Skip to main content
Log in

Geometry-Aware ICP for Scene Reconstruction from RGB-D Camera

  • Regular Paper
  • Published:
Journal of Computer Science and Technology Aims and scope Submit manuscript

Abstract

The Iterative Closest Point (ICP) scheme has been widely used for the registration of surfaces and point clouds. However, when working on depth image sequences where there are large geometric planes with small (or even without) details, existing ICP algorithms are prone to tangential drifting and erroneous rotational estimations due to input device errors. In this paper, we propose a novel ICP algorithm that aims to overcome such drawbacks, and provides significantly stabler registration estimation for simultaneous localization and mapping (SLAM) tasks on RGB-D camera inputs. In our approach, the tangential drifting and the rotational estimation error are reduced by: 1) updating the conventional Euclidean distance term with the local geometry information, and 2) introducing a new camera stabilization term that prevents improper camera movement in the calculation. Our approach is simple, fast, effective, and is readily integratable with previous ICP algorithms. We test our new method with the TUM RGB-D SLAM dataset on state-of-the-art real-time 3D dense reconstruction platforms, i.e., ElasticFusion and Kintinuous. Experiments show that our new strategy outperforms all previous ones on various RGB-D data sequences under different combinations of registration systems and solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Besl P J, McKay N D. Method for registration of 3-D shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(2): 239-256.

    Article  Google Scholar 

  2. Segal A, Hähnel D, Thrun S. Generalized-ICP. In Proc. Robotics: Science and Systems, June 2009, Article No. 21.

  3. Steinbrücker F, Sturm J, Cremers D. Real-time visual odometry from dense RGB-D images. In Proc. the 2011 IEEE International Conference on Computer Vision Workshops, November 2011, pp.719-722.

  4. Kerl C, Sturm J, Cremers D. Robust odometry estimation for RGB-D cameras. In Proc. the 2013 IEEE International Conference on Robotics and Automation, May 2013, pp.3748-3754.

  5. Tam G K, Cheng Z Q, Lai Y K, Langbein F C, Liu Y, Marshall D, Martin R R, Sun X F, Rosin P L. Registration of 3D point clouds and meshes: A survey from rigid to nonrigid. IEEE Transactions on Visualization and Computer Graphics, 2013, 19(7): 1199-1217.

    Article  Google Scholar 

  6. Salvi J, Matabosch C, Fofi D, Forest J. A review of recent range image registration methods with accuracy evaluation. Image and Vision Computing, 2007, 25(5): 578-596.

    Article  Google Scholar 

  7. Rusinkiewicz S, Levoy M. Efficient variants of the ICP algorithm. In Proc. the 3rd International Conference on 3D Digital Imaging and Modeling, May 2001, pp.145-152.

  8. Newcombe R A, Izadi S, Hilliges O, Molyneaux D, Kim D, Davison A J, Kohi P, Shotton J, Hodges S, Fitzgibbon A. KinectFusion: Real-time dense surface mapping and tracking. In Proc. the 10th IEEE International Symposium on Mixed and Augmented Reality, October 2011, pp.127-136.

  9. Izadi S, Kim D, Hilliges O et al. KinectFusion: Real-time 3D reconstruction and interaction using a moving depth camera. In Proc. the 24th Annual ACM Symposium on User Interface Software and Technology, October 2011, pp.559-568.

  10. Henry P, Krainin M, Herbst E, Ren X, Fox D. RGB-D mapping: Using Kinect-style depth cameras for dense 3D modeling of indoor environments. The International Journal of Robotics Research, 2012, 31(5): 647-663.

    Article  Google Scholar 

  11. Huang A S, Bachrach A, Henry P, Krainin M, Maturana D, Fox D, Roy N. Visual odometry and mapping for autonomous flight using an RGB-D camera. In Proc. the 15th International Symposium on Robotics Research, December 2017, pp.235-252.

  12. Rusinkiewicz S, Hall-Holt O, Levoy M. Real-time 3D model acquisition. ACM Transactions on Graphics, 2002, 21(3): 438-446.

    Article  Google Scholar 

  13. Curless B, Levoy M. A volumetric method for building complex models from range images. In Proc. the 23rd Annual Conference on Computer Graphics and Interactive Techniques, August 1996, pp.303-312.

  14. Simon D A. Fast and accurate shape-based registration [Ph.D. Thesis]. Robotics Institute, Carnegie Mellon University, 1996.

  15. Johnson A E, Kang S B. Registration and integration of textured 3D data. Image and Vision Computing, 1999, 17(2): 135-147.

    Article  Google Scholar 

  16. Jin H, Favaro P, Soatto S. Real-time feature tracking and outlier rejection with changes in illumination. In Proc. the 8th International Conference on Computer Vision, July 2001, pp.684-689.

  17. Chen Y, Medioni G. Object modelling by registration of multiple range images. Image and Vision Computing, 1992, 10(3): 145-155.

    Article  Google Scholar 

  18. Biber P, Straßer W. The normal distributions transform: A new approach to laser scan matching. In Proc. the 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems, October 2003, pp.2743-2748.

  19. Magnusson M, Lilienthal A, Duckett T. Scan registration for autonomous mining vehicles using 3D-NDT. Journal of Field Robotics, 2007, 24(10): 803-827.

    Article  Google Scholar 

  20. Whelan T, Leutenegger S, Salas-Moreno R F, Glocker B, Davison A J. ElasticFusion: Dense SLAM without a pose graph. In Proc. Robotics: Science and Systems XI, July 2015, Article No. 1.

  21. Whelan T, Kaess M, Fallon M, Johannsson H, Leonard J, McDonald J. Kintinuous: Spatially extended kinectFusion. In Proc. Robotics: Science and Systems Workshop on RGB-D: Advanced Reasoning with Depth Cameras, July 2012.

  22. Pomerleau F, Colas F, Siegwart R, Magnenat S. Comparing ICP variants on real-world data sets — Open-source library and experimental protocol. Autonomous Robots, 2013, 34(3): 133-148.

    Article  Google Scholar 

  23. Holz D, Ichim A E, Tombari F, Rusu R B, Behnke S. Registration with the point cloud library: A modular framework for aligning in 3-D. IEEE Robotics & Automation Magazine, 2015, 22(4): 110-124.

  24. Whelan T, Johannsson H, Kaess M, Leonard J J, McDonald J. Robust real-time visual odometry for dense RGB-D mapping. In Proc. the 2013 IEEE International Conference on Robotics and Automation, May 2013, pp.5724-5731.

  25. Choi S, Zhou Q Y, Koltun V. Robust reconstruction of indoor scenes. In Proc. the 2015 IEEE Conference on Computer Vision and Pattern Recognition, June 2015, pp.5556-5565.

  26. Valentin J, Vineet V, Cheng M M, Kim D, Shotton J, Kohli P, Nießner M, Criminisi A, Izadi S, Torr P. Semantic-Paint: Interactive 3D labeling and learning at your fingertips. ACM Transactions on Graphics, 2015, 34(5): Article No. 154.

    Article  Google Scholar 

  27. Kähler O, Prisacariu V A, Ren C Y, Sun X, Torr P, Murray D. Very high frame rate volumetric integration of depth images on mobile devices. IEEE Transactions on Visualization and Computer Graphics, 2015, 21(11): 1241-1250.

    Article  Google Scholar 

  28. Whelan T, Salas-Moreno R F, Glocker B, Davison A J, Leutenegger S. ElasticFusion: Real-time dense SLAM and light source estimation. The International Journal of Robotics Research, 2016, 35(14): 1697-1716.

    Article  Google Scholar 

  29. Hu R, Wen C, van Kaick O, Chen L, Lin D, CohenOr D, Huang H. Semantic object reconstruction via casual handheld scanning. ACM Trans. Graph., 2018, 37(6): Article No. 219.

    Article  Google Scholar 

  30. Cheng M, Hou Q, Zhang S, Rosin P L. Intelligent visual media processing: When graphics meets vision. J. Comput. Sci. Technol., 2017, 32(1): 110-121.

    Article  Google Scholar 

  31. Whelan T, Kaess M, Leonard J J, McDonald J. Deformation-based loop closure for large scale dense RGBD SLAM. In Proc. the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, November 2013, pp.548-555.

  32. Pirker K, Rüther M, Schweighofer G, Bischof H. GPSlam: Marrying sparse geometric and dense probabilistic visual mapping. In Proc. the 22nd British Machine Vision Conference, August 2011, Article No. 102.

  33. Konolige K, Agrawal M. FrameSLAM: From bundle adjustment to real-time visual mapping. IEEE Transactions on Robotics, 2008, 24(5): 1066-1077.

    Article  Google Scholar 

  34. Davison A J. Real-time simultaneous localisation and mapping with a single camera. In Proc. the 9th IEEE International Conference on Computer Vision, October 2003, pp.1403-1410.

  35. Klein G, Murray D. Parallel tracking and mapping for small AR workspaces. In Proc. the 6th IEEE/ACM International Symposium on Mixed and Augmented Reality, November 2007, pp.225-234.

  36. Dai A, Nießner M, Zollhöfer M, Izadi S, Theobalt C. BundleFusion: Real-time globally consistent 3D reconstruction using on-the-fly surface reintegration. ACM Transactions on Graphics, 2017, 36(3): Article No. 24.

    Article  Google Scholar 

  37. Granger S, Pennec X. Multi-scale EM-ICP: A fast and robust approach for surface registration. In Proc. the 7th European Conference on Computer Vision, May 2002, pp.418-432.

  38. Liu Y. A mean field annealing approach to accurate free form shape matching. Pattern Recognition, 2007, 40(9): 2418-2436.

    Article  MATH  Google Scholar 

  39. Rangarajan A, Chui H, Mjolsness E, Pappu S, Davachi L, Goldman-Rakic P, Duncan J. A robust point-matching algorithm for autoradiograph alignment. Medical Image Analysis, 1997, 1(4): 379-398.

    Article  Google Scholar 

  40. Bylow E, Sturm J, Kerl C, Kahl F, Cremers D. Real-time camera tracking and 3D reconstruction using signed distance functions. In Proc. Robotics: Science and Systems IX, June 2013, Article No. 35.

  41. Jian B, Vemuri B C. Robust point set registration using Gaussian mixture models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(8): 1633-1645.

    Article  Google Scholar 

  42. Tsin Y, Kanade T. A correlation-based approach to robust point set registration. In Proc. the 8th European Conference on Computer Vision, May 2004, pp.558-569.

  43. Song P. Local voxelizer: A shape descriptor for surface registration. Computational Visual Media, 2015, 1(4): 279-289.

    Article  Google Scholar 

  44. Nießner M, Zollhöfer M, Izadi S, Stamminger M. Real-time 3D reconstruction at scale using voxel hashing. ACM Trans. Graph., 2013, 32(6): Article No. 169.

    Article  Google Scholar 

  45. Prisacariu V A, Kahler O, Cheng M M, Ren C Y, Valentin J, Torr P H S, Reid I D, Murray D W. A framework for the volumetric integration of depth images. arXiv: 1410.0925, 2014. https://arxiv.org/abs/1410.0925, March 2019.

  46. Sturm J, Engelhard N, Endres F, Burgard W, Cremers D. A benchmark for the evaluation of RGB-D SLAM systems. In Proc. the 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, Oct. 2012, pp.573-580.

  47. Kraft M, Nowicki M, Schmidt A, Fularz M, Skrzypczyński P. Toward evaluation of visual navigation algorithms on RGB-D data from the first- and second-generation Kinect. Machine Vision and Applications, 2017, 28(1/2): 61-74.

    Article  Google Scholar 

  48. Magnusson M. The three-dimensional normal-distributions transform: An efficient representation for registration, surface analysis, and loop detection [Ph.D. Thesis]. Örebro University, 2009.

  49. Huhle B, Magnusson M, Straßer W, Lilienthal A J. Registration of colored 3D point clouds with a kernel-based extension to the normal distributions transform. In Proc. the 2008 IEEE International Conference on Robotics and Automation, May 2008, pp.4025-4030.

  50. Pulli K. Multiview registration for large data sets. In Proc. the 2nd International Conference on 3D Digital Imaging and Modeling, October 1999, pp.160-168.

  51. Dorai C, Wang G, Jain A K, Mercer C. Registration and integration of multiple object views for 3D model construction. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(1): 83-89.

    Article  Google Scholar 

  52. Abou-Moustafa K, Ferrie F P. Local generalized quadratic distance metrics: Application to the k-nearest neighbors classifier. Advances in Data Analysis and Classification, 2018, 12(2): 341-363.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Ren.

Electronic supplementary material

ESM 1

(PDF 685 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, B., Wu, JC., Lv, YL. et al. Geometry-Aware ICP for Scene Reconstruction from RGB-D Camera. J. Comput. Sci. Technol. 34, 581–593 (2019). https://doi.org/10.1007/s11390-019-1928-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11390-019-1928-6

Keywords

Navigation