Skip to main content
Log in

Defocus Hyperspectral Image Deblurring with Adaptive Reference Image and Scale Map

  • Regular Paper
  • Published:
Journal of Computer Science and Technology Aims and scope Submit manuscript

Abstract

Defocus blur is one of the primary problems among hyperspectral imaging systems equipped with simple lenses. Most of the previous deblurring methods focus on how to utilize structure information of a single channel, while ignoring the characteristics of hyperspectral images. In this work, we analyze the correlations and differences among spectral channels, and propose a deblurring framework for defocus hyperspectral images. First, we divide the hyperspectral image channels into two sets, and the set with less blur is treated as a group of spectral bases. Then, according to the inherent correlations of spectral channels, a reference image can be derived from the spectral bases to guide the restoration of blurry channels. Finally, considering the disagreement between the reference image and the ground truth, a scale map based on gradient similarity is introduced as a prior in the deblurring framework. The experimental results on public dataset demonstrate that the proposed method outperforms several image deblurring methods in both visual effect and quality metrics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Haboudane D, Miller J R, Pattey E et al. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sensing of Environment, 2004, 90(3): 337-352.

    Article  Google Scholar 

  2. Martin M E, Wabuyele M B, Chen K et al. Development of an advanced hyperspectral imaging (HSI) system with applications for cancer detection. Annals of Biomedical Engineering, 2006, 34(6): 1061-1068.

    Article  Google Scholar 

  3. Bioucas-Dias J M, Plaza A, Camps-Valls G et al. Hyperspectral remote sensing data analysis and future challenges. IEEE Geoscience and Remote Sensing Magazine, 2013, 1(2): 6-36.

    Article  Google Scholar 

  4. Weiner N. Extrapolation, Interpolation, and Smoothing of Stationary Time Series: With Engineering Applications. MIT Press, 1964.

  5. Richardson W H. Bayesian-based iterative method of image restoration. Journal of the Optical Society of America, 1972, 62(1): 55-59.

    Article  Google Scholar 

  6. Fergus R, Singh B, Hertzmann A et al. Removing camera shake from a single photograph. ACM Transactions on Graphics, 2006, 25(3): 787-794.

    Article  MATH  Google Scholar 

  7. Levin A, Fergus R, Durand F et al. Image and depth from a conventional camera with a coded aperture. ACM Transactions on Graphics, 2007, 26(3): Article No. 70.

    Article  Google Scholar 

  8. Jia J. Single image motion deblurring using transparency. In Proc. the 2017 IEEE Computer Society Conference on-Computer Vision and Pattern Recognition, June 2007, Article No. 51.

  9. Shan Q, Jia J, Agarwala A. High-quality motion deblurring from a single image. ACM Transactions on Graphics, 2008, 27(3): Article No. 73.

    Article  Google Scholar 

  10. Xu L, Jia J. Two-phase kernel estimation for robust motion deblurring. In Proc. the 11th European Conference on Computer Vision, September 2010, pp.157-170.

  11. Dabov K, Foi A, Katkovnik V et al. Image restoration by sparse 3D transform-domain collaborative filtering. In SPIE Proceedings Vol. 6812: Image Processing: Algorithms and Systems VI, Astola J T, Egiazarian K O, Dougherty E R (eds.), March 2008.

  12. Danielyan A, Katkovnik V, Egiazarian K. BM3D frames and variational image deblurring. IEEE Transactions on Image Processing, 2012, 21(4): 1715-1728.

    Article  MathSciNet  MATH  Google Scholar 

  13. Fortunato H E, Oliveira M M. Fast high-quality non-blind deconvolution using sparse adaptive priors. The Visual Computer, 2014, 30(6/7/8): 661-671.

    Article  Google Scholar 

  14. Yan Y, Ren W, Guo Y et al. Image deblurring via extreme channels prior. In Proc. the 2017 IEEE Conference on Computer Vision and Pattern Recognition, July 2017, pp.6978-6986.

  15. Dong W, Zhang L, Shi G et al. Nonlocally centralized sparse representation for image restoration. IEEE Transactions on Image Processing, 2013, 22(4): 1620-1630.

    Article  MathSciNet  MATH  Google Scholar 

  16. Dong W, Zhang L, Shi G et al. Image deblurring and super-resolution by adaptive sparse domain selection and adaptive regularization. IEEE Transactions on Image Processing, 2011, 20(7): 1838-1857.

    Article  MathSciNet  MATH  Google Scholar 

  17. Dong W, Shi G, Ma Y et al. Image restoration via simultaneous sparse coding: Where structured sparsity meets Gaussian scale mixture. International Journal of Computer Vision, 2015, 114(2-3): 217-232.

    Article  MathSciNet  MATH  Google Scholar 

  18. Zhang J, Gai D, Zhang X et al. Multi-example feature-constrained back-projection method for image super-resolution. Computational Visual Media, 2017, 3(1): 73-82.

    Article  Google Scholar 

  19. Xu L, Ren J S J, Liu C et al. Deep convolutional neural network for image deconvolution. In Proc. the 2014 Annual Conference on Neural Information Processing Systems, December 2014, pp.1790-1798.

  20. Jin M, Roth S, Favaro P. Noise-blind image deblurring. In Proc. the 2017 IEEE Conference on Computer Vision and Pattern Recognition, July 2017, pp.3834-3842.

  21. Wieschollek P, Hirsch M, Schölkopf B et al. Learning blind motion deblurring. In Proc. the 2017 IEEE International Conference on Computer Vision, July 2017, pp.231-240.

  22. Yuan L, Sun J, Quan L et al. Image deblurring with blurred/noisy image pairs. ACM Transactions on Graphics, 2007, 26(3): Article No. 1.

    Article  Google Scholar 

  23. Rav-Acha A, Peleg S. Two motion-blurred images are better than one. Pattern Recognition Letters, 2005, 26(3): 311-317.

    Article  Google Scholar 

  24. Shen X, Yan Q, Xu L et al. Multispectral joint image restoration via optimizing a scale map. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(12): 2518-2530.

    Article  Google Scholar 

  25. Gehm M E, John R, Brady D J et al. Single-shot compressive spectral imaging with a dual-disperser architecture. Optics Express, 2007, 15(21): 14013-14027.

    Article  Google Scholar 

  26. Wu Y, Mirza I O, Arce G R et al. Development of a digital-micromirror-device-based multishot snapshot spectral imaging system. Optics Letters, 2011, 36(14): 2692-2694.

    Article  Google Scholar 

  27. Wang L, Xiong Z, Gao D et al. Dual-camera design for coded aperture snapshot spectral imaging. Applied Optics, 2015, 54(4): 848-858.

    Article  Google Scholar 

  28. Takatani T, Aoto T, Mukaigawa Y. One-shot hyperspectral imaging using faced reflectors. In Proc. the 2017 IEEE Conference on Computer Vision and Pattern Recognition, July 2017, pp.2692-2700.

  29. Choi I, Jeon D S, Nam G et al. High-quality hyperspectral reconstruction using a spectral prior. ACM Transactions on Graphics, 2017, 36(6): Article No. 218.

    Article  Google Scholar 

  30. Wang L, Xiong Z, Shi G et al. Adaptive nonlocal sparse representation for dual-camera compressive hyperspectral imaging. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(10): 2104-2111.

    Article  Google Scholar 

  31. Kim K S, Paik J. Out-of-focus blur estimation and restoration for digital auto-focusing system. Electronics Letters, 1998, 34(12): 1217-1219.

    Article  Google Scholar 

  32. Shen C T, Hwang W L, Pei S C. Spatially-varying out-of-focus image deblurring with L1-2 optimization and a guided blur map. In Proc. the 2012 IEEE International Conference on Acoustics, Speech and Signal Processing, March 2012, pp.1069-1072.

  33. Oliveira J P, Figueiredo M A T, Bioucas-Dias J M. Parametric blur estimation for blind restoration of natural images: Linear motion and out-of-focus. IEEE Transactions on Image Processing, 2014, 23(1): 466-477.

    Article  MathSciNet  MATH  Google Scholar 

  34. Chen S J, Shen H L. Multispectral image out-of-focus deblurring using interchannel correlation. IEEE Transactions on Image Processing, 2015, 24(11): 4433-4445.

    Article  MathSciNet  MATH  Google Scholar 

  35. Shen H L, Zheng Z H, Wang W et al. Autofocus for multispectral camera using focus symmetry. Applied Optics, 2012, 51(14): 2616-2623.

    Article  Google Scholar 

  36. Minetomo Y, Kubo H, Funatomi T et al. Acquiring non-parametric scattering phase function from a single image. Computational Visual Media, 2018, 4(4): 323-331.

    Article  Google Scholar 

  37. Yasuma F, Mitsunaga T, Iso D et al. Generalized assorted pixel camera: Postcapture control of resolution, dynamic range, and spectrum. IEEE Transactions on Image Processing, 2010, 19(9): 2241-2253.

    Article  MathSciNet  MATH  Google Scholar 

  38. Krishnan D, Tay T, Fergus R. Blind deconvolution using a normalized sparsity measure. In Proc. the 24th IEEE Conference on Computer Vision and Pattern Recognition, June 2011, pp.233-240.

  39. Wald L. Quality of high resolution synthesised images: Is there a simple criterion? In Proc. the 3rd Conference on Fusion of Earth Data: Merging Point Measurements, Raster Maps and Remotely Sensed Images, January 2000, pp.99-103.

  40. Zhang Y, de Backer S, Scheunders P. Noise-resistant wavelet-based Bayesian fusion of multispectral and hyperspectral images. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(11): 3834-3843.

    Article  Google Scholar 

  41. Wei Q, Bioucas-Dias J, Dobigeon N et al. Hyperspectral and multispectral image fusion based on a sparse representation. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(7): 3658-3668.

    Article  Google Scholar 

  42. Golub G H, Heath M, Wahba G. Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics, 1979, 21(2): 215-223.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank all anonymous reviewers for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Huang.

Electronic supplementary material

ESM 1

(PDF 2089 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, DW., Lai, LJ. & Huang, H. Defocus Hyperspectral Image Deblurring with Adaptive Reference Image and Scale Map. J. Comput. Sci. Technol. 34, 569–580 (2019). https://doi.org/10.1007/s11390-019-1927-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11390-019-1927-7

Keywords

Navigation