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Abstract Graph neural networks (GNNs) have shown great power in learning on graphs. However, it is still a challenge

for GNNs to model information faraway from the source node. The ability to preserve global information can enhance

graph representation and hence improve classification precision. In the paper, we propose a new learning framework named

G-GNN (Global information for GNN) to address the challenge. First, the global structure and global attribute features of

each node are obtained via unsupervised pre-training, which preserve the global information associated to the node. Then,

using the pre-trained global features and the raw attributes of the graph, a set of parallel kernel GNNs is used to learn

different aspects from these heterogeneous features. Any general GNN can be used as a kernal and easily obtain the ability

of preserving global information, without having to alter their own algorithms. Extensive experiments have shown that

state-of-the-art models, e.g. GCN, GAT, Graphsage and APPNP, can achieve improvement with G-GNN on three standard

evaluation datasets. Specially, we establish new benchmark precision records on Cora (84.31%) and Pubmed (80.95%) when

learning on attributed graphs.

Keywords Graph neural network, Network embedding, Representation learning

1 Introduction

Semi-supervised learning on graphs is popular in

various real world applications, since labels are often

expensive and difficult to collect. In the recent years,

Graph neural networks (GNNs) have shown great power

in the semi-supervised learning on attributed graphs.

GNN often contains multiple layers, and the nodes

collect information from the neighborhood iteratively,

layer by layer. The representative methods include

graph convolutional network (GCN) [1], Graphsage [2],

graph attention networks [3] and so on.

Due to the multi-layer message aggregation scheme,

GNN is easy to be over-smoothing after a few propaga-

tion steps [4]. That is to say, the node representations

tend to be identical and lack of distinction. In gen-

eral, GNNs can afford only 2 layers to collect informa-

tion within 2 hops of neighborhood, otherwise the over-

smoothing problem will deteriorate the performance.

Several previous works [5, 6] aimed to address the prob-

lem by expanding the size of utilized neighborhood. For

example, N-GCN [5] trains multiple instances of GCNs

over node pairs discovered at different distances in ran-

dom walks. PPNP/APPNP [6] introduces the teleport

probability of personalized PageRank.
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These solutions [5, 6] are purely based on semi-

supervised learning, which have their natural bottle-

neck in modeling global information. As the recep-

tion field is getting larger and more nodes are involved,

more powerful models are required to explore the com-

plex relationships among nodes. However, the labels for

training are quite sparse in the semi-supervised learn-

ing, and hence cannot afford to train models with high

complexity well. Hence, the existing works often have

to restrain the complexity of models, which limits their

ability in learning global information.

The unsupervised learning methods based on ran-

dom walk, e.g. Deepwalk [7] and Node2vec [8], can be

used to obtain the global structure information of each

node. These methods first sample node sequences that

contain the structure regularity of the network, then

try to maximize the likelihood of neighborhood node

pairs within certain distance, e.g. 10 hops. Hence, they

can capture global structure features without label in-

formation.

In this paper, we propose a new learning schema

of pre-training and learning to address the global in-

formation preserving problem in semi-supervised learn-

ing. First, instead of improving the aggregation func-

tion via semi-supervision, we obtain the global struc-

ture and global attribute features by pre-training the

graph with random walk strategy in the unsupervised

learning. Second, we design a GNN based framework to

conduct semi-supervised classification by learning from

the pre-trained features and the original graph.

The two-stage schema of pretraining-and-learning

has several advantages. First, the global information

modeling procedure is decoupled with the subsequent

semi-supervised learning method. Therefore, the mod-

eling of the global information no longer suffers from the

sparse supervision or over-smoothing problem. More-

over, a general GNN can enhance its global information

preserving ability by applying our learning framework,

without having to altering its algorithm. Second, the

proposed framework takes the advantage of both ran-

dom walk and GNN, which can not only utilize global

information but also aggregate local information well.

Moreover, the framework allows GNN to be applied to

plain graphs without attributes, since the unsupervised

structure features can be used as graph attributes di-

rectly.

In all, our contributions are as follows.

• We propose a learning framework named Global

information for Graph Neural Network (G-GNN)

for semi-supervised classification on graphs. The

proposed pretraining-and-learning schema allows

GNN models to use global information for learn-

ing, without altering their algorithms. Moreover,

the schema enables GNN to be applied to plain

graphs.

• We design the global information as the global

structure and global attribute features to each

node, and propose a set of parallel GNNs to learn

different aspects from the pretrained global fea-

tures and the original graph.

• Our method achieves state-of-the-art results in

semi-supervised learning on both plain and at-

tributed graphs. Specially, the precisions of at-

tributed graph learning on Cora (84.31%) and

Pubmed (80.95%) are the new benchmark results.

The rest of the paper is organized as follows. In

section 2, the preliminaries are given. We introduce

our method in section 3. Section 4 presents the ex-

periments. Section 5 briefly summarizes related work.

Finally, we conclude our work in section 6.
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2 Preliminary

2.1 Definition

First, we will give the formal definition of at-

tributed/plain graph, and the problem we are going to

solve.

Let G = (V,E) be a graph, where V = {v1, v2...vn}

denotes the node set, E denotes the edges with the ad-

jacency matrix A ∈ R
n×n. If Aij is not equal to 0,

there is a link from vi to vj with weight Aij . If G is

an attributed graph, there is a corresponding attribute

matrix X ∈ R
n×f , where the ith row denotes vi’s at-

tributes and f denotes the total amount of attributes.

If G is a plain network, no X is provided. The graph

contains label information Y ∈ R
n×c, where the ith

row denotes vi’s one hot label vector. The amount of

labels is c.

During the training stage, the provided data is the

entire adjacency matrix A and the node attributes X.

Only labels of the training nodes Vtrain ⊂ V are given.

The task of the semi-supervised learning in attributed

graph is to predict the rest of the node labels YVtrain .

X is not provided for plain graph learning.

2.2 Graph Neural Networks

We will introduce how general GNNs solve the semi-

supervised learning problem. Note that current GNNs

can only be applied to attributed graphs. Therefore,

we assume X is given here.

Among the huge family of GNNs, Graph convolu-

tional network (GCN) [1] is a simple and pioneering

method. Let Â = A + In be the adjacency matrix

with self-connections, where In is an identity matrix.

The self-loops will allow GCN to consider attributes

of the represented nodes when aggregating the neigb-

hood’s attributes. Let ˆ̂
A = D̂−1/2ÂD̂−1/2 be the no-

malized adjacency matrix, where D̂ denotes the diago-

nal degree matrix where D̂ii =
∑

j Âij . The two-layer

GCN produces hidden states by aggregating neighbor-

hood attributes iteratively, as in (1).

HGCN = ˆ̂
ARelu( ˆ̂AXW0)W1. (1)

where HGCN ∈ R
n×c and Relu(.) is an activation func-

tion commonly used in neural networks. Each row in

HGCN denotes the final hidden states of a node, and

each row corresponds to a prediction catagory. W0

and W1 are the trainable weight matrices. After that,

the classification probability on each class ZGCN is ob-

tained via softmax(.), a normalization function com-

monly used in machine learning, as in (2).

ZGCN = softmax(HGCN). (2)

Finally, a loss function is applied to measure the dif-

ference between the predict probability and the ground

truth labels.

Many of the following studies aim to improve the

aggregation function, such as assigning alternative

weights to the neighborhood nodes [3], adding skip con-

nections [2], introducing teleport probability [6] and so

on. These methods can be viewed as a transform from

the original X and A to the final hidden states H , as

in (3).

GNN(X,A) : X,A → H . (3)

From (1), we can see only 2-hops of local informa-

tion can be used. The over-smoothing problem prevents

from adding more layers, so the global information is

difficult to be integrated in. The input attributes X are

necessary in the general learning framework of GNN.

Hence, GNN cannot be applied to plain graphs directly.

In the next section, we will show how to solve these

problems with the proposed pretraining-and-learning

schema.
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3 The Proposed Framework of G-GNN

In the section, we first give an overview of G-GNN

within the context of attributed graph. Second, the

method to obtain the global features is introduced.

Third, a parallel GNN based method is proposed to

learn from all these features. Finally, we show how to

extend G-GNN to plain network.

3.1 Overview

The overview of the G-GNN is shown in Fig. 1.

First, the global structure feature matrix X(s) and at-

tribute feature matrix X
(a) are learned in an unsuper-

vised way. Next, X(s), X(a) and the original attribute

matrix X are fed to a parallel GNN based model, to

learn their corresponding hidden states. Finally, the fi-

nal hidden states are the weighted sum of the 3 hidden

states H(s), X(a) and H(o).

3.2 Unsupervised Learning of Global Features

Herein, we propose to learn the unsupervised fea-

tures of graphs based on random walk strategy. Each

node can utilize information within k steps of random

walk, where k is often set to 10. Small world phe-

nomenon suggests that the average distance between

nodes will grow logarithmically with the size of the

graph nodes [9], and the undirected average distance of

a very large Web graph is only 6.83 steps [10]. Hence,

10 steps of random walk can already capture the global

information of the graphs.

3.2.1 Global Structure Features

Similar to Deepwalk [7], the structure features are

learned by first sampling the context-source node pairs,

and then maximizing their co-occurrence probability.

Note that graph attributes X are not used here. We

apply random walks to the graph G to obtain short

truncated node sequences. These sequences contain the

structure regularity of the original graph. In the node

sequences, the neighborhood nodes within certain dis-

tance to the source node v are considered as v’s context

nodes, which are denoted as N(v) ⊂ V .

To maximize the likelihood of the observed source-

context pairs, we try to minimize the following objective

function:

∏

v∈V

∏

u∈N(v)

eX
(s)
v

·X(s)
u

∑
k∈V

eX
(s)
v ·X

(s)
k

.

X(s) ∈ R
n×ds denotes the global structure feature ma-

trix and ds denotes the dimension of the feature vectors.

X
(s)
v , X

(s)
u and X

(s)
k denote the global structure fea-

ture vectors of v, u and k respectively. The calculation

of the denominator is computational expensive since it

is required to traverse the entire node set. We approx-

imate it using negative sampling [11].

3.2.2 Global Attribute Features

The global attribute features are obtained by max-

imizing the likelihood of the context attributes. The

underlying idea is that if the context attributes can be

recovered from the source node, the relationship has

already been preserved by the learning model.

For each sampled context node u ∈ N(v), some at-

tributes of u are sampled as the context attributes of v.

In this paper, we sample one attribute for one context

node. Let CA(v) be the sampled context attributes of

v, and T be the set of all attributes and |T | is the total

number of attributes. We try to minimize the following

objective.

∏

v∈V

∏

t∈CA(v)

eX
(a)
v

·St

∑
k∈T

eX
(a)
v ·Sk

.

where X(a) ∈ R
n×da denotes the global attribute fea-

ture matrix, S ∈ R
da×|T | denotes the parameters to

predict the attributes and da denotes the dimension of
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Fig.1. An overview of the G-GNN framework.

the attribute feature vectors. X
(a)
v denotes the global

attribute feature vector of v. Sk and St denote the

corresponding parameter vectors of k and t in S.

Zhu et al. [12] proposed an unsupervised graph

learning method that utilizes the context attributes.

The node representations are learned by jointly opti-

mizing two objective functions that preserve the neigh-

borhood nodes and attributes. The mainly difference of

our work is that we learn two feature vectors for each

node separately, which provide richer information for

the following learning algorithm.

3.3 Parallel Graph Neural Networks

As is shown in Fig. 1, we propose a parallel model

with kernels of GNN to learn from these input matrices

of X(s),X(a) and X. The learning is semi-supervised.

3.3.1 Learning from the Heterogeneous Features

The motivation of applying multiple parallel GNN

kernels to these feature matrices is as follows. First,

the features are quite heterogeneous, especially when

some of them are learned via pre-training. The parallel

kernels can learn different aspects from these features

respectively. Second, the three feature matrices are

highly correlated. For example, X(a) is obtained partly

based on X. X(s) and X(a) are sampled based on the

identical random walk method. It is difficult to learn

the complex relationships among them. The parallel

setting allows to learn from these features separately,

which will make the optimization easier. Indeed, the

parallel schema is successful in some previous papers,

such as multi-head attention [3, 13] and N-GCN [5].

First, because the amplitude at each dimension of

the pre-trained H(s) and H(a) often varies a lot, it is

better to make a normalization. For each row h in H(s)

or H
(a), we make the following transformation, where

mean denotes the average function and std denotes the

standard derivation function.

h =
h−mean(h)

std(h)
.

Then, several kernels of GNN are proposed to learn

from the three feature matrices, as in (4)-(6).

H
(s) = GNN(X(s),A). (4)

H
(a) = GNN(X(a),A). (5)

H
(o) = GNN(X,A). (6)
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GNN(∗) is the learning kernel of the G-GNN frame-

work. Common GNN-based models that fulfill (3) can

be used as a kernel, such as GCN [1], Graphsage [2],

APPNP [6] and so on. Hence, G-GNN can easily bene-

fit from the strong learning capacities of these kernels.

3.3.2 Combining the Hidden States

A simple way to obtain the final hidden state matrix

is to linearly combine the three obtained hidden state

matrices, where α and β are coefficients between 0 and

1.

H = αH(s) + βH(a) +H
(o) (7)

Then a softmax function is applied to H , as in (2), to

get the prediction probability matrix Z, where Zij de-

notes the probability that node vi’s label is the class j.

The coefficients of α and β are used to turn down the ef-

fect of the pre-trained features, which are essential for

optimization. [14] suggests the pre-training is useful

for initializing the network in a region of the parame-

ter space where optimization is easier. In training, easy

samples often contribute more to the loss and dominate

the gradient updating [15]. Similarly, we find the easy-

trained components of GNN(X(s)) and GNN(X(a))

also dominate the learning procedure. If no weight

strategy is used, GNN(X) merely contributes to the

results and hence the performance is far from promis-

ing.

3.3.3 Training

We minimize the cross-entropy loss function be-

tween Z and the ground-truth labels Y to train the

model [5].

min diag(Vtrain)[Y ◦ logZ]

where ◦ denotes Hadamard product, and diag(Vtrain)

denotes a diagonal matrix, with entry at (i, i) set to 1

if vi ∈ Vtrain and 0 otherwise.

3.4 Learning on Plain Graphs

Plain graphs contain no attributes X. It does not

affect the obtaining of the global structure feature ma-

trix X(s). Then the final hidden states is:

H = H
(s) = GNN(X(s),A).

Hence, learning on plain graphs also follows the

pretraining-and-learning schema, where some compo-

nents that depend on the graph attributes are removed.

3.5 Discussion

In the paper, we choose a parallel framework to

learn from these heterogeneous attributes. But are

there any alternative technique choices?

The pretrained vectors can be integrated with

the classification model in different stages, e.g.

early/middle/late fusion.

• Early fusion: Early fusion is quite simple, where

the pretrained and raw attributes are combined

in the input layer. For example, we can concate-

nate the attributes and then feed them to a GNN

model.

• Middle fusion: Middle fusion is a bit more com-

plicated. It is required to design specifical prop-

agation and aggregation functions of GNN to in-

tegrate the features in each layer.

• Late fusion: The late fusion is the current version

of parallel framework. The attributes are fed to

different GNNs and the outputs are combined in

the final layer.

In practice, early fusion can already improve the

precision, but the improvement is not so big as late fu-

sion. See table 3 in section 4.2.2 for details. Middle

fusion requires to modify the inner propagation or ag-

gregation functions of the specifical GNN. Hence, the

framework will lose generality to apply to other GNNs.
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Therefore, we choose late fusion as our learning frame-

work, which not only gives the best performance, but

also can improve the global information utilization abil-

ity of general GNNs.

4 Experiments

In this section, we conduct experiments to answer

the following research questions∗:

• Q1: How does G-GNN perform in comparison

with state-of-the-art GNN kernels on attributed

graphs?

• Q2: Are all the designed components in G-GNN

helpful for achieving stronger learning ability?

• Q3: How does G-GNN perform in comparison

with state-of-the-art learning methods on plain

graphs?

4.1 Experiments on Attributed Graphs (Q1)

Herein, we will answer Q1 by comparing G-GNN

with different GNN kernels. Note that the codes of all

the GNN methods are based on the implementation re-

leased by DGL †. All results are the average values of 10

experiments with different random initialization seeds.

4.1.1 Datasets and Baselines

The statistics of the datasets used in this study are

shown in Table 1. The three standard attributed graph

benchmark datasets of Cora, Citeseer and Pubmed [16]

are widely used in various GNN studies [3, 17]. In the

citation graphs, nodes denote papers and links denote

undirected citations. Node attributes are the extracted

elements of bag-of-words representation of the docu-

ments. The class label is the research area of each

paper. CoraFull is an extended version of Cora [18].

Following [18], we randomly split the train/valid/test

dataset with 1:1:8.

The following baselines are compared in this paper.

• Graph convolutional network (GCN) [1]: It is a

simple type of GNN introduced in details in sec-

tion 2. We use dropout technique to avoid overfit-

ting [19], where the probability is 0.5. We set the

number of training epoches to 300, the number of

layers to 2, and the dimension of hidden states to

16. The self-loops are used.

• Graphsage [2]: It is a general framework by sam-

pling and aggregating features from a node’s local

neighborhood. We use the mean aggregate. We

set the dropout rate to 0.5, the number of train-

ing epoches to 200, the number of layers to 2, and

the dimension of hidden states to 16.

• APPNP [6]: APPNP is designed with a new prop-

agation procedure based on personalized PageR-

ank, and hence can also model the long-distance

information to a source node. We set the dropout

rate to 0.5, the number of training epoches to

300, the number of propagation steps to 10, the

teleport probability to 0.1 and the dimension of

hidden states to 64.

• Graph attention network (GAT) [3]: GAT is

designed with the multi-head attention tech-

niques [13] to the aggregation method, and hence

can attribute different weights to different neigh-

bor nodes. We set the dropout rate to 0.6, the

number of heads to 8, the number of hidden states

to 8, the number of layers to 2 and the number of

training epoches to 200.

∗The data, code and pre-trained vectors to reproduce our results are released on https://github.com/zhudanhao/G-GNN
†https://github.com/dmlc/dgl/tree/master/examples/pytorch
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Table 1. The statistics of the datasets

Dataset #Nodes #Edges #Attributes #Classes #Training nodes #Valid nodes #Test nodes

Cora 2708 5429 1433 7 140 500 1000

Citeseer 3327 4732 3703 6 120 500 1000

Pubmed 19717 44338 500 3 60 500 1000

CoraFull 19793 130622 8710 70 1792 1792 15773

Note: # denotes the number of something, e.g. #Nodes is the number of nodes.

Table 2. Classification Precision (%) on Attributed Graphs

Method
Cora Citeseer Pubmed CoraFull

Precision Range Precision Range Precision Range Precision Range

GCN [1] 81.47 ±2.60 71.01 ±1.30 79.10 ±1.10 59.44 ±1.02

G-GCN 83.71 ±1.80 71.27 ±1.40 80.88 ±0.95 61.20 ±0.37

Graphsage [2] 82.70 ±1.65 69.87 ±1.30 78.56 ±0.65 59.21 ±0.59

G-Graphsage 83.84 ±1.10 70.20 ±1.15 78.89 ±1.85 60.99 ±0.71

GAT [3] 82.39 ±0.97 67.52 ±1.74 77.34 ±0.92 62.65 ±0.44

G-GAT 82.53 ±1.12 67.95 ±1.38 76.88 ±0.74 63.42 ±0.38

APPNP [6] 83.91 ±1.45 71.93 ±1.55 79.68 ±0.65 61.71 ±0.7

G-APPNP 84.31 ±1.30 72.00 ±1.45 80.95 ±0.80 63.19 ±0.84

All models are optimized with Adam [20] where the ini-

tial learning rate is 0.01 and the weight decay is 0.0005

per epoch.

4.1.2 Training Details

In the unsupervised learning of global features, we

conduct 10 iterations of random walk start from each

node. The walk length is 100. For each source node,

the nearby nodes within 10 steps are considered as the

neighborhood nodes. The dimensions of both the global

structure and attribute vectors are 8. The number of

negative sampling is 64.

In the semi-supervised learning, the three baseline

models are used as kernels of G-GNN, and the corre-

sponding models are named as G-GCN, G-Graphsage

and G-APPNP. The parameters are exactly the same

as those in the baseline methods. We search α and β

between 0.001 to 0.05. The test results are reported

when the best valid results are obtained.

4.1.3 Results

The results are shown in Table 2. From the ta-

ble, it is found that all baseline kernels with global

information achieve substantial gains on the classifi-

cation task. For example, G-GCN outperforms GCN

with 2.24%, 0.26%, 1.79% and 1.76% of precision on

the four datasets respectively. The results demonstrate

that the learning framework of G-GNN can effectively

and consistently enhance the learning ability of the cor-

responding GNN kernels.

APPNP is also designed for enlarging the recep-

tion field and can utilize global information. APPNP

outperforms the other baseline models. Although the

improvement is not so large as those in G-GCN, G-

APPNP still significantly outperforms its kernel of

APPNP with 0.40%, 0.07%, 1.27% and 1.48% on the

four datasets respectively. The result shows that even

for a propagation method which can powerfully uti-

lize global information, our learning schema of G-GNN

can still bring considerable precision gains. We believe

the advantage comes from the pretraining-and-learning

schema, since our global information is obtained via

pre-training and no longer suffers from the limitation

brought by weak supervision.

G-APPNP achieves the best results on Cora, Cite-
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Fig.2. Precision w.r.t. α and β on different datasets. (a) Citeseer. (b) Cora. (c) Pubmed.

seer and Cora. Note that its precisions on Cora

(84.31%) and Pubmed (80.95%) are the new state-of-

the-art results. To the best of our knowledge, the previ-

ous best results are GraphNAS (84.20%) [21] on Cora,

and MixHop (80.80%) [22] on Pubmed. On the large

dataset of CoraFull, G-GAT outperforms all the other

methods with precision of 63.42%.

In all, the results validate the effectiveness of

the pretraining-and-learning schema, which can signifi-

cantly improve the global information preserving ability

of GNN based methods.

4.2 Properties Analysis (Q2)

The parameter sensitivity and ablation analysis are

given. Herein, we mainly use GCN as the kernel and

the setting is attributed graph learning.

4.2.1 Parameter Sensitivity

Fig. 2 shows the precision w.r.t. α and β. Gen-

erally, different datasets require different α and β to

achieve the best precision, and α and β are often around

0.01. The precision will decrease quickly if we continue

to increase the two parameters. The result shows that it

is very necessary to introduce the two hyper-parameters

to turn down the impact of the pre-trained features. In

fact, the component of GNN(X,A) will contribute al-

most nothing without the weight method.

Fig. 3 shows the precision w.r.t. the dimension of

the global features. The highest precision is achieved

when the dimension is around 8 to 16.

� � � �� �� �� ���

�������

���	

����

����

����

����

����

��
�
���
��

Fig.3. Precision w.r.t. Dimension of global features on Cora.

4.2.2 Ablation Analysis

First, the effectiveness of parallel learning method

is investigated. Note that the simplest way to uti-

lize all three feature matrices X(s), X(a) and X is

to concatenate them first, and then feed the concate-

nated feature matrix to a single GNN kernel, so called

early fusion in subsection 3.5. Table 3 compares the

results of GCN, early fusion and G-GCN. We can find

that early fusion has already outperforms GCN, which

demonstrates that the pretraining-and-learning schema
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of G-GCN can well utilize the global information. G-

GCN makes further improvement than the method of

simple concatenation, which validates the effectiveness

of parallel learning method.

Table 3. The classification precision (%) on different feature

fusion settings

Method Cora Citeseer Pubmed

GCN 81.47 71.01 79.10

Early Fusion 83.39 70.78 80.64

Late Fusion (G-GCN) 83.71 71.27 80.88

Second, we investigate the effect of the global features,

as shown in Table 4. The results show that both pre-

trained feature matrices can help to increase the model

precision. The global structure features are more help-

ful on Cora, but less effective than global attribute fea-

tures on Pubmed and Citeseer. On the datasets of Cora

and Pubmed, the highest precisions are obtained when

all the features are used. However, in Citeseer, the

global structure features cannot help to increase the

performance if the global attribute features are used.

In all, both pre-trained features can contribute to im-

prove the results of our proposed model. However, the

amount of improvement depends on specific datasets.

4.3 Experiments on Plain Graphs (Q3)

We will answerQ3 by comparing G-GNN with other

plain graph learning methods.

4.3.1 Experiment Setup

We conduct the task of semi-supervised classifica-

tion on the two datasets of Cora and Citeseer. The

results of the baseline methods are cited from their orig-

inal papers. Pubmed is excluded from comparison since

it is not used in the baseline papers.

The training data is the entire plain graph (X is ex-

cluded), and part of the node labels. We use 0.1, 0.2 ...

0.9 of node labels to train the model respectively, and

report the classification accuracy on the rest of data.

All results are the average values of 10 experiments with

different random split.

Our proposed model is G-GCN (plain), where the

GCN is used as the kernel. In the unsupervised train-

ing, the dimension of global structure vectors is 32. In

the semi-supervised learning, the dimension of the hid-

den states is 256. No dropout is used. The rest of

parameters are the same as those in 4.1.2.

Four semi-supervised learning methods on plain

graphs are used as baselines.

• Iterative Classification Algorithm (ICA) [16]:

ICA iteratively propagates observed labels to

nearby unlabeled nodes, until the assignments to

the labels stabilize. Here we use k-nearest neigh-

bor as the classification algorithm.

• Planetoid-G [17]: The method trains an embed-

ding for each instance to jointly predict the class

label and the neighborhood context in the graph.

• MMDW [23]: The method jointly optimizes the

max-margin classifier and the aimed social repre-

sentation learning model.

• PNE [24]: The method embeds nodes and labels

into the same latent space.

Some other unsupervised or semi-supervised meth-

ods, such as LP [25], Deepwalk [7], Line [26] and

LSHM [27] are excluded from comparison since the

baseline methods have demonstrated that they are out-

performed by the baseline methods [17, 23, 24].

4.3.2 Results

The results are shown in Table 5. G-GCN (plain)

achieves the highest precision on more than half of the

total data points (10 out of 18). Specially, the advan-

tage is more obvious when the training ratio is arising.

When the training ratio is small, e.g. less than 30%,
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Table 4. The classification precision (%) when using different feature matrices

Feature Matrices Cora Citeseer Pubmed

X 81.47 71.01 79.10

X +X
(s) 83.20 71.05 79.35

X +X
(a) 82.77 71.27 80.73

X +X
(s) +X

(a) 83.71 71.27 80.88

Note: X
(s), X(a), X are the global structure, the global attribute, and the raw graph features respectively. The model is G-GCN.

Each line gives the results of G-GCN with the corresponding feature matrices. Hence, the model in the first line is equivalent to

GCN, and the one of the last line is corresponding to the full G-GCN model.

Table 5. Classification precision (%) on plain graphs

Dataset Method
Training percent

10% 20% 30% 40% 50% 60% 70% 80% 90%

ICA [16] 44.96 47.21 47.40 48.23 48.82 50.18 52.43 58.05 66.04

Cora Planetoid-G [17] 74.45 79.16 80.72 82.63 84.59 83.34 84.23 84.67 85.10

PNE [24] 77.58 81.22 82.94 84.54 84.73 85.55 86.15 86.39 87.76

MMDW [23] 74.94 80.83 82.83 83.68 84.71 85.51 87.01 87.27 88.19

G-GCN (Plain) 76.88 80.5 82.65 85.06 85.57 86.23 87.67 87.05 89.16

Citeseer

ICA [16] 33.54 34.95 37.59 38.36 40.92 42.79 46.23 48.96 57.05

Planetoid-G [17] 54.10 57.92 58.15 62.31 64.22 68.11 70.16 70.34 72.12

PNE [24] 54.79 60.87 64.67 66.95 68.59 70.00 72.06 73.41 74.76

MMDW [23] 55.60 60.97 63.18 65.08 66.93 69.52 70.47 70.87 70.95

G-GCN (Plain) 54.24 60.31 64.16 66.41 69.36 70.77 72.12 74.41 75.89

Note: The results of PNE [24] and MMDW [23] are cited from their original papers.

the categories with less instances may provide very few

training instances, which makes GNN difficult to pass

message from these nodes. We believe this is the rea-

son why G-GCN is less powerful when training ratio is

small.

In all, the results show that the learning framework

of G-GNN can be successfully applied to plain graphs,

and achieve similar or better results than state-of-the-

art methods.

5 Related Work

There are a lot of efforts in recent literature to de-

velop neural network learning algorithms on graphs.

The most prominent one may be Graph convolution

networks (GCN) [1]. GCN is based on the first-order

approximation of spectral graph convolutions. Graph-

sage [2] is new neighborhood aggregation algorithms

by concatenating the node’s features in addition to

pooled neighborhood information. Graph attention

model (GAT) [13] was proposed to assign different

neighborhoods with different weights based on multi-

head attention mechanism. In FastGCN [28], graph

convolutions is interpreted as integral transforms of em-

bedding functions under probability measures, which

has faster training speed and comparable precision. P-

PGNNs [29] can capture nodes’ position within graph

structure, which first sample sets of anchor nodes and

then learn a non-linear distance-weighted aggregation

scheme over the anchor-sets.

Several related studies tried to expand the reception

field of GNN and increase the neighborhood available

at each node. PPNP/APPNP [6] improves the mes-

sage passing algorithms based on personalized PageR-

ank. [30] proposes jumping knowledge networks that

can that flexibly leverage different neighborhood ranges

for each node. N-GCN [5] trains multiple instances of

GCNs over node pairs discovered at different distances

in random walks, and learns a combination of these in-
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stance outputs. However, because the semi-supervised

settings lack enough training, these methods have to

control the model complexity carefully, which limits

the learning ability in exploring the global information.

For example, our experiments have shown that G-GNN

with kernel of APPNP can still achieve promising im-

provement.

Some studies also try to introduce unsupervised

learning in GNNs to alleviate the insufficient supervi-

sion problem. [31] proposes an auto-encoder archi-

tecture that learns a joint representation of both lo-

cal graph structure and available node features for the

multi-task learning of link prediction and node classi-

fication. GraphNAS[21] first generates variable-length

strings that describe the architectures of graph neural

networks, and then maximizes the expected accuracy of

the generated architectures on a validation data based

on reinforcement learning. However, these methods do

not consider to utilize global information of the graphs.

The main difference of our work is that we use unsu-

pervised learning to capture the global information.

6 Conclusion

In the paper, we proposed a novel framework named

G-GNN, which is able to conduct semi-supervised

learning on both plain and attributed graphs. The

proposed framework takes the advantage of both ran-

dom walk and GNN, which can not only utilize global

information but also aggregate local information well.

Therefor, the existing GNN models can be used as

kernels of G-GNN, to obtain the ability of preserving

global information. Extensive experiments show that

our framework can improve the learning ability of ex-

isting GNN models.

For future work, we plan to test some more com-

plicated methods that combine the hidden states, and

study other unsupervised methods that can produce

global features more suitable for the learning ability

of GNN.
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