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Abstract Visiting triangles that conform a digital terrain model is a core operation in a number of

fields like animation and video games or generating profiles, cross-sections and contours in civil engineer-

ing. Performing the visit in an efficient manner is an issue specially when the output of the traversal

depends in some way on additional parameters or informations that change over time, for example a

moving point of view.

In this work we report a set of rules such that given a digital terrain model defined over a regular

grid and an arbitrary point outside the terrain, for example a point of view, defines a total back-to-front

order in the set of digital terrain model triangles with respect to the point. The set of rules is minimal,

complete and correct.

To assess how the rules perform, we have implemented a CPU based algorithm for realistically

rendering height fields defined over regular grids. The algorithm does not make use of the z-buffer or

shaders featured by our graphics card. We show how our algorithm is implemented and we show visual

results obtained from synthetic and real data. We further discuss the algorithm performance with respect

to two algorithms: a naive algorithm that visits triangles according to grid indices which does not solve

the hidden line problem, and the z-buffer provided by the graphics card featured by our computer. Our

algorithm allows real time interaction when the point of view arbitrarily moves in 3D space and we show

that its performance is as good as that of the z-buffer graphics card.

Keywords back-to-front ordering, digital terrain models, elevation terrain models, triangle strips, vis-

ibility.

1 Introduction

Digital terrain models (DTM) provide a

topographic model of the earth surface includ-

ing just terrain features and are widely applied

in many fields such as computer graphics, re-
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source management, earth and environmental

sciences, civil and military engineering, survey-

ing and photogrammetry, and interactive 3D

game programming.

Among the requirements that impose

strict efficiency constraints on the algorithms

that traverse DTMs we can find: the need of

encoding large area terrain maps, the ever in-

creasing precision that applications demand,

and the steadily increasing number of DTM

applications that require real-time response.

These requirements clearly make brute force

traversal unpractical.

In this work we report a minimal, com-

plete and correct set of visiting rules which de-

fine a back-to-front ordering of triangles in a

coherently triangulated DTM with respect to

an arbitrary point placed outside the terrain,

in what follows called point of view. With the

point of view, we associate an axis-aligned lo-

cal reference framework. Projections on the

XY plane of the local axis and the bisector of

the first and third quadrants define six sectors.

Specific visiting rules for collections of triangles

that project on each sector are then defined.

The set of rules includes rules for uniformly tri-

angulated DTMs and additional rules for fans

of triangles that seamless stitch triangles be-

longing to different levels of detail in level of

detail-based renderings.

We have implemented an algorithm based

on the set of visiting rules defined. The algo-

rithm is simple, does not exploit edge graph-

ics cards rendering technology, say z-buffer or

shaders, and allows for real time interaction

when the viewing position freely moves in 3D

space. The results of our experiments show

that the algorithm performance is as good as

that of the z-buffer of our computer’s video

card.

The manuscript is organized as follows.

Section 2 is devoted to reviewing previous re-

lated work. In Section 3 we describe the topol-

ogy of the triangulation we will use and briefly

justify how the 3D problem boils down to a

2D problem. The set of rules for back-to-front

visiting triangles are defined in Section 4. In

Section 5 we develop a case study where our

rules are applied to realistically rendering three

different DTMs. Here we also detail and dis-

cuss the results of the study. In Section 6

the basic set of visiting rules is generalized

to deal with multi-resolution representations of

terrains. We close with a summary in Section 7.

2 Previous work

A number of techniques have been pro-

posed that deal with simplified representations

of terrains [1]. Here we are interested in

those algorithms developed to take advantage

of the data structures underlying grid surfaces.

Specifically, we focus on surfaces defined as bi-

variate functions computed on a set of regular

grid points and back-to-front visibility order-

ing.

The most widely used approach relies on

the multi-resolution concept. The approach re-

duces the number of triangles or polygons to be

visited according to an adaptive level-of-detail

control that adjusts the terrain tessellation as a

function of the view parameters [2]. However,

the level-of-detail introduces some new pro-

blems that violate the terrain coherence in both

space and time. Spatial coherence is threatened

because of cracks generated along an edge be-
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tween two adjacent regions of different levels of

detail if the region of less details cannot repre-

sent the height at a point where the region of

higher detail can do it. Concerning temporal

coherence, difficulties arise because a tempo-

rally coherent terrain does not rapidly change

over time resulting in the so-called popping ef-

fect. Fixing cracks requires an accurate strat-

egy to define transition regions to guarantee ge-

ometric continuity [3]. Suppressing popping re-

quires specific techniques like geomorphing [4].

Back-to-front ordering was first introduced

in [5]. The ordering is based on the simple ob-

servation that, given a volume grid and a view

plane, for each grid axis there is a traversal di-

rection that visits geometric elements defined

over the grid in order to decrease distance to

the viewing point. Authors of [5] only reported

results for implementations considering ortho-

graphic projections.

The floating-point perimeter algorithm re-

ported in [6] considers nine different regions de-

fined in the viewing plane by four lines, x =

Xmin, x = Xmax, y = Y min, and y = Y max.

With each region we associate an enumeration

that defines a previously computed sequence to

process faces and edges with respect to an ac-

tive perimeter. The algorithm needs to process

sets of edges individually to figure out crossing

points with respect to the floating perimeter.

The paper does not discuss whether the method

supports geometric elements straddling over re-

gions. The work in [7] gives a formal theoretical

basis for the algorithm in [6].

Ordering algorithms for rectilinear grids

have been thoroughly studied in [8]. After

showing that the basic back-to-front approach

as well as a number of variations fails for

perspective projections, a correct perspective

back-to-front ordering is introduced. In [9] au-

thors described an algorithm based on the im-

plicit back-to-front ordering defined by nodes

in an quadtree.

A technique based on predefined configu-

rations to visit DTM triangles is reported in

[10]. Configurations define a back-to-front or-

dering of quad cells. The set of predefined con-

figurations suffers from some drawbacks. For

example, configurations for some quadrants are

redundant and no specific configurations are

given to render quads overlapping more than

one sector. In these conditions, the approach

can lead to quads which are wrongly sorted

thus turning the approach useless.

Concerning rendering of 3D geometric

models, recent work reported in [11] reports

on an approach to traverse static 3D models

in a front-to-back or a back-to-front order with

respect to a set of predefined points placed out-

side the model bounding volume. The 3D space

is partitioned into several subspaces accord-

ing to a set of planes. Then triangles within

each subspace are depth-sorted and stored in a

graph. Finally triangles are visited after iden-

tifying the region where the predefined point

under consideration is placed. The approach

shows a state-of-the-art run-time performance

but at a high cost in the preprocessing step.

3 Terrain Representation

First we fix the topology of the DTM tri-

angulation we shall use. Then we show how

ordering along a straight line 3D triangles on a

DTM can be solved as a 2D problem.
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3.1 Triangulation Topology

We consider terrains represented as DTMs

defined over regular grids along both the X

and Y axis. Every pair of neighbor heights in

a DTM along a sampling axis defines a DTM

edge. A loop of four edges defines a DTM cell.

Each DTM cell is subdivided into two surface

triangles. There are two possible different ways

of subdividing DTM cells as shown in Fig. 1

where triangle vertices are labeled with grid co-

ordinates. In the sequel, we consider the cells

subdivided into triangles as shown in Fig. 1a.

There is nothing essential in the choice but it

has an effect on the resulting set of cell config-

urations needed to properly define a sequence

to traverse the triangles.

(i+ 1, j)

(i, j + 1) (i+ 1, j + 1)

Tj

Ti

(i, j)

(a)

(i+ 1, j)(i, j)

(i, j + 1) (i+ 1, j + 1)

Ti

Tj

(b)

Fig. 1. Projections on the XY plane of two differ-
ent possible triangulations associated with a DTM
cell.

To allow fast processing, compact repre-

sentations and easy traversing [4, 12], we or-

ganize the terrain into squared blocks each

of which consists of a number of tiles. In

the current implementation, blocks are of size

512×512 and tiles of size 64×64. A block is the

basic unit our algorithm considers. The block

under consideration is updated as the point of

view changes. Then tiles in the block are vis-

ited.

3.2 Ordering Triangles Along a Line

Ordering triangles in a DTM over a regular

grid hit by a given straight line takes advantage

of the fact that height fields do not allow ter-

rain overhangs and that a triangle is a convex

shape. In these conditions, it is easy to see that

sorting 3D triangles in the DTM can be solved

by projecting the DTM, the point of view, and

the straight line on the XY plane and consid-

ering the 2D induced problem. Fig. 2 shows a

DTM with a camera placed on it and the pro-

jection on the XY plane of the triangulation.

(a)

(b)

Fig. 2. (a) DTM, the singular point pictured as a
camera and the projection plane. (b) Projections
on the XY plane of: the DTM triangulation, the
point of view, the line of sight and the 3D X and
Y axis.

Let Ti and Tj be two different triangles in

the DTM surface triangulation. Clearly, trian-

gles Ti and Tj share at most one common edge.
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Let O be the point of view and l the line of

sight as illustrated in Fig. 2. Let pi and pj be

the points where the line of sight l intersects

triangles Ti and Tj, respectively.

Let T ′

i , T
′

j, O
′, l′, p′i and p′j denote the par-

allel projections onto the XY plane of the cor-

responding geometric elements in the 3D space.

Clearly T ′

i and T ′

j are convex. Since projections

preserve incidence, p′i is on l′ and belongs to T ′

i

and p′j is on l′ and belongs to T ′

j .

Assume that pi is closer to O than pj and

that the line of sight l through pi and pj is not

parallel to the Z axis. Then clearly, the dis-

tance from p′i to O′ is samller than the distance

from p′j to O′. As considered, DTM triangu-

lations do not allow terrain overhangs. Taking

into account that DTM projected triangles are

convex and do not overlap, triangles in a DTM

triangulation over a regular grid can be sorted

according to distances to the viewing point just

by considering the projection of the 3D geom-

etry onto the XY plane.

4 3D Back-to-Front Ordering

A back-to-front ordering of the triangles

in the DTM defines a closer-than relationship

between triangles with respect to the point of

view. This ordering is at the heart of the algo-

rithms that explore triangulations over regular

grids for fast processing to solve a number of

problems, for example the hidden line problem

for a fixed point of view.

To define a complete and correct set of or-

derings, we split the projection of the DTM tri-

angulation onto the XY plane as follows. Let

O = (x, y) denote the projection of the point of

view, which is not necessarily a grid point. We

define a set of local orthogonal axis, X and Y ,

with origin at the projected point of view, O,

and the axis aligned with the terrain sampling

directions. Now let B be the bisector of the first

and third quadrants defined by axis X and Y .

The triple {X, Y,B} partitions the terrain into

different regions that we call sectors. When the

point of view projects within the triangulation

projection, there are six sectors that we label as

NE1, NE2, NW, SW1, SW2 and SE as shown

in Fig. 3(a). When the projection of the point

of view falls outside the triangulation projec-

tion, the number of sectors is at most three as

depicted in Fig. 3(b).

NE1

NE2

NW

SE

SW2

SW1

(a) (b)

Fig. 3. Sectors defined by a viewing position in a
DTM. (a) Point of view projects within the DTM
projection. (b) Point of view projects outside the
DTM projection.

To describe the set of rules to visit trian-

gles in a tile to guarantee back-to-front order-

ing, we first consider the case where tiles belong

to one sector and then we consider those tiles

which straddle over different sectors.

4.1 Tiles Within One Sector

We associate each sector with a unique and

particular rule that defines the path in which

DTM cells must be visited to guarantee a back-

to-front ordering of triangles. First, let us con-

sider a set of tiles placed within the NW sector
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with respect to the projection of the point of

view and the projection of the viewing frustum,

as depicted in Fig. 4(a).

l

O

NW

(a)

l SE

O

(b)

Fig. 4. Back-to-front orderings for terrain tiles
within sectors. (a) NW sector. (b) SE sector.

Visiting the DTM cells following the red

arrows from top to bottom and from left to

right guarantees a back-to-front ordering for

any line of sight l that starts at the point of

view and runs through the frustum. When the

set of tiles to be visited is within the SE sector

all what we need to do is to follow the path

defined for the NW sector but in a bottom-up

and right-left order as shown in Fig. 4(b).

Now consider terrain tiles within the NE

quadrant. For the DTM cell triangulation we

have chosen, (see Fig. 1(a)), the relationship

”closer than” applied to DTM triangles within

a DTM cell, as discussed in Subsection 3.2, de-

pends on the slope of the line of sight. Assume

that the slope of the line of sight l through

a DTM cell is smaller than 45◦ as shown in

Fig. 5(a). Clearly triangle T ′ is closer to the

point of view than T . However, if the line of

sight is l′ with a slope larger that 45◦, triangle

T is closer to the point of view than triangle T ′.

T

T ′

l′

l

(a)

l

Tk

Tk+1

Tk+2

(b)

l

Tk+1

Tk

Tk+2

(c)

Fig. 5. ”Closer than” relation among triangles in
DTM cells within the NE quadrant.

A similar situation arises when considering

triangles in rows or columns of a triangulated

DTM. If the line of sight slope is smaller than

45◦ the correct back-to-front ordering of trian-

gles is given by visiting the first rows, Fig. 5(b).

When the line of sight slope is larger that 45◦,

triangles are properly scanned visiting cells by

columns, Fig. 5(c). The same rationale applies

to DTM tiles within the SW quadrant. Visiting

rules for sectors SW1 and SW2 are symmetric

with respect to the point of view of rules for

sectors NE1 and NE2. The set of rules to be

applied to tiles in sectors within either NE or

SW quadrants is illustrated in Fig. 6.

NE1

(a)

NE2

(b)

SW1

(c)

SW2

(d)

Fig. 6. Sorting triangles within the NE and SW
quadrants. (a) NE1 sector. (b) NE2 sector. (c)
SW1 sector. d) SW2 sector.

When the projection of the point of view

falls outside the triangulation projection, some

of the sectors discussed above do not appear

on the projection plane (see Fig. 3(b) for exam-

ple). However, the rules for visiting triangles in

tiles within sectors described above still apply.
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4.2 Tiles Straddling Over Sectors

In general, frustum angles are smaller than

90◦. Thus the projection of the frustum onto

the XY plane straddles at most over three dif-

ferent sectors. For a field of view on the X

and Y axis of 60◦, Fig. 7 shows the projected

frustum as a triangle in dashed lines when the

viewing position projection falls within the ter-

rain projection.

(a) (b) (c)

Fig. 7. Number of sectors overlapped by the field
of view. (a) One sector. (b) Two sectors. (c)
Three sectors.

When triangles in a DTM tile straddle over

two or more sectors, an approach to solving the

triangles ordering would consist in two steps.

First, one could compute the set of triangles in

the tile within each terrain sector overlapping

the field of vision. Then we could apply the

corresponding visiting rule defined in Subsec-

tion 4.1 to each set of triangles within a sector.

However considering the terrain tile as the unit

to be visited leads to a simpler approach.

$NE1$

SE

NW

SW1

NW NE2 SESW2

Fig. 8. Sectors involved in the ordering when tiles
straddle over X and Y axis. The viewing point
projection is outside the tile.

In what follows we shall call configuration

the set of regions induced on a tile by the view-

ing position O, the local X and Y axis and the

bisector B as depicted in Fig. 8 and Fig. 9.

(a)

(b)

Fig. 9. Sectors involved in the ordering when tiles
straddle over bisector B. (a) The point of view is
projected outside the tile. (b) The point of view is
projected within the tile.

In our approach, when triangles in a DTM

tile straddle over two or more sectors, we first

classify tiles according to the tile configuration.

Then we define specific rules to visit triangles

within each region in the configuration. We dis-

tinguish two situations depending on whether

the projection of the point of view is outside

or inside the tile. Then, within each family we

consider different configurations depending on

the geometry of the regions.

Terrain tiles intersected by just the localX

or Y axis result in four possible types of regions

shown in Fig. 8. Triangles within these tiles

have in general vertices that belong to differ-

ent sectors. Taking into account that triangles

in these cells are trivially ordered and that the

precision of the DTM representation is given by
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the triangle size, we coherently assign them to

one of the two neighboring sectors and trian-

gles are sorted according to the configuration

specific for each sector.

When the bisector B intersects the terrain

tile there are 16 different possible sector con-

figurations shown in Fig. 9. The two rows at

the top correspond to configurations where the

point of view is projected outside the tile. The

two rows at the bottom include configurations

where the point of view is projected within the

tile. Now sorting triangles in each sector is a

little bit more complex.

B

22

6

26

32

20

27 23 21 2

28 24 1

29

31

30 5 3

4

11 9 7

810

19
17 15 13

141618

25

12

Fig. 10. Tile intersected by bisector B in the first
quadrant. Pairs of triangles (22, 6), (26, 12), and
(32, 20) in cells intersected by the bisector are in-
correctly sorted.

To illustrate the situation, consider a tile

in the NE quadrant crossed by the bisector B

as depicted in Fig. 10 and assume that trian-

gles are labeled according to the sequence gen-

erated by the back-to-front configuration asso-

ciated with the NE1 sector. Assume that trian-

gles labeled 2, 6, 12 and 20 are assigned to the

NE1 sector while triangles labeled 22, 26 and

32 are assigned to the NE2 sector. Then ac-

cording to what has been said in Subsection 4.1

and illustrated in Fig. 5, pairs of triangles (22,

6), (26, 12) and, (32, 20) are incorrectly sorted.

Notice that labeling triangles according to the

back-to-front ordering associated with the NE2

sector just would yield the symmetric incorrect

result.

A way to solve the problem would be to ex-

clude from the ordering those triangles in the

cells intersected by the bisector and sort them

on their own. But this would preclude from

defining convenient data structures such as tri-

angle strips. Thus, we look for a different ap-

proach by considering rectangular subregions

defined by the X and Y axis and the bisector

B in the terrain tile.

X

R3

R4

B

R2

R1

(a)

B

R3

R1

R4

(b)

Fig. 11. Tiles intersected by bisector B in the
first quadrant. a) Bisector intersects tile bound-
ary at left and top edges. b) Bisector intersects
tile boundary at bottom and right edges.

First we consider the case where the bisec-

tor B intersects the terrain tile boundary at the

left and top edges as depicted in Fig. 11(a) for

the NE quadrant. Here we group DTM cells

into subregions labeled R1, R2, R3 and R4 re-

spectivelly. Each of the subregions R1, R2 and

R3 is fully within a different sector. Therefore

triangles in each of them are sorted applying

the specific already defined back-to-front order-

ing, that is, the ordering associated with the SE

sector for subregion R1 and the ordering asso-

ciated with sector NE1 for subregions R2 and

R3.
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Subregion R4 is always squared and we de-

fine a specific back-to-front visiting rule for the

triangles in it, say the NE41 rule. The visit

starts in triangles in the column of cells with

the largest column grid index within the lower

side of R4 with respect to the bisector. Then

triangles in the terrain row with the largest

row grid index within the upper side of R4 and

not yet visited are considered. Successive strip

triangles are sorted by alternatively visiting

columns and rows of terrain cells. Fig. 12 shows

the NE41 visiting rule and the correct back-to-

front ordering of triangles resulted from apply-

ing the rule to the set of triangles in Fig. 10.

B

(a)

B

9

16

21

29

32

14 12 10 2

13 11 1

29

30

15 3

4

25 17 5

618

31
27 19 7

82028

22

26

23

(b)

Fig. 12. Tiles intersected by bisector B in the first
quadrant. (a) NE41 ordering rule. (b) Resulting
correct back-to-front ordering of triangles.

SW42NE41 NE42 SW41

k

k + 1

k + 1

k

k

k + 1

k + 1

k

(a) (b) (c) (d)

Fig. 13. Sorting rules for subsectors intersected by
the bisector B. (a), (b) Sequences for alternatively
traversing row triangle strips. (c), (d) Sequences
for alternatively traversing column triangle strips.

When the bisector B intersects the tile

boundary at the bottom edge and at the edge

on the right side, the terrain tile is subdivided

into regions R1, R2 and R4 (see Fig. 10(b)).

Now columns and rows interchange their roles

with respect to those played in the ordering for

the NE41 subsector. The ordering for the NE42

subsector is shown in Fig. 13(b).

A similar rationale allows to define rules

for subsectors SW41 and SW42 originated in

the quadrant SW by the bisector B, illustrated

in Fig. 13(b) and Fig. 13(c). Notice that these

rules are symmetric with respect to the point of

view of those given for NE41 and NE42 subsec-

tors. Back-to-front visiting rules for triangles in

tiles intersected by the bisector are illustrated

in Fig. 13 where triangles in the strip labeled

k+1 are closer to the point of view than those

in the strip labeled k.

In conclusion, our approach includes a to-

tal of 10 different back-to-front rules to visit

triangles in a triangulated DTM. Six rules cor-

respond to tiles that are projected within a sin-

gle terrain sector. Four rules are associated

with tiles whose projections straddle over more

than one terrain sector. On the one hand, we

have considered all the possible tile-terrain sec-

tor combinations and thus the set of visiting

rules is complete. On the other hand, no rule

in the set can be reduced to a combination of

other orderings in this set; therefore the set is

minimal. Since the set of rules always sort the

triangles in the terrain correctly, the resulting

set of rules is correct.

5 Case Study

Based on the back-to-front ordering strat-

egy using the rules described in Section 4 we

have implemented an algorithm to realistically

render triangulated DTMs. Fig. 14 illustrates
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conceptually how our algorithm works. Let us

consider a terrain with orthographic projection

onto the XY plane as shown in Fig. 14(a) and

assume that the point of view is such that tiles

depicted in grey are the projections of the X

and Y local axis and bisector B.

To render triangles in a tile, for example

the tile selected in Fig. 14(b), the algorithm

identifies the sectors defined on the tile and

the set of triangles in each sector as shown in

Fig. 14(c). Then triangles within each sector

are rendered by visiting them according to the

specific rule. The result is shown in Fig. 14(d).

(a) (b)

(c) (d)

Fig. 14. Axis and bisector project on tiles in grey
color. (a) Synthetic terrain viewed from the top.
(b) Selecting a tile to be rendered. (c) Regions
defined on the selected tile. (d) Rendered terrain.

Pseudo-code for the algorithm is listed in

Algorithm 1. We assume that the algorithm is

fed with the set of terrain tiles to be rendered

which have been properly selected in the DTM

model, the point of view O, the line of sight L

and the culling quadtree depth D. The output

is the rendered terrain.

The algorithm has two main parts: data

initialization and rendering. In the data ini-

tialization part, the algorithm first organizes

the projection onto the set of terrain tiles on

the XY plane to be rendered in a uniform

depth quadtree. Terrain tiles included in each

quadtree node are recursively visited follow-

ing a standard back-to-front quadtree order-

ing [13]. Tiles placed outside the viewing frus-

tum are removed using the quadtree to speed

up the culling process.

Then for each remaining tile the specific

ordering rule is identified according to the ter-

rain sector it belongs to. If the tile is included

within a unique terrain sector, triangles in it

are visited and rendered. When the tile strad-

dles over more than one terrain sector, the tile

is split according to the specific configuration

determined by the axis and bisector on the tile

boundary as shown in Fig. 8. The splitting

algorithm associates with each tile fragment a

visiting rule. Then triangles in each tile frag-

ment are visited and rendered.

5.1 Results and Discussion

To compare and assess the performance of

the algorithm described, we have implemented

two extra algorithms. One is a DTM rendering

algorithm using the standard z-buffer provided

by the graphics card at hand. The other just

renders triangles in tiles always using the NE

rule. Clearly, this algorithm does not solve the

hidden-surface problem but, as the experiments

show, it yields the highest rendering frame rate

among the tested algorithms. It is used as a

reference and we shall refer to it as the naive al-

gorithm.
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Algorithm 1: Displaying a DTM by Visiting Triangles in a Back-to-Front Order

input : DTM : a block of terrain tiles
O: viewing point
L: line of sight
D: quadtree depth

output: A render of the DTM

Q = quadtree(DTM,D)
CT = tilesCulling(Q,O, L)
for each tile T in CT do

R = identifyV isitingRule(T,O, L)
if R ∈ {NE1, NE2, NW, SW1, SW2, SE} then

renderT ile(T,R)
else

S = splitT ile(T,O, L)
for each fragment S.F in S do

renderFragment(S.F, S.R)
end

end

end

The experiments have been conducted on

a laptop Pentium Intel Core i7 at 2.20 GHz,

with 8GB RAM, featuring an AMD Radeon

HD6750M graphics card with 1GB running Vi-

sual Studio 2010 under Windows 7. The graph-

ics API used is OpenGL and the GLUT library

is used for events and window management.

The benchmark consists of in three differ-

ent terrains shown in Fig. 15 represented as

digital elevation models of height fields sam-

pled on a regular grid aligned with the X and

Y terrain axis. The terrain in Fig. 15(a) is a

synthetic terrain. Fig. 15(b) is a section of the

Grand Canyon carved by the Colorado River in

Arizona (USA).1 Fig. 15(c) shows Mount Ru-

apehu and Mount Ngauruhoe in New Zealand.2

For each terrain in the benchmark, we con-

sider two different series of experiments. In one

series, the point of view is static and in the

other series the point of view moves along an

arbitrary 3D path. For each case, we test three

different terrain resolutions with 512 × 512,

1024 × 1024 and 2048 × 2048 uniformly dis-

tributed grid points respectively. For the lowest

and middle resolutions, eight different quadtree

subdivision depths are considered. Due to the

limited available storage space, the maximum

quadtree depth tested for the highest resolution

case is 7.

Figs. 16 and 17 plot the number of frames

per second rendered for each grid resolution

and quadtree depth by the naive algorithm, the

graphics card z-buffer algorithm, and our ap-

1 US Geological Survey. Grand Canyon, USA. http://www.usgs.gov.
2 Koordinates. Mount Ruapehu and Mount Ngauruhoe, New Zealand. https://koordinates.com.
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(a) (b) (c)

Fig. 15. Benchmark terrain models. (a) Synthetic landscape. (b) Grand Canyon, Colorado River (USA).
(c) Mount Ruapehu and Mount Ngauruhoe (New Zealand).

(a) (b) (c)

Fig. 16. Frame rate for static point of view versus quadtree depth. Height points grid of (a) 512 × 512.
(b) 1024 × 1024. (c) 2048 × 2048.

(a) (b) (c)

Fig. 17. Moving point of view. Frame rate versus quadtree depth. Height points grid of (a) 512 × 512.
(b) 1024 × 1024. (c) 2048 × 2048.
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proach respectively.

For the static point of view and 512× 512

and 1024 × 1024 terrain precisions, plots of

frame rates follow the same pattern. For small

quadtree depths, curves show a plateau where

the number of frames per second rendered is

almost constant. Then the frame rate drops

off sharply. As expected, the naive algorithm

always performs better than both the graph-

ics card z-buffer and our algorithm. In general,

our algorithm performs as well as the graphics

card z-buffer.

When the point of view arbitrarily moves

in 3D space, the number of frames per second

rendered for the terrain precisions considered

shows patterns consistent with those yielded

for the static point of view. as illustrated in

Fig. 17. The drop off also appears for quadtree

depths of about 6 and the rationale given for

the static point of view also applies. For small

quadtree depths, our approach always performs

worse than the graphics card z-buffer. How-

ever, the performance of our approach steadily

improves with the increase of quadtree depth.

When the quadtree depth reaches a value of 4,

the frame rate reaches the plateau where the

number of frames per second rendered by our

algorithm is equal to that yielded by the graph-

ics card z-buffer.

6 DTMs with Level of Detail

Visiting triangles of large DTMs with high

resolution is a challenging problem. Conse-

quently, a number of algorithms have been de-

veloped that just visit simplified representa-

tions of terrains [1].

Multi-resolution terrain models provide ef-

ficient mechanisms to represent and manipu-

late DTM by optimizing the tradeoff between

complexity and accuracy of representation. In

level of detail multi-resolution DTM simplifica-

tion schemes, terrain regions close to the point

of view are approximated more accurately than

regions that are far away. The reduction of the

number of triangles to be visited is in general

a significant part of the triangles in the DTM.

Fig. 18. Neighboring tiles with different levels of
detail and stitching triangle fans.

We adopt the multi-resolution level of de-

tail approach reported in [14] applied, for ex-

ample, in [15]. In this work the level of detail of

two neighboring terrain tiles can differ at most

in one level. Geometry gaps at common edges

of tiles with different levels of detail are avoided

by changing the connectivity of height points in

the higher detail tile and building a stitching

fan of triangles.

Fig. 18 shows the four possible cases that

arise in neighboring tiles of 5×5 height points.

Note that stitching fans have been defined to

agree with the topology of the underlying tri-

angulation. Height points marked with a small

filled circle in Fig. 18 are still part of the trian-

gulation but they do not define any triangle to

be visited.
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Fig. 19. Visiting sequence for triangles in a stitch-
ing fan located within viewing sector NE2.

To deal with different levels of detail, we

need to define the ordering to visit the triangles

in each stitching fan. Since there are four pos-

sible tile neighborhoods and each of them can

be found within each terrain sector, we have to

consider 24 cases. Fig. 19 shows the rules to

visit triangles in the stitching fan according to

decreasing distances to the point of view along

the line of sight when the fan is located within

viewing sector NE2. Labels in triangles define

the visiting sequence. Similar rules have been

defined for stitching fans located in NW, SW1

and SW2 terrain sectors.

3 2 2
l 1

l

31

(a)

1 2

1

l

l

32

3

(b)

Fig. 20. Visiting sequences depend on how the line
of sight intersect the stitching fan. (a) NE1 terrain
sector. (b) SW1 terrain sector.

When stitching fans are located in sectors

NE1 and SW1, there are two neighborhoods

that require two different orderings depending

on how the line of sight intersects the stitch-

ing fan. Fig. 20 depicts the orderings for these

cases. The slope of the line of sight l for the

NE1 sector is in the range [0, 45◦] while for the

SE1 sector the slope is in [180◦, 225◦]. The row

at the top includes the orderings for the NE1

terrain sector while the bottom row shows the

orderings for the SW1 terrain sector.

7 Conclusions

Fast traversing of triangles in a DTM over

a regular grid is a challenging problem in a

number of fields like animation, video games

and civil engineering applications.

In this paper we provided a complete and

correct set of rules that define a back-to-front

order according to distances to a point of view.

The set includes six rules for terrain tiles the

projection of which falls within one of the six

sectors defined on the projection plane by the

point of view and the local set of axis plus four

rules to visit triangles in tiles straddling over

different terrain sectors. In addition, we pro-

vide rules to visit fans of triangles that seam-

lessly stitch different levels of triangulations

when a level of detail approach is applied to

visit triangles in the DTM.

As a proof of concept, we have imple-

mented an algorithm to realistically render

DTMs defined over regular grids based on the

described set of rules. To assess and compare

the performance of our approach, we imple-

mented two additional algorithms: a naive al-

gorithm to render DTM models, and the other

one using the native z-buffer offered by the

available graphics card. Experimental results

showed that in all cases our approach per-

formed as well as the naive algorithm which

does not solve the hidden line problem. For
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a static point of view, our approach performs

as well as the native z-buffer algorithm. When

the point of view moved along an arbitrary 3D

path the performance of our approach depends

on the quadtree depth used to organize the set

of tiles to be rendered. Frame rate plots show

a plateau for quadtree depths ranging from 3

to 6. Frame rates yielded by our implementa-

tion compare to those yielded by the z-buffer.

Currently we are trying to find a rationale to

explain why the algorithm performance plateau

shows just for these quadtree depths.

The new algorithm described is easy to

implement and experimental results show that

it is robust and supports real time interaction

without exploiting cutting edge graphics cards

technology. The approach does not suffer from

popping or cracking effects.

The visiting rules described were defined

using the specific DTM triangulation chosen

in Section 3 and illustrated in Fig. 1(a). If

the triangulation of interest is the one shown

in Fig. 1(b), the path to visit triangles that

project on tile rows or columns in each rule

should be reversed.

The approach described can be applied to

visit triangles in a front-to-back order. All

what is needed is to reverse the whole path de-

scribed by each rule.
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