard real-time appli-

cations on homogeneous 3D MPSoCs. In the

hard read-time application, the task graph ex-

tracted is predetermined and the deadline must

be guaranteed [10]. With an illustrative ex-

ample, we show that different task mapping

and scheduling schemes may result in signifi-

cantly different PSN distributions, which im-

plies the large optimization potential by PSN

aware task scheduling. However, we observe

that the conventional thermal aware task as-

signment scheme may cause severe PSN, which

motivates our work. In order to optimize

task scheduling with both thermal and PSN

concerns, we propose a framework to evalu-

ate the PSN and thermal distributions effec-

tively. First, we extract representative power

traces from real applications, and convert them

to current stimuli traces instead of the tradi-

tional triangular or trapezoidal current stim-

uli to make the PSN calculation more accurate

and realistic. Second, we construct a power

delivery network (PDN) model of 3D MPSoCs

for PSN calculations, and develop a fast power

grid solver to facilitate PSN analyses. Based

on these modeling techniques, we formulate the



4 J. Comput. Sci. & Technol., Mar.. 2017, ,

task scheduling optimization as an linear pro-

gramming problem, which minimizes the PSN

with the peak temperature constraint. Then,

a list-scheduling based heuristic algorithm is

proposed to obtain the optimal task schedul-

ing solution. Extensive simulation results show

that the proposed algorithm can reduce PSN

by 12% on a 2 × 2 × 2 MPSoC and 14% on a

3× 3× 3 MPSoC platform compared with the

state-of-the-art thermal aware task scheduling

scheme [11]. Additionally, task execution time

can be improved by 5.5% and 7.8% respectively

due to the reduced PSN.

Our main contributions are listed as fol-

lows.

� We proposed an efficient architecture-

level PSN simulation framework to fill the

gap between circuit-level PSN simulation

and architecture-level task scheduling for

3D MPSoCs.

� Our another contribution is considering

both power supply noise and tempera-

ture to effectively avoid hotspot during

the PSN optimization for 3D MPSoCs.

� We propose a novel list-scheduling based

heuristic algorithm for the task schedul-

ing problem on homogeneous 3D MP-

SoCs with both thermal and PSN con-

siderations. Extensive simulation results

show that the proposed algorithm can re-

duce PSN by 12% on a 2× 2× 2 MPSoC

and 14% on a 3×3×3 MPSoC compared

with the state-of-the-art thermal aware

task scheduling scheme [11]. Addition-

ally, task execution time can be improved

by 5.5% and 7.8% respectively due to the

reduced PSN

The rest of the paper is organized as fol-

lows. Section 2 presents the preliminaries of

3D MPSoC PDN and thermal modeling tech-

niques. Task graph is also introduced in this

section. An illustrative example is presented in

Section 3 to motivate our work. Section 4 for-

mulates the PSN aware task scheduling prob-

lem with the thermal constraint and proposes a

framework to solve it. The computing complex-

ity analysis of the proposed algorithm is given

in this section as well. Section 5 shows the ex-

perimental results by running our task schedul-

ing algorithm extensively on different scales of

3D MPSoCs. Section 6 presents the related

work and Section 7 concludes the paper.

2 Preliminaries on Power Delivery Net-

work and Thermal Modeling Tech-

niques of 3D MPSoCs

For the ease of understanding, some nec-

essary background knowledge is introduced as

follows.
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Fig. 1: The power delivery system including

both off-chip and on-chip components.

2.1 Power Delivery Network Modeling

and PSN Evaluation for 3D MP-

SoCs

In general, a chip power delivery network

consists of off-chip and on-chip power delivery

interconnects as shown in Fig. 1. A VRM

(voltage regulator module) converts the high

voltage (e.g., 2.5V) to the chip operating volt-

age (e.g., 1V). Then the supply voltage goes

through the motherboard, P/G pins and on-

chip interconnects to drive transistors on-chip.

The PDN design needs to be determined at the

early stage of chip design as any PDN change

in the later phase of design flow may introduce

expensive design iterations. Therefore, it is im-

perative to predict the supply voltage varia-

tions accurately to evaluate its impact on-chip

performance and reliability as early as possible.

As suggested in [12], it is necessary to consider

both package and on-chip power delivery net-

work for accurate PSN prediction. Tradition-

ally, the package is modeled considering its in-

ductive effect while on-chip interconnects are

modeled considering their resistive and capaci-

tive effects. However, as the working frequency

increases, on-chip inductance can no longer be

ignored [13]. In the paper, we model both the

package and on-chip PDNs to capture PSN ac-

curately.

We assume the on-chip PDN is in the mesh

topology and shared by all cores on-chip as sim-

ilar to [14]. The power and grid lines interleave

with each other in one metal layer and are or-

thogonally aligned on different layers for PSN

reduction. P/G interconnects on different lay-

ers are connected by vias and deliver the power

from global metal layers to local metal layers.

A simplified model of a typical mesh PDN for

3D homogeneous MPSoC is shown in Fig. 2.

As shown in the figure, current is delivered from

the package to the on-chip PDN through P/G

C4 bumps, and the power supplies of upper

tiers are provided from the bottom tier through

P/G TSVs similar to the structure mentioned

in [15].

Then, the PSN can be calculated as fol-

lows [16]:

Vpnoise =
∫ te

ts
max{Vdd − Vp, 0}dt/(te − ts),

Vgnoise =
∫ te

ts
max{Vss, 0}dt/(te − ts),

Vnoise = Vpnoise + Vgnoise.

where ts is the start of the timing window for

the PSN calculation, and te is the end of the



6 J. Comput. Sci. & Technol., Mar.. 2017, ,

timing window. Vdd is the normal power supply

voltage. Vp is the real voltage of the power grid

node under investigation, and Vss is the ground

bounce of the corresponding ground grid node.

Using the above equations, we can calculate the

PSN magnitude of each P/G grid node consid-

ering both voltage drop (Vpnoise) and ground

bounce (Vgnoise).
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Bump Router
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Fig. 2: On chip mesh grid power delivery net-

work of homogeneous 3D MPSoCs.

2.2 Thermal Modeling Techniques for

3D MPSoCs

Since the thermal issue is another impor-

tant concern for 3D ICs, it is imperative to

consider the thermal constraint during work-

load assignment optimization for 3D MPSoCs.

In order to capture on-chip thermal distribu-

tion, an accurate thermal model is required.

Thermal modeling techniques for 3D ICs can

be classified into several categories.

� Solve the heat flow equation directly to

get the temperature distribution on-chip

by the finite element method or finite dif-

ferential method [17, 18].

� Utilize duality between the thermal and

the electrical properties. The thermal

conductivity can be modeled as the re-

sistance in the equivalent electrical cir-

cuit. The temperature difference corre-

sponds to the voltage difference. The

power consumption can be modeled as

the current source. Then, the tempera-

ture of each node can be solved by circuit

analyses [19].

� Utilize on-chip power information such as

the power gradient, to roughly estimate

the temperature variations among func-

tional blocks or cores [20].

The first method can obtain the accurate

solution, but the computing complexity is too

high to be adopted for the large scale of MP-

SoCs. The last one is the fastest method but it

can only be used for qualitative analyses lack-

ing of enough accuracy. The second method

listed above makes a good trade-off between the

accuracy and the efficiency. The widespread

used thermal simulation tool Hotspot [21] is

based on the second method and we will use

it to evaluate the thermal distribution in this
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paper.

2.3 Introduction to Task Graph

In the paper, we assume that the running

application can be split into a number of tasks

with specified timing dependencies and con-

straints. Then, the application can be repre-

sented by a directed acyclic task graph, which

is widely used for task scheduling research [11].

A task graph example is shown in Fig. 3. In

the figure, a node in the task graph denotes a

task of the running application, and an edge de-

notes the task running priority and the running

dependency. For example, task S2 can only ex-

ecute after S1 finishes. The weight of the node

(i.e., ti) denotes the execution time of the task.

For real-time applications, each task node has

the deadline constraint and the task execution

can not violate it.

S1

S2 S3

S4 S5 S6

t1

t2 t3

t4 t5 t6

d1

d2 d3

d4 d5 d6

ti : task execution time 
di : task deadline 

Fig. 3: An illustrative task graph example.

Calculate task mobility, and 

sort tasks with mobility

Map ready task(s) on idle 

core(s) randomly

Construct ready task list

Is there any 

unscheduled task?

Derive the next scheduling 

point, and update current time

Y

End

N

Inputs: task graph, 

MPSoC spec.

Try to assign the task to all 

possible locations

Evaluate the thermal 

distribution for each trial

Find the best position with 

minimal peak temp.

Thermal aware scheduling[10]

List scheduling[21]

(a) (b)

Fig. 4: (a) The flow chart of the list scheduling

scheme [10]. (b) The thermal aware scheduling

algorithm [11].

3 Motivation

In this section, we investigate PSN dis-

tributions caused by different task allocation

schemes. For the completeness of the paper,

we briefly introduce the task allocation schemes

used in our investigation. The first scheme is

based on the conventional list scheduling algo-

rithm [10] as shown Fig. 4(a). According to

the task execution deadline, it calculates the

earliest start time (i.e., EST) and the latest

start time (i.e., LST) of each task. Then, all

tasks are sorted with their mobilities (i.e., the
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difference of LST and EST). At each schedule

point, the scheduler assigns a ready task to an

idle core randomly. When all ready tasks are

allocated, the time will advance to the next

scheduling point. If all cores are busy such

that no ready task can be allocated at current

scheduling point, the time will advance to the

next one when at least one core becomes idle.

The second scheme is the state-of-the-art ther-

mal aware task scheduling algorithm proposed

by [11] as shown in Fig. 4(b). The scheduler

evaluates the thermal distribution on-chip at

each scheduling point for each possible task as-

signment, and the scheduler chooses the best

candidate position approaching the lowest peak

temperature. The third scheme is similar to the

thermal aware scheduling but evaluates PSN

instead. At each schedule point, the scheduler

will assign the ready task to the available posi-

tion approaching minimal PSN (the PSN eval-

uation procedure will be detailed in the next

section).

To illustrate scheduling results using

the three task assignment schemes, we use

TGFF [22] to generate a task graph and sched-

ule it on a 2 × 2 × 2 3D MPSoC using these

schemes. The task graph has 20 nodes and

30 edges. The task characterizations, detailed

simulation setup, PDN and thermal model pa-

rameters are presented in Section 4 and Sec-

tion 5 respectively. Table 1 indicates the com-

parisons among three algorithms (conventional

list scheduling algorithm, i.e., the “Random”

algorithm in the table, thermal aware schedul-

ing algorithm and PSN-aware scheduling algo-

rithm wihtout thermal consideration) in terms

of temperature and PSN.

Table 1: PSN and Temperature Comparisons of

Three Task Assignment Schemesa

Random T-aware PSN-aware

PSN (mV) 147.6 174.7 143.2
Temp. (K) 310.3 307.5 309.3

a T-aware denotes the thermal aware task schedul-

ing scheme and PSN-aware denotes the PSN

aware task scheduling scheme. Both PSN and

temperature values are the peak values among

all cores.
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Table 2: Psn and Temperature Comparisons of Three Task Running Scenarios

Case 1 Case 2 Case 3

Bottom Middle Top Bottom Middle Top Bottom Middle Top

PSN(mV)a 54.8 46.6 46.5 42.4 59.8 49.3 41.1 48.2 63.4

Temperature(K)b 304.8 303.5 302.77 303.67 303.51 302.78 303.26 303.1 302.79

a,b Both PSN and temperature values are the peak values among all cores on the same tier.

1

2

3

PCB Board

Heatsink

Fig. 5: Running a single task on different tiers

for thermal and PSN comparisons: (1) running

the task on the bottom tier; (2) running the

task on the middle tier; (3) running the task

on the top tier.

As shown in Table 1, the random task as-

signment scheme can be neither thermal nor

PSN friendly. Moreover, we can observe that

the thermal aware scheduling scheme may gen-

erate severe peak PSN (increasing 18% com-

pared with that of the PSN-aware case). In

contrast, PSN aware task scheduling scheme

may incur higher peak temperature than that

of thermal aware scheduling algorithm.

To examine the conflict between the ther-

mal aware scheduling scheme and the PSN

aware scheduling scheme, we investigate the

thermal and PSN distributions of each tier

when running a single task on different tiers as

shown in Fig. 5. In case 1, the task is assigned

to the bottom tier. In case 2, it is assigned to

the middle tier. In case 3, it is assigned to the

top layer. In Fig. 5, we assume that the bottom

tier is attached to the PCB board and provides

power supply for upper tiers while the top tier

is attached to the heatsink for thermal dissipa-

tion. Both the peak temperature and the PSN

magnitude of each tier are shown in Table 2.

As shown in Table 2, the peak PSN magni-

tude is the largest when the task is assigned to

the top tier (63.4mV). The peak PSN magni-

tude is the smallest when the task is assigned to

the bottom tier (54.8mV). From the power sup-

ply noise suppression perspective, it is prefer-
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able to schedule the task near the bottom tier

as much as possible. Since the power supply

has to go through the bottom and the mid-

dle tier to reach PDN on the top tier, the top

tier suffers from more severe PSN than other

tiers [23]. On the other hand, when the task is

allocated on the bottom tier, the peak temper-

ature is the highest (304.8K) among all three

cases. Therefore, from the heat dissipation per-

spective, it is better to assign the task in up-

per tiers which are closer to the heat sink. As

a result, there is conflict between the PSN-

aware task scheduling and the thermal-aware

task scheduling, which is coincide with [19].

The above analyses imply that it is necessary

to consider both thermal and PSN issues dur-

ing the task scheduling to ensure the reliability

and availability of 3D MPSoCs.

4 Proposed Framework for Task

Scheduling on 3D MPSoCs Consid-

ering Both Thermal and PSN Issues

In order to evaluate the temperature and

PSN distributions, we need to build the ther-

mal and electrical PDN models of 3D MPSoCs.

Traditionally, considering the large scale of on-

chip power grid, stimuli of the PDN are usually

simplified as current sources with some regular

waveforms such as the triangular or trapezoidal

waveforms. Although this assumption reduces

the complexity of solving PDN equations, it

sacrifices simulation accuracy and can not re-

flect the real activities and different character-

istics of various running tasks. To illustrate this

point, we perform the power supply noise simu-

lations with two different methods. In the first

one, we extract the power traces by the archi-

tecture level simulation, and convert them to

the stimuli to the PDN for PSN simulations.

In the second method, the PDN stimuli wave-

forms are simplified as triangular waveforms,

and the average power consumption is set as

the same with that of the first method. The

experimental results on a single core show that

the PSN error of the first method can be as

large as 51.35% (please refer to Section 5 for

the experimental setup). Therefore, it is im-

perative to consider application running char-

acteristics derived from the power traces for the

accurate PSN evaluation.

In this paper, we propose a power trace

based architecture level PSN evaluation frame-

work. The advantages of this framework are as

follows. First, the architecture level simulation

can improve the PSN calculation efficiency and

save significant computing overhead. Second,

various characteristics of tasks can be captured

by power traces extracted. Therefore, interac-

tions of tasks running simultaneously can be

captured by feeding power traces to the PDN
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Fig. 6: Proposed task scheduling framework considering both thermal and PSN issues.

model.

Our proposed framework can be divided

into three steps as shown in Fig. 6.

� First, we input the core architec-

ture, technology parameters to set up

the architecture-level simulator. Then,

power traces of different tasks are ex-

tracted with simulations.

� Second, power traces are converted into

current traces and fed into the 3D MP-

SoC PDN model for PSN calculations.

We develop an efficient PDN solver to

accelerate the PSN evaluations instead

of the time-consuming HSPICE simula-

tions.

� At last, we formulate the task schedul-

ing problem and propose a heuristic al-

gorithm to solve it. The task graph and

3D MPSoC architecture specifications are

inputs to the task scheduler. During the

task scheduling, thermal simulations and

PSN calculations are performed to find

the optimal solution.

In the following, we will detail each step of

the framework.

Power trace extraction by 

Wattch [24] & SimPoint [25]

Voltspot 

simulation for a 

single task

Back Anotate

Single core PSN 

simulation by Voltspot

Back annotate the 

power trace segment

Power trace

Representative power 

trace segment

PSN simulation

PDN model

Fig. 7: Illustration of the workload characteri-

zation process.

4.1 Power Trace Based Task Character-

ization

Tasks running simultaneously on the 3D

MPSoC have different characteristics, such as
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peak current magnitudes, running frequencies,

power consumptions. Furthermore, their be-

haviors may affect one another when running

at the same time. Individual workload or work-

load combinations may cause different PDN

responses due to PSN propagation and inter-

coupling. In the paper, we use the architec-

ture level simulation to get the power consump-

tion information and then derive waveforms of

current stimuli, which can be integrated with

the PDN model conveniently for PSN analy-

sis. Although there is another simulation tool

Voltspot available for power trace driven PSN

simulation [24], it could not scale very well for

large scale 3D MPSoCs and incurs unaccept-

able running time overhead. Therefore, we pro-

pose the “ single core power trace extraction +

custom PDN solver” for the PSN evaluation.

We choose Wattch [25] for power trace extrac-

tion since it can get a satisfied trade-off be-

tween the running speed and the accuracy for a

single core simulation. Note that our proposed

framework does not depend on the specific sim-

ulator.

Then, the generated power trace can be

converted to current traces and integrated

with the PDN model. Here, we will take a

SPEC2000 application “ammp” as an example

to illustrate the workload characterization pro-

cess as shown in Fig. 7.

Considering the large scale of power grid,

it cannot afford to apply the entire power trace

for PSN calculations, which will incur unac-

ceptable running time overhead. Therefore, it

is necessary to capture the representative seg-

ment of the extracted power trace. We use Sim-

Point [26] to identify several different running

phases of “ammp”. For each identified running

phase, we fast forward 1 million instructions for

the cache warm-up and perform detailed timing

simulation for another 1 million instructions

(refer to Section 5 for our architecture simula-

tion setup). Then, we extract 10000 cycle long

segment from the generated power trace, which

can capture the peak power consumption. Al-

though the power consumption has close rela-

tionship with power supply noise, we observe

that the maximum PSN may not exactly hap-

pen at the same time when the peak power ap-

pears due to the propagation delay of PDN.

To capture the worst PSN exactly, we take the

generated power trace segment as input and use

Voltspot [24] to identify the interval including

the worst PSN. Then, we back-annotate the in-

terval to the original power trace segment for

the PDN stimuli extraction. Consequently, the

In the paper, we use workload and task interchangeably

Since the Voltspot-based PSN simulation is only performed on a single task in this paper, the run time overhead

of Voltspot is acceptable.
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extracted stimuli are inserted at current source

insertion points of the PDN model for PSN cal-

culations, which will be detailed in the next

subsection.

4.2 Development of the PDN Model

and the PDN Solver

Since we focus on the PSN at the core-

level and emphasize the power supply interac-

tions between different cores, it is enough to

only consider the global power grid, which takes

each core as one block as in [5]. Considering

the on-chip PDN, each interconnect segment

is modeled with its distributed RLC parasitics.

Decoupling capacitance, including intrinsic and

external decoupling capacitance, is assumed to

be distributed evenly across the core, and con-

nected in parallel with the current source de-

rived from the power trace generated above to

the switching activity of the task running on it.

Note that both power and ground grids are con-

sidered for PSN calculations. Power/ground

grids on each layer are interconnected by TSVs,

which are modeled as resistors and inductors.

C4 bumps distribute on the bottom layer to

connect the on-chip PDN to the off-chip PDN.

Fig. 8 illustrates the on-chip PDN model [27]

while the off-chip model is derived from [28].

Interconnect 
ModelPower C4 

Bump Model

Switching 
Circuit Model

Vdd

Ground C4 
Bump Model

Decap

Power TSV

Ground TSV

Power Grid 
Network

Ground Grid NetworkOther Tier

Fig. 8: Illustration of the on-chip PDN

model [27].
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Fig. 9: Simulation result comparisons between

our PDN solver and HSPICE simulations on

four sample power grid nodes. (a) Simulation

results of the PDN solver. (b) HSPICE simu-

lation results.
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In contemporary VLSI design, the power

grid mesh can easily contain millions of nodes

for the PSN calculation. It imposes a great

challenge on power grid analysis. As the tradi-

tional simulation using HSPICE can no longer

be applied for such a very large scale prob-

lem, many efficient numerical solving meth-

ods have been proposed considering the reg-

ularity of the power grid structure, such as

multi-grid method [29, 30], preconditioned con-

jugated gradient method [31].

In order to reduce the simulation complex-

ity, we construct a power grid hierarchy, i.e.,

the power grid in one core consists of several

base grids while each base grid is composed of

several base cells as in [5]. Although the PDN

model is largely simplified by the hierarchical

structure, it would be still very time-consuming

for PSN computations in task allocation and

scheduling as the scheduling algorithm usually

involves many trial-and-fail iterations to obtain

the final solution. Therefore, we develop an ef-

ficient PDN solver to accelerate PSN analysis

based on the modified nodal analysis (MNA).

To verify the effectiveness of the PDN

solver, we generate the netlist of a 2 × 2 × 2

3D MPSoC and feed it into the PDN solver

to calculate its pulse response. The simula-

tion results on some selected power grid nodes

are shown in Fig. 9. The simulation error of

the PDN solver is negligible compared with the

HSPICE simulation.

4.3 Problem Formulation

As stated in Section 3, to ensure reliable

operations of 3D MPSoCs, we need to consider

both thermal and PSN issues during the task

scheduling. To clearly formulate the problem,

we firstly give 3D MPSoC architecture and task

graph definitions as follows,

3D MPSoC Architecture The 3D

MPSoC architecture can be described as

AR(m,n, l), where l is the layer count, and

each layer has m × n cores. All processing el-

ements (PEs for short) within a layer are in-

terconnected by a 2D mesh Network-on-chip

(NoC) structure. PEs on different layers are

connected through TSVs, as proposed in [32].

All PEs within the 3D MPSoC share a global

power grid, and the power supply is delivered

from the bottom layer to upper layers through

power supply TSVs, as shown in Fig. 2.

Task Graph Definition The application

running on the MPSoC can be split by a set of

tasks executing concurrently or in a specified

order. As shown in Fig. 3, S is the vertex set

of task graph G(S,E). Si denotes task i. Its

weight ti denotes the execution time. If task i is

In the paper, we use tier and layer interchangeably.
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a predecessor of task j, then they should satisfy

the following constraints, ts(j) ≥ te(i), where

ts(j) is task j’s start time and te(i) is task i’s

finish time. Additionally, all tasks should meet

the deadline constraints, i.e., te(i) ≤ d(i) where

d(i) is the deadline of task i.

Then, the task scheduling problem can be

formulated as follows,

min.
∑

Si∈S,p∈P
xipPSN(p, Si).

s. t. ∀Si

∑
p

xip = 1, (1)

te(Si) = ts(Si) + ti), (2)

ts(Si) ≥ maxeji∈E{te(Sj)}, (3)

te(Si) ≤ dSi
, (4)

ts(Si) ≥ te(Sj), (5)

pij + pji = 1, (6)

maxp∈PTp(t) ≤ T0, (7)

t ≤ SL,

GV(x) + CdV(x)
dt

= MAI, (8)

x ∈ power grid nodes,

PSN(p, Si) = max|V (xk, Si)− Vdd|, (9)

xk ∈ core p.

where,

xip =


1 if task Si is allocated to core p

0 otherwise

pij =



1 if task Si is scheduled before Sj

and both of them are allocated

to the same core

0 otherwise

As shown above, our optimization target

is to minimize the PSN magnitudes of running

cores by task scheduling. (1) means that every

task Si can only be allocated to a single core.

S is the task set and P is the core set. (2)

derives the finish time of task Si, where ti de-

notes the task i’s execution time. (3) is used to

guarantee the task precedence during the task

scheduling, i.e., a task can only be scheduled

after all its predecessors finish execution. (4)

guarantees that the deadline constraint can not

be violated. (5) and (6) maintain the execution

order when two tasks are allocated on the same

core. (7) makes sure that the peak temperature

of the 3D MPSoC must be lower than the tem-

perature constraint T0. SL is the task sched-

ule time length. At each schedule point, power

supply noise can be calculated by (8) and (9).

In the next subsection, we will propose a
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Algorithm 1 PSN and thermal aware task scheduling algorithm

1: procedure pt schedule(G, spec, PDN param, thermal param, PSN profiles table)

2: // G: task graph, spec: 3D MPSoC specification, PDN param: PDN parameters

3: // thermal param: thermal parameters, PSN profiles table: PSN profiles of each task

4: construct ready list(&ready list, G,&task map); cur time← 0

5: while ready list! = NULL do

6: ready list sort(&ready list, G); task ← task select(ready list, cur time)

7: for i← 0, spec.core count do

8: if spec.core[i] = free then

9: update task map(task.id, i,&task map)

10: if task.finish time > deadline[task.id] then

11: restore(task.id, i,&task map); continue

12: else

13: thermal sim time← finish time(task map)

14: peak temp← thermal sim(task.id, i, spec.power table, thermal param, sim time)

15: if peak temp > max temp then

16: restore(task.id, i,&task map); continue

17: else

18: PSN value← PSN eval(task.id, i, PSN profiles table, PDN param)

19: if PSN value < optimal value then

20: optimal value← PSN value; spec.core[i]← busy;

21: find solution← true

22: update solution(&PSN schedule solution, task.id, i, cur time)

23: else

24: restore(task.id, i,&task map); continue

25: if find solution = false && slack = −1 then

26: return NULL

27: else

28: update ready list(task.id, i,&G,&task map,&scheduling point)

29: update core status(spec.core, scheduling point); cur time← scheduling point

30: return PSN schedule solution
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heuristic algorithm to solve the problem effec-

tively.

4.4 Our Proposed Task Scheduling Al-

gorithm

As shown in Algorithm 1, the inputs to

the algorithm include the 3D MPSoC specifi-

cation, current stimuli derived from the power

trace extraction, and the task graph. The out-

put is the optimal task schedule. The algo-

rithm is constructed based on the widely-used

list scheduling algorithm [33]. First of all, the

earliest start time of each task is calculated by

ASAP (i.e., as soon as possible) algorithm. The

latest start time is calculated by ALAP (i.e., as

late as possible) algorithm. Then, all tasks are

sorted by their mobilities (i.e., the difference

of the latest start time and the earliest start

time of the task) in the ascending order such

that the task with the least mobility can be

scheduled firstly to avoid the violation of the

deadline requirement.

At the beginning of the schedule, the first

task is put into the ready list. During the

schedule, all tasks whose parents finish execu-

tions are put into the ready list for schedul-

ing. At each schedule point, ready tasks are

assigned to idle cores in an iterative manner.

For each assignment trial, the PSNs of all run-

ning cores are calculated by the PDN solver

mentioned above. At the same time, the peak

temperature of each trial is evaluated using

Hotspot [21]. As a result, the core incurring the

minimum PSN value while meeting the peak

temperature constraint is chosen for the task

assignment. Since the thermal constant is in

the range of milliseconds [34], we use the av-

erage power consumption of each task instead

of the transient power for the thermal simula-

tion to accelerate the simulation speed. Addi-

tionally, as mentioned in [35], significant ther-

mal/PSN fluctuation occurs when there is a

new task beginning to run or an old one finish-

ing execution. Therefore, we define the sched-

ule point as the time point when there is any

task ending execution or beginning to run, and

we only perform the PSN and thermal evalua-

tions at each scheduling point, which reduces

the computing overhead further. When the

ready list becomes empty, it means all tasks

have been scheduled and the optimal schedule

can be obtained.

The timing complexity of the proposed al-

gorithm is analyzed as follows. Assume the

task graph has S tasks and the 3D MPSoC has

C = l × m × n cores, where l is the number

of tiers, and each tier has m × n cores. The

worst case is that every task has only one par-

ent and only one child. In this case, at each

schedule point, the core candidate for assign-
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ment is C. For each candidate, we need to per-

form one thermal simulation and one PSN cal-

culation, whose running time mainly depends

on the thermal and power grid sizes. Assume

that the base grid size is a constant. Then, the

number of thermal and PDN grids depends on

the number of tiers and the number of cores

on each tier. Therefore, the time complexity of

the thermal simulation or the PSN calculation

is O(Cp0q0). p0 is the time of one thermal sim-

ulation for a single core, and q0 is the time of

one PSN calculation for a single core. In the

worst case, we need totally S×C thermal sim-

ulations and PSN calculations to obtain the op-

timal schedule. As a result, the time complex-

ity of the algorithm is O(SC2p0q0) or O(SC2)

since p0 and q0 are constants.

Note that we assume that the task graph

to be run on the 3D MPSoC is determined in

advance similar to [11, 20]. Therefore, our pro-

posed algorithm can run off-line to derive the

optimal task scheduling. Although the iterative

optimization procedure involves power supply

noise and temperature evaluations, the running

time overhead is acceptable due to the linear

increase of the time complexity with the num-

ber of tasks. Moreover, since the algorithm is

off-line, it does not need to make the task as-

signment decision during the run time, and can

guarantee quick scheduling response during the

run time.

5 Experimental Results

In this section, we describe the experimen-

tal setup firstly and then present the experi-

mental results of the proposed task scheduling

algorithm.

Table 3: Task Graphs Used in the Experiments

Benchmark Task count Edge Count

auto-indust 24 21

consumer 13 14

networking 15 11

office-automation 5 5

telecomm 34 28

tgff1 23 35

tgff2 16 21

tgff3 18 25

tgff4 21 28

tgff5 17 24

tgff6 26 30

tgff7 22 33

tgff8 18 27

5.1 Experimental Setup

Our proposed task scheduling algorithm is

implemented by C++. E3S benchmark suite

is adopted in our experiments. E3S bench-

marks are extracted from EEMBC benchmark

suite and widely used in the task scheduling

research [11, 36]. The E3S benchmarks can be

classified into five application categories, i.e.,

automotive, consumer, networking, office au-

tomation and telecommunications.
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In addition to E3S benchmarks, we also

use TGFF [22] to generate eight different hypo-

thetical task graphs suitable for evaluations on

the large-scale 3D MPSoC. The specifications

of E3S and synthesized benchmarks are shown

in Table 3. The first column is the name of the

benchmark. The second and the third column

denote the task number and the edge count

between tasks respectively. Since task power

traces used for PSN evaluations are not avail-

able from task graph specifications, we take

power trace extracted from SPEC2000 bench-

marks instead, and different SPEC2000 bench-

marks correspond to different tasks. In prac-

tice, task power traces could be obtained with

the technique described in Section 4.

Table 4: Architecture Parameters of a Single

Core of the 3D MPSoCs

CPU Alpha 21264 2GHz

Predictor Bimodal predictor,

BTB with 2-bit counter

IFQ Size/LSQ Size 4/8

L1 D$/I$ 32KB/32KB

64B block size

4-way/1-way associative

LRU replacement

Unified L2$ 1MB, 64B block size

4-way associative

LRU replacement

Table 5: PDN Model Parameters in Our Ex-

periments

Interconnect TSV

segment length 200µm diameter 10µm

segment resistance 48mΩ aspect ratio 1 : 8

segment capacitance 6.8pF resistance 20mΩ

segment inductance 196pH inductance 25pH

C4 Bump Core

resistance 9.52mΩ size(mm) 3.2× 3.2

inductance 12.65pH mesh grid 16× 16

Table 6: Thermal Model Parameters Used for

Temperature Evaluations

Bulk Si thickness of bottom die 150µm

(next to heat sink)

Bulk Si thickness of other dies 50µm

Cu metal layer thickness 0.42µm

Si thermal conductivity 100.0W/(mK)

Heat sink thermal conductivity 400.0W/(mK)

HotSpot grid resolution 64× 64

Ambient temperature 27�

Architecture parameters of the core used

for the power trace extraction are listed in Ta-

ble 4. The extracted power traces are converted

to current stimuli corresponding to the running

tasks and fed into the PDN solver for PSN cal-

culations. The PDN and TSV parameters used

in our PDN model are listed in Table 5. Core

size used in our experiments is derived from a

45nm 48-core IA-32 processor [37]. The inter-

PTM interconnect model. http://ptm.asu.edu.
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connect parasitics are derived based on 45nm

PTM interconnect model. TSV parasitics are

obtained from [38]. To evaluate the temper-

ature using Hotspot, it requires to obtain the

power trace of the running task. As mentioned

in Subsection 4.1, we firstly use the architecture

level simulation to get the power trace when

a specific task runs on a core. Because the

thermal constant lies within the range of sev-

eral milliseconds which is much larger than the

clock cycle time (within nanosecond range), we

pick the average power for the thermal simu-

lation. The leakage power of idle cores is also

taken into account during the thermal simula-

tion. With these power information and the

Hotspot configuration listed in Table 6, we can

get the temperature distributions on-chip in

each scheduling step.

Two kinds of MPSoCs are used in our eval-

uation. The first one has two tiers and each tier

has 2 × 2 homogeneous cores. The power con-

sumption of the core is assumed to be 4.6W

according to measurements from a prototype

of many-core processor [37]. Another one has 3

tiers and each tier has 3×3 homogeneous cores.

To verify the effectiveness of our proposed al-

gorithm, we implement a thermal-aware task

scheduling algorithm proposed by [11] for com-

parisons.

5.2 PSN Reductions of Our Pro-

posed Scheme Compared with the

State-of-the-art 3D MPSoC Task

Scheduling Algorithm

First, the 2× 2× 2 homogeneous MPSoC

is considered. During the PSN calculations,

the worst case voltage drop during the whole

task scheduling procedure among all power grid

nodes is chosen for comparison. The tempera-

ture constraint is set to 320K. The comparison

results are shown in Fig. 10(a).

As shown in Fig. 10(a), different bench-

marks have significantly different PSN distribu-

tions due to their various switching activities.

Our proposed task scheduling algorithm can re-

duce PSN by 12% on average compared with

the task scheduling scheme proposed in [11].

Then, we schedule tasks on the 3 × 3 × 3

MPSoC and the comparison results are shown

in Fig. 10(b). The power supply noise magni-

tudes on the 3 × 3 × 3 MPSoC are generally

smaller than those of the 2 × 2 × 2 MPSoC

case. It is because more cores are idle during

the scheduling procedure and can provide more

capacitance to suppress the transient PSN. Our

proposed algorithm can reduce as much as 17%

power supply noise compared with the work

in [11] with the same thermal constraint. It

indicates the good scalability of our algorithm.

In the above experiments, we observe that
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Fig. 10: PSN comparisons of our proposed task scheduling algorithm and the thermal aware task

scheduling algorithm [11] given the same thermal constraint. (a) Running tasks on the 2× 2× 2

MPSoC. (b) Running tasks on the 3× 3× 3 MPSoC.

there are at most four tasks running simulta-

neously during the task schedule. Consider-

ing the peak power of each core is 4.6W in

our assumption, the total power consumption

is at most 18.4W. To explore the PSN reduc-

ing potential of the proposed task scheduling

algorithm, we scale the core power by 2X to

evaluate the scalability of our proposed tech-

nique in terms of the power consumption. Fig.

11(a) and Fig. 11(b) plot PSN comparisons for

2×2×2 and 3×3×3 MPSoC cases respectively.

The thermal constraint is still set to 320K. As

shown in Fig. 11, increasing core power induces

more severe PSN. Compared with [11], our pro-

posed method can reduce PSN by 10.2% for the

2 × 2 × 2 MPSoC case and by 14.8% for the

3× 3× 3 MPSoC case.

5.3 Running Performance & Tempera-

ture Comparisons

PSN may not only be detrimental to

the system reliability but also increase criti-

cal path delay variations, which may severely

degrade the task running performance. For ex-

ample, Saint-Laurent and Swaminathan ana-

lyzed the relationship between the power sup-

ply noise and the clock frequency, and claimed

that 63mV PSN variation can slow down

clock frequency by 6.7% at 130nm technology

node [39]. Therefore, the PSN-aware task

scheduling algorithm is beneficial for the task

running performance as well. We use the for-

mula proposed by [39] to model the relationship

between the average PSN and the critical path

delay, i.e.,

D

D0

= 1− k1
∆V

Vdd − Vt
+ k2(

∆V

Vdd − Vt
)2. (10)
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Fig. 11: PSN comparisons of our proposed task scheduling algorithm and the thermal aware task

scheduling algorithm given the same thermal constraint when the core power is doubled. (a)

Running tasks on the 2× 2× 2 MPSoC. (b) Running tasks on the 3× 3× 3 MPSoC.

where Vdd is the nominal supply voltage. Vt is

the transistor threshold voltage. k1 and k2 are

process dependent constants. D0 is the ideal

critical path delay.

The critical path delay variations may de-

grade the processor running frequency and the

task execution time. For example, when the

critical path delay increases by 20% due to

the PSN, the clock frequency would have to

be decreased accordingly to prevent logic er-

rors. Therefore, the task execution time will

increase. In the experiment, according to the

PSN distributions during the task scheduling

procedure, the clock frequency when running

different tasks can be obtained by Eq. (10).

Then, the updated clock frequency is used to

derive the task execution time. Fig. 12 il-

lustrates the final completion time when run-

ning different task graphs with the thermal-

constrained algorithm proposed in [11] and our

proposed algorithm assuming the core power is

9.2W.

As shown in Fig. 12, due to the reduced

PSN, the task completion time also improves

by the proposed task scheduling algorithm. For

the 2× 2× 2 MPSoC case, the task completion

time can be improved by 3.2% on average and

5.5% in maximum. For the 3 × 3 × 3 MPSoC

case, the task completion time can be improved

by 4.4% on average and 7.8% in maximum. The

task completion time of task graphs with 4.6W

core power also shows the similar trend and

is not plotted due to the lack of space. The

above experimental results validate the effec-

tiveness of our proposed algorithm in terms of

the PSN reduction and the running task per-

formance improvement.

The peak temperature comparisons caused
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Table 7: Peak Temperature Comparisons of the Thermal-Aware Task Scheduling Algorithm

and Our Proposed Algorithm (Unit: K)

2× 2× 2 3× 3× 3

Thermal-aware [11] Our method Thermal-aware [11] Our method

auto-indust 309.88 311.36 312.03 316.99

consumer 308.33 310.79 311.2 315.82

networking 309.34 311.58 312.19 316.96

office-automation 306.59 308.71 309.87 314.04

telecomm 313.79 315.08 317.15 320.44

tgff1 313.43 313.87 313.44 318.17

tgff2 310.3 313.87 311.59 315.78

tgff3 311.39 312.68 312.15 316.6

tgff4 309.76 311.75 312.36 317.33

tgff5 312.88 314.31 313.6 318.54

tgff6 311.73 312.39 312.9 317.9

tgff7 311.93 312.13 312.11 316.37

tgff8 310.3 310.56 311.59 315.63
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by different task scheduling techniques are

shown in Table 7. As shown in the table, both

task scheduling methods can meet the 320K

peak tempearture constraint. The thermal-

aware task scheduling can obtain lower peak

temperature while the task scheduling solution

derived by our proposed method can achieve

an optimal trade-off between temperature and

power supply noise.

5.4 Discussion of the Extension to the

Hetergeneous 3D MPSoCs

Although we focus on the homogeneous 3D

MPSoCs in this work, our proposed method

can be easily extended to the heterogeneous

case. For the homogeneous case, the task exe-

cution time is the same even that it runs on

different cores if we do not take PSN effect

into account. Therefore, we set the PSN mag-

nitude as the optimization target for homoge-

neous 3D MPSoCs. Whereas, for the hetero-

geneous case, the same task can have different

power consumptions and execution time on dif-

ferent cores, and the optimization target should

be set as the final execution time considering

the PSN effect. In each task scheduling step, we

need to evaluate the new execution time with

the power supply noise consideration. Due to

the lack of the space, we take this extension as

our future work.

6 Related Work

With the scaling down of power supply

voltage, the noise margin reduces remarkably.

The signal integrity issue is of a great con-

cern for modern VLSI circuit design. Arabi et

al. investigated the power supply noise (PSN)

impact on performance and reliability of SoCs

[40]. The authors observed that the PSN can

affect the timing of critical path and the chip

reliability. Chen et al. proposed a system-

atic technique to predict the PSN distributions

across the chip in the early stage of chip de-

sign, and used it to guide the decoupling capac-

itor insertion [12]. Firouzi et al. formulated the

PSN estimation as a linear programming prob-

lem, and proposed an efficient method to solve

it [41]. All the work above explored the PSN

calculation from the circuit level. Gupta et al.

constructed the power delivery network from

the architecture level, and obtained voltage

variations within CMP when running different

applications, and several hazardous activity se-

quences are identified based on the PSN sim-

ulation [28]. Joseph et al. proposed a voltage

simulation method which used the power trace

as stimuli to the PDN model for voltage simu-

lation [42]. Grochowski et al. proposed a hard-

ware implementation to accelerate the simulat-

ing [43]. Due to TSV parasitics, 3D ICs have

some different properties, such as PSN distribu-
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Fig. 12: Task graph completion time improvements of the proposed task scheduling algorithm

compared with that of the algorithm proposed in [11] under the same thermal constraint (assume

the core power is 9.2W).

tion heterogeneities among layers, vertical PSN

coupling, compared with 2D ICs. Huang et al.

proposed a compact model for 3D power deliv-

ery networks analysis [44]. The model has only

less than 4% errors compared with HSPICE

simulations but with much higher simulation

speed. Healy et al. explored the TSV topol-

ogy impact on the power supply noise for 3D

ICs [45]. Zhang et al. investigated efficient IR

drop calculation for 3D ICs [46]. Their pro-

posed method can speed up simulation by 10×

to 20× compared with the preconditioned con-

jugated gradients method. Todri-Sanial et al.

studied the PDN modeling of 3D ICs with mul-

tiple clock domains [47].

As power density increases, chip temper-

ature becomes another important issue affect-

ing the chip reliability. High temperature not

only degrades the chip performance, but also

makes the material fragile under repeated ther-

mal cyclings [48]. Thermal evaluation and op-

timization gets much attention recently, espe-

cially for 3D IC whose heat removal is more dif-

ficult than the 2D counterpart. Huang et al. ex-

plored thermal modeling for micro-architecture

blocks, and developed Hotspot tool for archi-

tecture level thermal simulation [21]. Shang et

al. claimed that on-chip networks heat dissipa-

tion can not be ignored either. They proposed

a NoC thermal model and the ThermalHerd

technique for online thermal management[49].

Coskun et al. investigated the thermal schedul-

ing policy for MPSoCs [48]. By combining

current temperature profile with past ther-

mal history, the authors proposed a novel OS-

level dynamic thermal management heuristic

algorithm to reduce performance overhead in-

duced by traditional power/thermal manage-
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ment techniques. Jung et al. held the view

point that due to thermal measurement er-

rors and varying application characteristics,

stochastic-based method can model thermal

dissipation more efficiently and effectively com-

pared with previous work [50]. They proposed

the dynamic thermal management for multi-

core system based on Markov decision pro-

cess to maximize performance under the given

temperature constraint. With the emerging of

3D integration technology, heat dissipation be-

comes a great concern for chip designers and re-

quires more efficient and effective thermal mod-

eling methods. Qian et al. proposed an analyti-

cal three-dimensional thermal model for 3D ICs

considering the TSV effect[51]. Hameed et al.

adjusted the core activities at different layers

according to their distances from the heatsink

such that the hotspot will not occur [52]. This

method is combined with DVFS to improve the

chip performance by run-time adaption with

the thermal consideration.

For MPSoCs, task mapping and/or

scheduling is another important research topic.

Some work focuses on improving the perfor-

mance under some constraints such as [53, 54,

55] (thermal constraint), [56] (power aware task

scheduling). On the other hand, increasing

power density inspires the research for energy

minimization, such as [57, 58]. Since task map-

ping/scheduling gets rid of changing the low

level hardware design, it can improve the sys-

tem adaptability for different types of appli-

cations with relative low overheads, and will

become more important with the prevalence of

3D MPSoCs.

7 Conclusions

As transistor integration density increases

continuously, more cores can be fabricated on

a single chip to implement more functionalities

and approach higher energy efficiency. More-

over, with the emergence of 3D integration

technology, many core MPSoCs can be pack-

aged in smaller footprints and achieve higher

performance. Although 3D MPSoCs bring

huge opportunities for high performance sys-

tem design, they also have some challenging

problems. Among them, power supply noise

interactions among different cores and tiers be-

come an imminent issue for consideration dur-

ing the software-hardware co-design. In the

paper, we investigated the PSN optimization

of 3D MPSoCs from the task scheduling per-

spective. To capture PSN accurately and ef-

ficiently, we proposed a framework including

PDN stimuli extraction based on the architec-

ture level simulation, an efficient PDN solver

for PSN calculations and a heuristic algorithm

for task scheduling taking both PSN and ther-
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mal issues into account. Compared with the

state-of-the-art task scheduling algorithm for

3D MPSoCs, our proposed algorithm could re-

duce PSN by 12% on the 2 × 2 × 2 3D MP-

SoC and by 14% on the 3× 3× 3 3D MPSoC.

The execution time can also be improved by

5.5% and 7.8% respectively due to the reduced

PSN magnitudes. Moreover, the experimental

results also showed the good scalability of our

proposed algorithm as power consumptions of

3D MPSoCs increase.

References

[1] Borkar S, Chien A A. The future of micro-

processors. ACM Commun, 2011, 54(6):

46-53.

[2] Martin G. Overview of the MPSoC design

challenge. In Proc. the 43rd Design Au-

tomation Conference, July 2006, pp.274-

279.

[3] Todri-Sanial A, Tan C S. Physical Design

for 3D Integrated Circuits. Boca Raton:

CRC Press, 2015.

[4] Tendler J M, Dodson J S, Fields J S, Le

H, Sinharoy B. POWER4 system microar-

chitecture. IBM Journal of Research and

Development, 2010, 46(1): 5-25.

[5] Todri A, Marek-Sadowska M, Kozhaya J.

Power supply noise aware workload assign-

ment for multi-core systems In Proc. the

27th IEEE/ACM International Confer-

ence on Computer-Aided Design, Novem-

ber 2008, pp.330-337.

[6] Wang Y, Xu J, Xu Y, et al. Power Gating

Aware Task Scheduling in MPSoC. IEEE

Transactions on Very Large Scale Integra-

tion Systems, 2011, 19(10): 1801-1812.

[7] Huang G, Bakir M, Naeemi A, Chen H,

Meindl J D. Power delivery for 3D chip

stacks: Physical modeling and design im-

plication. In Proc. the 16th IEEE Topi-

cal Meeting on Electrical Performance of

Electronic Packaging and Systems , Octo-

ber 2007, pp.205-208.

[8] Sabry M M, Sridhar A, Atienza D, Temiz

Y, Leblebici Y, Szczukiewicz S, Borhani

N, Thome J R, Brunschwiler T, Michel

B. Towards thermally-aware design of 3D

MPSoCs with inter-tier cooling. In Proc.

the 14rh Design, Automation and Test in

Europe Conference and Exhibition, March

2011, pp.1466-1471.

[9] Kufluoglu H, Alam M A. A unified mod-

eling of NBTI and hot carrier injection

for MOSFET reliability. In Proc. the 7th



28 J. Comput. Sci. & Technol., Mar.. 2017, ,

International Workshop on Computational

Electronics, October 2004, pp.28-29.

[10] Micheli G D. Synthesis and Optimization

of Digital Circuits. Hightstown: McGraw-

Hill Higher Education, 1994.

[11] Chantem T, Dick R P, Hu X S.

Temperature-Aware Scheduling and As-

signment for Hard Real-Time Applications

on MPSoCs. IEEE Transactions on Very

Large Scale Integration Systems, 2011,

19(10): 1884-1897.

[12] Chen H H, Ling D D. Power Supply

Noise Analysis Methodology For Deep-

submicron Vlsi Chip Design. In Proc. the

34th Design Automation Conference ,June

1997, pp.638-643.

[13] Zhuo C, Wilke G, Chakraborty R, et

al. A silicon-validated methodology for

power delivery modeling and simulation.

In Proc. the 31st IEEE/ACM Interna-

tional Conference on Computer-Aided De-

sign, Novmber 2012, pp.255-262.

[14] Khan N H, Alam S M, Hassoun S. Power

Delivery Design for 3-D ICs Using Differ-

ent Through-Silicon Via (TSV) Technolo-

gies. IEEE Transactions on Very Large

Scale Integration Systems, 2011, 19(4):

647-658.

[15] Healy M B, Lim S K. Power delivery sys-

tem architecture for many-tier 3D sys-

tems. In Proc. the 60th Electronic Com-

ponents and Technology Conference, June

2010, pp.1682-1688.

[16] Conn Andrew R, Haring A, Visweswariah

C. Noise considerations in circuit opti-

mization. In Proc. the 17 th Computer-

Aided Design of Integrated Circuits and

Systems, 1998, 19(6): 679-690.

[17] Sun C, Shang L, Dick R P. Three-

dimensional multiprocessor system-on-

chip thermal optimization. In Proc.

the 24th IEEE/ACM/IFIP International

Conference on Hardware/software Code-

sign and System Synthesis, September

2007, pp.117-122.

[18] Huang W, Stan M R, Skadron K. Param-

eterized physical compact thermal model-

ing. IEEE Transactions on Components &

Packaging Technologies, 2012, 28(4): 615-

622.

[19] Todri A, Kundu S, Girard P, et al. A

study of tapered 3-D TSVs for power

and thermal integrity. IEEE Transactions

on Very Large Scale Integration Systems,

2013, 21(2): 306-319.



Power Supply Noise Aware Task Scheduling. 29

[20] Zhou X, Yang J, Xu Y, Zhang Y, Zhao

J. Thermal-Aware Task Scheduling for 3D

Multicore Processors. IEEE Transactions

on Parallel & Distributed Systems, 2010,

21(1): 60-71.

[21] Huang W, Ghosh S, Velusamy S, Sankara-

narayanan K, Skadron K, Stan M R. IEEE

Transactions on Very Large Scale Integra-

tion Systems, 2006, 14(5): 501-513.

[22] Dick R P, Rhodes D L, Wolf W. TGFF:

task graphs for free. In Proc. the 15th In-

ternational Hardware/Software Codesign

and System Synthesis, March 1998, pp.97-

101.

[23] Xu Z, Gu X, Scheuermann M, Rose K,

Webb B C, Knickerbocker J U, Lu J Q.

Modeling of power delivery into 3D chips

on silicon interposer. In Proc. the 62nd

IEEE Electronic Components and Tech-

nology Conference, June 2012, pp.683-689.

[24] Zhang R, Wang K, Meyer B H, Stan M

R, Skadron K. Architecture implications

of pads as a scarce resource. In Proc. the

41st International Symposium on Com-

puter Architecuture, June 2014, pp.373-

384.

[25] Brooks D, Tiwari V, Martonosi M.

Wattch: A Framework for Architectural-

Level Power Analysis and Optimizations.

In Proc. the 27th IEEE/ACM Interna-

tional Symposium on Computer Architec-

ture, June 2000, pp.83-94.

[26] Sherwood T, Perelman E, Hamerly G,

Calder B. Automatically characterizing

large scale program behavior. In Proc. the

7th IEEE/ACM International Conference

on Architectural Support for Programming

Languages and Operating Systems, Octo-

ber 2002, pp.45-57.

[27] Cheng Y, Todri-Sanial A, Bosio A, Dilillo

L, Girard P, Virazel A. Power supply

noise-aware workload assignments for ho-

mogeneous 3D MPSoCs with thermal con-

sideration. In Proc. the 19th IEEE/ACM

Asia and South Pacific Design Automa-

tion Conference, January 2014, pp.544-

549.

[28] Gupta M S, Oatley J L, Joseph R, Wei

G Y, Brooks D M. Understanding volt-

age variations in chip multiprocessors us-

ing a distributed power-delivery network.

In Proc. the 10th Design, Automation and

Test in Europe Conference and Exhibition,

April 2007, pp.624-629.

[29] Nassif S R, Kozhaya J N. Fast Power Grid

Simulation. In Proc. the 37th Design Au-



30 J. Comput. Sci. & Technol., Mar.. 2017, ,

tomation Conference, June 2000, pp.156-

161.

[30] Su H, Liu F, Devgan A, Acar E, Nassif

S. Full chip leakage estimation considering

power supply and temperature variations.

In Proc. the 12nd International Sympo-

sium on Low Power Electronics and De-

sign, August 2007, pp.78-83.

[31] Chen T H, Chen C P. Efficient large-scale

power grid analysis based on precondi-

tioned krylov-subspace iterative methods.

In the 38th Design Automation Confer-

ence, June 2001, pp.559-562.

[32] Li F, Nicopoulos C, Richardson T, Xie Y,

Narayanan V, Kandemir M. Design and

Management of 3D Chip Multiprocessors

Using Network-in-Memory. In Proc. the

33rd International Symposium on Com-

puter Architecture, June 2006, pp.130-141.

[33] Kwok Y, Ahmad I. Static Task Schedul-

ing And Allocation Algorithms For Scal-

able Parallel And Distributed Systems:

Classification And Performance Compar-

ison. Annual Review Of Scalable Comput-

ing, 2015, pp.107-227.

[34] Choi J, Cher C Y, Franke H, Hamann

H, Weger A, Bose P. Thermal-aware task

scheduling at the system software level. In

Proc. the 12nd International Symposium

on Low Power Electronics and Design, Au-

gust 2007, pp.213-218.

[35] Huang L, Yuan F, Xu Q. Lifetime

reliability-aware task allocation and

scheduling for MPSoC platforms. In Proc.

the 12nd Design, Automation & Test in

Europe Conference and Exhibition, April

2009, pp.51-56.

[36] Cheng Y, Zhang L, Han Y, Li X. Thermal-

constrained task allocation for intercon-

nect energy reduction in 3-D homogeneous

MPSoCs. IEEE Transactions on Very

Large Scale Integration Systems, 2013,

21(2): 239-249.

[37] Howard J, Dighe S, Hoskote Y, Vangal

S, Finan D, Ruhl G, Jenkins D, Wilson

H, Borkar N, Schrom G, Pailet F, Jain

S, Jacob T, Yada S, Marella S, Salihun-

dam P, Erraguntla V, Konow M, Riepen

M, Droege G, Lindemann J, Gries M, Apel

T, Henriss K, Lund-Larsen T, Steibl S,

Borkar S, De V, Van R, Wijngaart De-

rand, Mattson. A 48-Core IA-32 message-

passing processor with DVFS in 45nm

CMOS. In Proc. the 57th International

Solid-State Circuits Conference, February

2010, pp.108-109.



Power Supply Noise Aware Task Scheduling. 31

[38] Cadix L, Rousseau M, Fuchs C, Leduc P,

Thuaire A, Farhane R E, Chaabouni H,

Anciant R, Huguenin J L, Coudrain P,

Farcy A, Bermond C, Sillon N, Flchet B,

Ancey P. Integration and frequency depen-

dent electrical modeling of Through Sili-

con Vias (TSV) for high density 3DICs.

In Proc. the 14th International Inter-

connect Technology Conference, January

2010, pp.1-3.

[39] Saint-Laurent M, Swaminathan M. Im-

pact of power-supply noise on tim-

ing in high-frequency microprocessors.

IEEE Transactions on Advanced Packag-

ing, 2004, 27(1): 135-144.

[40] Arabi K, Saleh R, Meng X. Power Supply

Noise in SoCs: Metrics, Management, and

Measurement. Design & Test of Comput-

ers , 2007, 24(3): 236-244.

[41] Firouzi F, Kiamehr S, Tahoori M B.

Modeling and estimation of power sup-

ply noise using linear programming. In

Proc. the 30th International Conference

on Computer-Aided Design, October 2011,

pp.537-542.

[42] Joseph R, Brooks D, Martonosi M. Con-

trol techniques to eliminate voltage emer-

gencies in high performance processors. In

Proc. the 9th International Symposium on

High-Performance Computer Architecture,

February 2003, pp.79-90.

[43] Grochowski E, Ayers D, Tiwari V. Mi-

croarchitectural simulation and control of

di/dt-induced power supply voltage varia-

tion. In Proc. the 8th High-Performance

Computer Architecture, February 2002,

pp.7-16.

[44] Huang G, Sekar D C, Naeemi A, et al.

Compact Physical Models for Power Sup-

ply Noise and Chip/Package Co-Design

of Gigascale Integration. In Proc. the

58th Electronic Components and Technol-

ogy Conference, May 2008, pp.1659-1666.

[45] Healy M B, Lim S K. Distributed TSV

Topology for 3-D Power-Supply Networks.

IEEE Transactions on Very Large Scale

Integration Systems, 2012, 20(11): 2066-

2079.

[46] Zhang C, Pavlidis V F, Micheli G D. Volt-

age propagation method for 3-D power

grid analysis. In Proc. the 15th Design,

Automation & Test in Europe Conference

& Exhibition, April 2012, pp.844-847.

[47] Todri-Sanial A, Cheng Y. A Study of 3-

D Power Delivery Networks With Mul-

tiple Clock Domains. IEEE Transactions



32 J. Comput. Sci. & Technol., Mar.. 2017, ,

on Very Large Scale Integration Systems,

2016, 24(11): 3218-3231.

[48] Coskun A K, Rosing T S, Whisnant K.

Temperature Aware Task Scheduling in

MPSoCs. In Proc. the 10th Design, Au-

tomation and Test in Europe Conference

and Exhibition, March 2007, pp.1659-

1664.

[49] Shang L, Peh L S, Kumar A, et al. Ther-

mal Modeling, Characterization and Man-

agement of On-Chip Networks. In Proc.

the 37th IEEE/ACM International Sym-

posium on Microarchitecture, December

2004, pp.67-78.

[50] Jung, Hwisung, Rong, et al. Stochastic

modeling of a thermally-managed multi-

core system. In Proc. the 45th Design Au-

tomation Conference, June 2008, pp.728-

733.

[51] Qian L, Zhu Z. Analytical heat trans-

fer model for three-dimensional integrated

circuits incorporating through silicon via

effect - RETRACTED. Micro & Nano Let-

ters, 2012, 7(9): 994-996.

[52] Hameed F, Faruque M A A, Henkel J. Dy-

namic thermal management in 3D multi-

core architecture through run-time adap-

tation. In Proc. the 14th Design, Automa-

tion & Test in Europe Conference & Exhi-

bition, March 2011, pp.1-6.

[53] Coskun A K, Rosing T S, Whisnant K.

Temperature Aware Task Scheduling in

MPSoCs. In Proc. 10th Design, Automa-

tion & Test in Europe Conference & Exhi-

bition., March 2007, pp.1659-1664.

[54] Jayaseelan R, Mitra T. Temperature

aware task sequencing and voltage scal-

ing. In Proc. the 27th IEEE/ACM Interna-

tional Conference on Computer-Aided De-

sign, November 2008, pp.618-623.

[55] Liao C H, Wen C H P, Chakrabarty K. An

online thermal-constrained task scheduler

for 3D multi-core processors. In Proc. the

18th IEEE/ACM Design, Automation &

Test in Europe Conference & Exhibition,

March 2015, pp.351-356.

[56] Momtazpour M, Sanaei E, Goudarzi M.

Power-yield optimization in MPSoC task

scheduling under process variation. In

Proc. the 11st International Symposium

on Quality Electronic Design, March 2010,

pp.747-754.

[57] Hu J, Marculescu R. Energy- and

performance-aware mapping for regular

NoC architectures. IEEE Transactions on



Power Supply Noise Aware Task Scheduling. 33

Computer-Aided Design of Integrated Cir-

cuits and Systems, 2005, 24(4): 551-562.

[58] Ghasemazar M, Pakbaznia E, Pedram

M. Minimizing the power consumption of

a Chip Multiprocessor under an average

throughput constraint. In Proc. the 11st

International Symposium on Quality Elec-

tronic Design, March 2010, pp.362-371.

Yinglin Zhao received

his B.S. degree in computer

science from Xidian Univer-

sity, Xi’an, China, in 2014,

and now is pursuing the mas-

ter degree in electrical en-

gineering at School of Elec-

trical and Information Engi-

neering, Beihang University,

Beijing, China. His research

interests include architecture design and opti-

mization of 3D ICs and non-volatile memory

systems.

Yuanqing Cheng re-

ceived his Ph.D. degree from

the Key Laboratory of Com-

puter System and Archi-

tecture, Institute of Com-

puting Technology, Chinese

Academy of Sciences, Bei-

jing, China. After spending

one year post-doc study at

LIRMM, CNRS, France, he

joined Beihang University, China as an assis-

tant professor. His research interests include

VLSI design for 3D integrated circuits consid-

ering thermal and defect issues, as well as spin-

tronics computing system architecture design.

He is currently an IEEE member and ACM

member.

Jianlei Yang received

the B.S. degree in microelec-

tronics from Xidian Univer-

sity, Xi’an, China, in 2009,

and the Ph.D. degree in com-

puter science and technol-

ogy with Tsinghua Univer-

sity, Beijing, China, in 2014.

Dr. Yang is currently a post-

doctoral researcher with the

Department of Electrical and Computer Engi-

neering, University of Pittsburgh, Pittsburgh,

Pennsylvania, United States. From 2013 to

2014, he was a research intern at Intel Labs

China, Intel Corporation. His current research

interests include numerical algorithms for VLSI

power grid analysis and verification, spintron-

ics and neuromorphic computing. Dr. Yang

was the recipient of the first place on TAU

Power Grid Simulation Contest in 2011, and

the second place on TAU Power Grid Transient



34 J. Comput. Sci. & Technol., Mar.. 2017, ,

Simulation Contest in 2012. He was a recipi-

ent of IEEE ICCD Best Paper Award in 2013,

and ACM GLSVLSI Best Paper Nomination in

2015.

Weisheng Zhao re-

ceived the Ph.D. degree in

physics from the University

of Paris-Sud, France, in 2007.

From 2004 to 2008, he in-

vestigated Spintronic devices

based logic circuits and de-

signed a prototype for hy-

brid Spintronic/CMOS (90

nm) chip in cooperation with

STMicroelectronics. Since 2009, he joined

the CNRS as a tenured research scientist and

his interest includes the hybrid integration of

nano-devices with CMOS circuit and new non-

volatile memory (40 nm technology node and

below) like MRAM circuit and architecture de-

sign. He has authored or co-authored more

than 150 scientific papers (e.g Advanced Ma-

terial, Nature Communications, IEEE Trans-

actions etc.); he is also the principal inventor

of 4 international patents. From 2014, he be-

comes a youth 1000 plan distinguished profes-

sor in Beihang University, Beijing, China, and

the associated editor for IEEE Transactions on

Nanotechnology.

Aida Todri-Sanial re-

ceived the B.S. degree in

electrical engineering from

Bradley University, IL in

2001, the M.S. degree in elec-

trical engineering from Long

Beach State University, CA,

in 2003 and Ph.D. degree in

electrical and computer engi-

neering from the University

of California, Santa Barbara, in 2009. She is

currently a research scientist for French Na-

tional Center of Scientific Research (CNRS) at-

tached to Laboratoire d’Informatique de Robo-

tique et de Micro—lectronique de Montpellier

(LIRMM). Previously she was an RD Engineer

for Fermi National Accelerator Laboratory, IL

where she was the recipient of John Bardeen

Fellow in Engineering in 2009. She has also

held visiting positions at Mentor Graphics, Ca-

dence Design Systems, STMicroelectronics and

IBM TJ Watson Research Center.


