Skip to main content
Log in

Automatic Diabetic Retinopathy Screening via Cascaded Framework Based on Image- and Lesion-Level Features Fusion

  • Regular Paper
  • Published:
Journal of Computer Science and Technology Aims and scope Submit manuscript

Abstract

The early detection of diabetic retinopathy is crucial for preventing blindness. However, it is time-consuming to analyze fundus images manually, especially considering the increasing amount of medical images. In this paper, we propose an automatic diabetic retinopathy screening method using color fundus images. Our approach consists of three main components: edge-guided candidate microaneurysms detection, candidates classification using mixed features, and diabetic retinopathy prediction using fused features of image level and lesion level. We divide a screening task into two sub-classification tasks: 1) verifying candidate microaneurysms by a naive Bayes classifier; 2) predicting diabetic retinopathy using a support vector machine classifier. Our approach can effectively alleviate the imbalanced class distribution problem. We evaluate our method on two public databases: Lariboisìere and Messidor, resulting in an area under the curve of 0.908 on Lariboisìere and 0.832 on Messidor. These scores demonstrate the advantages of our approach over the existing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Pires R, de Avila S, Jelinek H F, Wainer J, Valle E, Rocha A. Beyond lesion-based diabetic retinopathy: A direct approach for referral. IEEE Journal of Biomedical and Health Informatics, 2017, 21(1): 193-200.

    Article  Google Scholar 

  2. Omar Z A, Hanafi M, Mashohor S, Mahfudz N F M, Muna’im M. Automatic diabetic retinopathy detection and classification system. In Proc. the 7th IEEE International Conference on System Engineering and Technology, October 2017, pp.162-166.

  3. Kar S S, Maity S P. Automatic detection of retinal lesions for screening of diabetic retinopathy. IEEE Transactions on Biomedical Engineering, 2018, 65(3): 608-618.

    Article  Google Scholar 

  4. Srivastava R, Duan L, Wong D W, Liu J, Wong T Y. Detecting retinal microaneurysms and hemorrhages with robustness to the presence of blood vessels. IEEE Computer Methods and Programs in Biomedicine, 2017, 138: 83-91.

    Article  Google Scholar 

  5. Seoud L, Hurtut T, Chelbi J, Cheriet F, Langlois J P. Red lesion detection using dynamic shape features for diabetic retinopathy screening. IEEE Transactions on Medical Imaging, 2016, 35(4): 1116-1126.

    Article  Google Scholar 

  6. Pereira C, Veiga D, Mahdjoub J, Guessoum Z, Gonçalves L, Ferreira M, Monteiro J. Using a multi-agent system approach for microaneurysm detection in fundus images. Artificial Intelligence in Medicine, 2014, 60(3): 179-188.

    Article  Google Scholar 

  7. Wan S, Liang Y, Zhang Y. Deep convolutional neural networks for diabetic retinopathy detection by image classification. Computers and Electrical Engineering, 2018, 72: 274-282.

    Article  Google Scholar 

  8. Mansour R F. Evolutionary computing enriched computer- aided diagnosis system for diabetic retinopathy: A survey. IEEE Reviews in Biomedical Engineering, 2017, 10: 334-349.

    Article  Google Scholar 

  9. Morales S, Engan K, Naranjo V, Colomer A. Retinal disease screening through local binary patterns. IEEE Journal of Biomedical and Health Informatics, 2017, 21(1): 184-192.

    Article  Google Scholar 

  10. Giancardo L, Karnowski T P, Tobin K W, Meriaudeau F, Chaum E. Validation of microaneurysm-based diabetic retinopathy screening across retina fundus datasets. In Proc. the 26th IEEE International Symposium on Computer-Based Medical Systems, June 2013, pp.125-130.

  11. Rahim S S, Palade V, Shuttleworth J, Jayne C, Omar R N R. Automatic detection of microaneurysms for diabetic retinopathy screening using fuzzy image processing. In Proc. the 16th IEEE International Conference on Engineering Applications of Neural Networks, September 2015, pp.69-79.

  12. Dashtbozorg B, Zhang J, Huang F, Romeny B M. Retinal microaneurysms detection using local convergence index features. IEEE Transactions on Image Processing, 2018, 27(7): 3300-3315.

    Article  MathSciNet  Google Scholar 

  13. Niemeijer M, van Ginneken B, Cree M J et al. Retinopathy online challenge: Automatic detection of microaneurysms in digital color fundus photographs. IEEE Transactions on Medical Imaging, 2010, 29(1): 185-195.

    Article  Google Scholar 

  14. Chudzik P, Majumdar S, Calivá F, Al-Diri B, Hunter A. Microaneurysm detection using fully convolutional neural networks. Computer Methods and Programs in Biomedicine, 2018, 158: 185-192.

    Article  Google Scholar 

  15. Costa P, Galdran A, Smailagic A, Campilho A. A weakly-supervised framework for interpretable diabetic retinopathy detection on retinal images. IEEE Access, 2018, 6: 18747-18758.

    Article  Google Scholar 

  16. Dai L, Fang R, Li H, Hou X, Sheng B, Wu Q, Jia W. Clinical report guided retinal microaneurysm detection with multi- sieving deep learning. IEEE Transactions on Medical Imaging, 2018, 37(5): 1149-1161.

    Article  Google Scholar 

  17. Wang Z, Yin Y, Shi J, Fang W, Li H, Wang X. Zoom-in-net: Deep mining lesions for diabetic retinopathy detection. In Proc. the 20th International Conference on Medical Image Computing and Computer Assisted Intervention, September 2017, pp.267-275.

  18. Lin Z, Guo R, Wang Y, Wu B, Chen T, Wang W, Chen D, Wu J. A framework for identifying diabetic retinopathy based on anti-noise detection and attention-based fusion. In Proc. the 21st International Conference on Medical Image Computing and Computer Assisted Intervention, September 2018, pp.74-82.

  19. Frazao L B, Theera-Umpon N, Auephanwiriyakul S. Diagnosis of diabetic retinopathy based on holistic texture and local retinal features. Information Sciences, 2019, 475: 44-66.

    Article  Google Scholar 

  20. Fleming A D, Philip S, Goatman K A, Williams G J, Olson J A, Sharp P F. Automated detection of exudates for diabetic retinopathy screening. Physics in Medicine and Biology, 2007, 52(24): 7385-7396.

    Article  Google Scholar 

  21. Yao L, Zeng F, Li D H, Chen Z G. Sparse support vector machine with L p penalty for feature selection. Journal of Computer Science and Technology, 2017, 32(1): 68-77.

    Article  MathSciNet  Google Scholar 

  22. Carrera E V, González A, Carrera R. Automated detection of diabetic retinopathy using SVM. In Proc. the IEEE XXIV International Conference on Electronics, Electrical Engineering and Computing, August 2017, Article No. 58.

  23. Canny J. A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, 8(6): 679-698.

    Article  Google Scholar 

  24. Raman V, Then P, Sumari P. Proposed retinal abnormality detection and classification approach: Computer aided detection for diabetic retinopathy by machine learning approaches. In Proc. the 8th IEEE International Conference on Communication Software and Networks, June 2016, pp.636-641.

  25. Decenciere E, Zhang X, Cazuguel G, Lay B, Cochener B, Trone C, Gain P, Ordonez R, Massin P, Erginay A, Charton B, Klein, J. Feedback on a publicly distributed image database: The Messidor database. Image Analysis and Stereology, 2014, 33(3): 231-234.

    Article  Google Scholar 

  26. Agurto C, Murray V, Barriga E, Murillo S, Pattichis M, Davis H, Russell S, Abràmoff M, Soliz P. Multiscale AM-FM methods for diabetic retinopathy lesion detection. IEEE Transactions on Medical Imaging, 2010, 29(2): 502-512.

    Article  Google Scholar 

  27. Quellec G, Lamard M, Abràmoff M D, Decencière E, Lay B, Erginay A, Cochener B, Cazuguel G. A multiple-instance learning framework for diabetic retinopathy screening. Medical Image Analysis, 2012, 16(6): 1228-1240.

    Article  Google Scholar 

  28. Sánchez C I, Niemeijer M, Dumitrescu A V, Suttorp-Schulten M S, Abràmoff M D, Ginneken B V. Evaluation of a computer-aided diagnosis system for diabetic retinopathy screening on public data. Investigative Ophthalmology and Visual Science, 2011, 52(7): 4866-4871.

    Article  Google Scholar 

  29. Cao P, Ren F, Wan C, Yang J, Zaïane O. Efficient multi-kernel multi-instance learning using weakly supervised and imbalanced data for diabetic retinopathy diagnosis. Computerized Medical Imaging and Graphics, 2018, 69: 112-124.

    Article  Google Scholar 

  30. Zhang X J, Lu Y F, Zhang S H. Multi-task learning for food identification and analysis with deep convolutional neural networks. Journal of Computer Science and Technology, 2016, 31(3): 489-500.

    Article  Google Scholar 

  31. Deng J, Dong W, Socher R, Li L, Li K, Li F F. ImageNet: A large-scale hierarchical image database. In Proc. the 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, June 2009, pp.248-255.

  32. Abràmoff M, Reinhardt J, Russell S, Folk J, Mahajan V, Niemeijer M, Quellec G. Automated early detection of diabetic retinopathy. Ophthalmology, 2010, 117(6): 1147-1154.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya-Long Xiao.

Electronic supplementary material

ESM 1

(PDF 389 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, CZ., Hu, R., Zou, BJ. et al. Automatic Diabetic Retinopathy Screening via Cascaded Framework Based on Image- and Lesion-Level Features Fusion. J. Comput. Sci. Technol. 34, 1307–1318 (2019). https://doi.org/10.1007/s11390-019-1977-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11390-019-1977-x

Keywords

Navigation