
BIROn - Birkbeck Institutional Research Online

Wang, Y.-H. and Li, Z.-N. and Xu, J.W. and Yu, P. and Chen, Taolue and Ma,
X.X. (2020) Predicted robustness as QoS for Deep Neural Network Models.
Journal of Computer Science and Technology 35 (5), pp. 999-1015. ISSN
1000-9000.

Downloaded from: https://eprints.bbk.ac.uk/id/eprint/44958/

Usage Guidelines:
Please refer to usage guidelines at https://eprints.bbk.ac.uk/policies.html or alternatively
contact lib-eprints@bbk.ac.uk.

https://eprints.bbk.ac.uk/id/eprint/44958/
https://eprints.bbk.ac.uk/policies.html
mailto:lib-eprints@bbk.ac.uk

Yuehuan Wang, Zenan Li, Jingwei Xu et al. Journal of computer science and technology: Predicted Robustness as QoS for

Deep Neural Network Models. JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY 33(1): 1–20 January 2018.

DOI 10.1007/s11390-015-0000-0

Predicted Robustness as QoS for Deep Neural Network Models

Yuehuan Wang1, Zenan Li1, Jingwei Xu1,∗, Ping Yu1, Taolue Chen2,1 and Xiaoxing Ma1

1State Key Lab of Novel Software Technology, Nanjing University, Nanjing 210023, China
2Department of Computer Science, University of Surrey, Guilford, UK

E-mail: {wangyuehuan, lizenan}@smail.nju.edu.cn; {jingweix, yuping}@nju.edu.cn; taolue.chen@surrey.ac.uk;
xxm@nju.edu.cn

Received March 31, 2020; revised July 19, 2020.

Abstract The adoption of Deep Neural Network (DNN) models as integral parts of real-world software systems necessitate

explicit consideration of their quality-of-service (QoS). A concerning issue is that DNN models are prone to adversarial

attacks, and thus it is vitally important to be aware how robust a model’s prediction is for a given input instance. A fragile

prediction, even with high confidence, is not trustworthy in light of the possibility of adversarial attacks. We propose that

DNN models should produce a robustness value as an additional QoS indicator, along with the confidence value, for each

prediction they make. Existing approaches for robustness computation are based on adversarial searching, which are usually

too expensive to be excised in real time. In this paper, we propose to predict, rather than compute, the robustness measure

for each input instance. Specifically, our approach inspects the output of the neurons of the target model and trains another

DNN model to predict the robustness. We focus on Convolutional Neural Network (CNN) models in the current research.

Experiments show that our approach is accurate, with only 10%-34% additional errors compared to the offline heavy-weight

robustness analysis. It also significantly outperforms some alternative methods. We further validate the effectiveness of the

approach when it is applied to detect adversarial attacks and out-of-distribution input. Our approach demonstrates a better

performance than, or at least is comparable to, the state-of-the-art techniques.

Keywords Deep Neural Networks, Quality of Service, Robustness, Prediction

1 Introduction

Deep learning (DL) [16] has been demonstrated

surprising power in various challenging tasks such as

natural language processing [1, 37], speech recogni-

tion [8, 39], image processing [7, 14, 34], recommen-

dation systems [52, 53], gaming [31] and even in the

sentiment analysis for human beings [54], which are

hard to accomplish using conventional methods. Con-

sequently, Deep Neural Network (DNN) models are in-

creasingly adopted in real-world applications, including

some safety-critical scenarios such as self-driving [3],

disease diagnosis [5, 19], and malware detection [40].

However, different from conventional software arti-

facts, DNN models provide little guarantee about their

Quality of Service (QoS) on each individual input other

than the often inaccurate confidence value [57,58]. This

is largely due to the inductive nature of statistical ma-

chine learning and the lack of interpretability for DNN

Regular Paper

This work was supported by the National Basic Research 973 Program of China under Grant No. 2015CB352202, the National
Natural Science Foundation of China under Grant Nos. 61690204, 61802170, and 61872340, the Guangdong Science and Technol-
ogy Department grant under Grant No. 2018B010107004, the Natural Science Foundation of Guangdong Province of China under
Grant No. 2019A1515011689, and the Overseas Grant of the State Key Laboratory of Novel Software Technology under Grant
No. KFKT2018A16.

∗Corresponding Author

©Institute of Computing Technology, Chinese Academy of Sciences & Springer Nature Singapore Pte Ltd. 2020

2 J. Comput. Sci. & Technol., January 2018, Vol., No.

models [59, 62]. Note that statistical metrics such as

accuracy, MSE, and F1-measure actually report the

model’s performance on the testing data, but not how

well it works on a new, unseen input.

A particularly naughty problem is that DNNs can

be easily fooled by adversarial examples, which are con-

structed by introducing well-designed human impercep-

tible perturbations to legitimate examples [6,22,24,25,

35]. The vulnerability to adversarial attacks is preva-

lent for DNN models, and currently there is no general

method to eliminate them despite a plethora of pro-

posals [50,63]. The robustness of a DNN model, which

quantifies the model’s resilience to adversarial attacks,

has attracted a lot of attentions from both machine

learning and software engineering communities [11,60].

Nevertheless, the existing work merely aims at improv-

ing the training of models and carries out offline ro-

bustness analysis, rendering it unsuitable as an instant

QoS indication for the model’s prediction on the current

input. The study of adversarial attacks and robustness

of DNN models is somewhat predominately targeted at

CNN models. In this paper, for a better comparison

with other methods, we focus on CNN models for im-

age classification tasks as well.

In contrast, in this paper, we propose online cal-

culation of the robustness for each input at runtime.

Whenever a DNN model makes a prediction for an in-

put, a robustness value is quickly estimated to indi-

cate how stable the prediction is, against perturbations

over this input. This quality metric is important for

the system and user to decide how much the prediction

can be trusted, considering the possible perturbation

introduced intentionally or unintentionally. Note that

the robustness metric is not subsumed by prediction

confidence because of the existence of high-confidence

adversarial examples [6]. Robustness estimation is also

different from outlier detection [60,61]. The former fo-

cuses on the stableness of the current model’s computa-

tion on the current input, while the latter measures the

rareness of an input compared with the whole dataset.

Nevertheless, as to be shown in Section 4, we can ex-

ploit robustness to detect outliers effectively.

The challenge of online robustness estimation is that

it needs to be very lightweight to exercise at runtime.

While DNN models are usually trained with power-

ful computers, they are often deployed in environments

with very limited computing power such as mobile and

embedded devices. For example, TensorFlow Lite and

PyTorch Mobile support DNN model execution on mo-

bile devices [44,45], but not model training. And while

the training process can take hours, and even days or

weeks, a trained model gives instant prediction on in-

puts. The efficiency of robustness calculation needs to

match the instant model prediction.

Existing approaches to the robustness analysis are

either based on formal verification or adversarial search-

ing. Both of them are too heavy-weight for our purpose.

Formal verification approaches take the DNN model as

a usual (loop-free) program and try to prove that the

output of the model will not change if the perturbation

to input is within a small bound. These approaches

are computationally expensive owing to the nonlinear

structure of DNNs and the high dimensionality of in-

put data. Katz et al. [11] have shown that the prob-

lem of verifying robustness for ReLU networks is NP-

complete. Despite interesting proposals of leveraging

advanced SMT solvers [11, 36] and abstract interpre-

tation [33], currently DNN robustness verification can

handle only simple DNN models with very limited per-

turbation bounds, which makes them impractical for

real world applications.

Adversarial searching approaches apply optimiza-

tion to synthesize adversarial attacks with as small per-

turbation as possible. The minimum perturbation re-

First Author et al.: Shortened Title Within 45 Characters 3

alizing attack found within a time budget provides a

metric for the robustness of the DNN model [4]. Al-

though these approaches scale up to large DNN mod-

els, their computation costs are still prohibitively high

when used at runtime (more than ten hours for C&W

applied on ResNet-50).

We propose to learn a robustness predictor for each

trained DNN model offline. At runtime, for each input

fed to the model, one may use the robustness predictor

to predict how robustness the model is on this input

online. The insight behind this approach is two-fold.

First, robustness is a property about the target DNN

model’s behavior, which can be observed from the out-

puts of neurons in the model. Second, the theory of

representation learning [59] suggests that deep layers of

the target model encode its perception of the input, and

thus are informative for the model’s robustness on the

input. So we build an additional DNN model taking

the penultimate layer of the target model as input, and

train it with robustness values for target model’s train-

ing data computed with adversarial searching. Though

we focus on CNN models, the underlying principle of

our approaches can be generalized to other settings as

well.

Extensive experimental evaluations confirmed the

efficacy and efficiency of our approach. We first trained

eight target DNN models with different architectures

(LeNets, VGGs, and ResNet) on different datasets

(MNIST, SVHN, and CIFAR-10). For each of them

we trained a DNN model as the robustness predictor.

Compared with the results from heavy-weight offline

robustness analysis, these predictors only introduced

10%-30% additional errors.

Furthermore, robustness predictors were success-

fully used to detect adversarial examples. The idea

is straightforward: DNN models are believed to be

unstable on adversarial examples, which usually have

very low robustness measure, and thus can be detected

by the robustness predictor. It turned out that this

method performed better than or at least was simi-

lar to other state-of-the art methods based on Kernel

Density (KD) [41] and Local Intrinsic Dimensionality

(LID) [42].

In summary, the contributions of this paper include:

• The proposal of online prediction of robustness as

a QoS measure for DNN models;

• A deep learning based approach to the implemen-

tation of the online robustness predictor;

• Effective adversarial example detection based on

online robustness predictors; and

• Extensive empirical evaluation confirming the ef-

ficacy and efficiency of our approaches.

The idea of predicting robustness for DNN models with

DNN models was originally presented in the Internet-

ware conference [66]. In this paper, we substantially

extend the work and thoroughly re-write the paper.

Especially, we make more comprehensive evaluation of

the proposed approach and successfully use the same

framework of robustness predictors to detect adversar-

ial example. Moreover, we show the proposed robust-

ness predictor is successfully deployed on the mobile

platform with impressive performance, whereas other

related methods are incompatible to the existing deep

learning frameworks for mobile platforms.

The rest of this paper is organized as follows. We

first review the background and related work in Sec-

tion 2. Section 3 describes the basic idea and the de-

tailed design of the predictor and the detector. Sec-

tion 4 reports the empirical evaluation of our approach.

We conclude our work and discuss future work in Sec-

tion 5.

4 J. Comput. Sci. & Technol., January 2018, Vol., No.

2 Background

In this section, we introduce architectures of DNNs,

commonly used adversarial attacks and verification for

DNN robustness.

2.1 Deep Neural Network

DNN essentially defines a new data-driven program-

ming method, in which the logic is portrayed by a large

dataset and layer-wise structures, akin to human brain.

DNN models usually are trained by the training dataset

with the backpropagation algorithm [30]. In a nutshell,

a DNN is built up by the input layer, the hidden layers

and the output layer, as shown in Fig. 1. Each hid-

den layer consists of numerous neurons, which connect

to the neurons in the next layer by applying activation

functions on the linear weighting with possible bias.

The number of neurons in the input layer is equal to

the dimension of the input data whereas the output

layer generates the probability of every class to which

the input instance belongs. In this paper we mainly

restrict ourselves to classifiers. However, in general,

DNNs could be regarded a function f that transforms

a given input to the output.

.

Input layer

Output layer

Hidden layers

Fig. 1. A simple deep neural network.

2.2 Adversarial Attack

Adversarial examples are derived from natural ex-

amples with a crafted perturbation. The difference be-

tween the natural example and the adversarial coun-

terpart is usually negligible and thus human imper-

ceptible. These adversarial examples can be generated

by numerous adversarial attack methods in a relatively

simple way, which can be used to deceive DNNs to make

the wrong prediction, revealing serious vulnerability in-

side DNN models.

In literature, adversarial attacks can be divided into

targeted attacks and non-targeted attacks, based on the

objective of deception. Given a DNN modeled by the

function f with x being the original natural example,

adversarial attack techniques aim to craft perturbation

δ such that

• Targeted attack:

f(x+ δ) = yt (1)

• Non-targeted attack:

f(x+ δ) 6= yx (2)

Namely, the objective of the non-targeted attack is to

mislead the DNN to predict a label which is different

from the ground-truth label yx of x. For the targeted

attack, the DNN model is guided to generate the given

target result yt.

Some standard adversarial attack techniques in lit-

erature are given in order as follows.

• FGSM & BIM. Fast Gradient Sign Method

(FGSM) [6] is based on the insight that one could

find the proper perturbation with the gradient of

the cost function. The Basic Iterative Method

(BIM) [15] is an iterative variant of FGSM, which

adds perturbation to the original input iteratively

First Author et al.: Shortened Title Within 45 Characters 5

until the predicted label of the input instance

changes. More concretely, the adversarial exam-

ple is generated according to the following process

for FGSM:

xadv = xadv0 + α · sign
(
∇xJ(xadv0 , ytrue)

)
, (3)

and the process of BIM could be represented by

xadvi+1 = Clipx,ε
(
xadvi + α · sign(∇xJ(xadvi , ytrue))

)
(4)

In both cases, xadv0 is the original input, J is the

cost function that is used for training the DNN

model, sign is the sign function. In particular,

xadvi is the adversarial example generated by the

i-th iteration, and Clip can be found in [15].

• C&W. C&W [4] optimizes the joint objective

that minimizes the perturbation and maximizes

the probability of fooling DNN simultaneously to

generate adversarial example. It utilizes a set of

attacking generation algorithms based on differ-

ent distance metrics including L1, L2, and L∞

norms. Take the L2-norm based algorithm as an

example:

min ‖δ‖2 + c · f(x+ δ) (5)

In particular, by the “change of variables”

method, the objective function can be formulated

as:

‖1

2
(tanh(w) + 1)− x‖22

+c · f(
1

2
(tanh(w) + 1))

(6)

where w are the newly introduced variables

(which can be used to recover δ) and c is a hy-

perparameter. The first term of the objective is

to control the distance between the generated ex-

ample and the original input, whilst the second

term captures the loss function. The details of

the C&W algorithm are given in [4].

• Deepfool. Deepfool [24] algorithm generates the

perturbation by computing the distance from the

input to the decision boundary. For the mul-

ticlass classification task with a linear classifier

f(x) = W>x+ b, the minimal perturbation can

be generated as follows.

arg min
δ

‖δ‖2

s.t. ∃c : w>c (x+ δ) + bc

≥ w>c̄ (x+ δ) + bc̄

(7)

where c̄ is a class other than the class c. The

details of generalizing the linear classifier to non-

linear ones such as DNNs can be found in [23].

• JSMA: Jacobian Saliency Map Attack [43] uses

Jacobian matrices to compute the saliency map,

which indicates the importance of each dimension

in the input with respect to the output. This at-

tack can change the classification result by only

modifying a small portion of the input instance.

In general, the saliency map can be calculated as

follows:

S(x, t)[i] =


−∂ft(x)

∂xi

∑
j 6=t

∂fj(x)
∂xi

,

if ∂ft(x)
∂xi

> 0 and
∑
j 6=t

∂fj(x)
∂xi

< 0

0, otherwise

(8)

where
∂fj(x)
∂xi

is the derivative of the j-th value in

the output of DNN model f to the i-th value in

the input.

Among the above adversarial attacks, BIM, Deep-

fool, and C&W aim to generate the minimum pertur-

bation, which can be used to measure robustness for

DNNs. As for the concept of DNN Robustness, we

consider a commonly adopted definition based on the

L2-norm, defined as follows.

max ‖δ‖2

s.t. f(x+ δ) = f(x)
(9)

6 J. Comput. Sci. & Technol., January 2018, Vol., No.

If a perturbed input is within the ball of the orig-

inal input in Euclidean distance, DNN produces the

same classification result as the original input. In other

words, DNN is robust against the ‖δ‖2 perturbation.

2.3 Deep Neural Network Verification and

Testing

Verifying the robustness of DNNs is a challenging

task, which has received considerable attentions [9, 10,

27–29,33,38]. All the work for verification of the robust-

ness of DNNs suffers from scalability issues, and can be

only applied to small to medium sized DNNs. The fun-

damental problem is that to verify a DNN model with

ReLU activation function is NP-complete [11]. Many

approximation or simplification approaches have been

proposed to reduce the time complexity. For example,

Releplex and SDP relaxation linearize the ReLU func-

tion and relax the verification problem to a convex op-

timization problem [11, 64]. However, such relaxation

is not tight enough because of the nature of the ReLU

function, especially with a high number of layers. On

the other hand, some work tries to do the complete

verification but to limit the region for verification. For

example, DeepCheck introduces a novel technique of

symbolic analysis for DNN models, and applies them to

verify the one-pixel or two-pixel attack [65]. The result

is valuable, but applying it into practice still needs more

improvement. Thus, we need an efficient and effective

method to evaluate the robustness of DNN models.

Similar to testing traditional software, researchers

have proposed a series of coverage-based metrics for

testing DNN models, most of which are based on the

neuron outputs of the DNN model. The higher coverage

usually indicates higher test adequacy, meaning that a

test set with a high coverage is more likely to trigger

bugs, if there are. Neuron coverage was first proposed in

DeepXplore [26]. DeepXplore defined whether a neuron

is activated or not through a threshold set by users. The

percentage of the activated neurons represents the ade-

quacy of the test set. Neuron coverage is coarse-grained

for DNN testing, because the neuron coverage can easily

reach 100%. DeepGauge [20], a multi-granularity cover-

ages criteria for DNN models, partitions the neuron ac-

tivation value to multiple sections, and distinguish the

corner-case behaviors from the main behaviors. With

the concept of combinatorial testing, DeepCT [21] com-

bined the neuron activation states and provided a series

of metrics. Partially inspired by the relation between

neuron outputs and test adequacy, we aim to predict

the robustness using the neuron outputs.

2.4 Adversarial Example Detection

Detecting adversarial examples is another impor-

tant issue, which aims to determine whether a given

input is an adversarial example of the target model [47–

51]. Most detection methods are based on more or less

the same insight: Although the adversarial example is

very similar to the original example, the distributions of

these two kinds of examples are different [49]. Hence,

an intuitive idea is to use statistical hypothesis tests

to detect adversarial examples [49]. However, there is

a serious limitation of these hypothesis tests, i.e., it is

only able to detect whether a group of examples are

adversarial rather than a single input. An alternative

proposal is to use statistical models instead of statisti-

cal tests. For example, the auto-encoder and the dis-

criminator of GAN were both adopted to measure the

distance between the given input and the original ex-

amples [47, 48]. Besides, the method based on kernel

density estimation was presented to model outputs of

the last hidden layer, and to detect the adversarial ex-

ample based on the uncertainty [41]. Local Intrinsic

Dimensionality (LID) was proposed to assess the space-

filling capability of the region surrounding a reference

First Author et al.: Shortened Title Within 45 Characters 7

example [42], and the experiments showed that LID

characteristics could facilitate to highlight adversarial

examples.

These methods are however computationally expen-

sive and can only detect adversarial examples lying far

from the manifold of the legitimate inputs. More se-

riously, adversarial perturbations computed based on

optimization are always minimal, so the generated ad-

versarial inputs are usually very closed to the deci-

sion boundary, which renders these methods ineffec-

tive [50,51].

3 Robustness Prediction for DNNs

Training

dataset

Original

DNN model

A fully connected

neural network

Robustness

values

Outputs of

penultimate

layer

A robustness

predictor

Output of

penultimate

layer

Robustness
value

Original

DNN model

Adversarial

attack

Forward

calculation

Train

Input

Predict

Fig. 2. Overview of the robustness predictor

In this section, we introduce the basic idea of the

proposed methods for robustness prediction and adver-

sarial examples detection, which are formulated as pre-

dictor and detector respectively. Fig. 2 illustrates the

process of prediction, whereas the process for detection

follows the similar structure.

3.1 Rationale

One of the central questions of the current paper is

to provide a reliable robustness measure of a given new

instance for DNN models. One possible solution is use

heavyweight, formal verification based method. How-

ever, it is usually very costly and hence infeasible in

practice. Alternatively, we propose to use a lightweight

method to predict such a robustness metric by casting

this problem as a regression task, which, interestingly,

is to be solved by DNNs. There are, however, certain

challenges to overcome, in particular, (1) what features

(aka. predictors, covariates, or independent variables)

should be used to make the prediction; (2) how to for-

mulate the training set, especially the value of depen-

dent variables in regression.

For the first question, partially inspired by the work

on testing NN, we identify neuron output of the DNN

on the input instance as the features. For the sec-

ond question, we build up the training set for predic-

tion based on the train set for the original DNN under

consideration. In particular, we exploit adversarial ro-

bustness measure, which can be obtained by launching

(usually very efficient) adversarial attacks on the DNN.

Based on these, we put forward a fast approach to pre-

dict the robustness of DNN models.

An interesting application of the robustness predic-

tion is to detect adversarial examples. A basic observa-

tion is that adversarial examples are generated to de-

ceive the DNN model, and are usually less robust than

the natural examples. This is especially the case for

those which are generated by optimization-based algo-

rithms. To see this, notice that, intuitively, the adver-

sarial perturbation aims to push the input instance to

cross over the decision boundary, hence changing the

classification result. As optimization-based adversar-

ial attack algorithms craft the minimum perturbation

by their formulation, it is reasonable to assume that the

generated adversarial examples are close to the decision

boundary and thus have fragile robustness. (Cf. Fig. 3

for an illustration of the intuition.) It follows that the

robustness measure can be used for distinguishing ad-

versarial examples from natural examples.

8 J. Comput. Sci. & Technol., January 2018, Vol., No.

decision boundaries
natural examples

adversarial example

Fig. 3. Robustness for the adversarial example

In the rest of this section, we shall articulate the

proposed framework for robustness prediction and ad-

versarial example detection.

3.2 Robustness Measure Prediction

Let Mo be the DNN model under consideration and

Mr be the robustness predictor to be trained.

The input to Mr is the neuron output of Mo with

respect to an input instance x. As the number of all

the neurons in Mo may be too high, we only consider

the neurons for some specific layers, for instance, the

penultimate layer which is generatively considered to

encode the features of the input. The neuron output

of the layer is obtained through forward computation.

Let φl(x) be the neuron output vector of the layer l for

an input example x.

The output of Mr is the robustness measure for the

corresponding input, for which we use attack-based

robustness, i.e., the value returned by optimization-

based adversarial attacking algorithms for each input

instance. This problem deserves further discussions, as

a priori it is not clear why these adversarial attacking

algorithm provide a sensible estimate of the robustness.

As in Section 2.2, a plethora of adversarial example

generation algorithms have been proposed making at-

tacking DNNs a routine task. A commonality of most

adversarial attack algorithms is to synthesize the min-

imal perturbation that can fool the DNN model, We

hypothesize that these algorithms perform consistently

on this regard, to validate which we design experiments

to explore the relation of different measures they gen-

erate. In the experiment, we select three adversarial

attack algorithms, i.e., C&W, BIM, and Deepfool, to

generate the minimum perturbation as the respective

robustness measure of the DNN model. We analyze

the correlations among the three robustness measures

via the Pearson correlation coefficient (PCC) [2], which

can illustrate the linear correlation between two sets of

data. (Cf. Section 4.1 for details.)

Table 1 shows the experiment results, where we use

LeNet-5 and VGG-19 as the DNN models for classify-

ing MNIST and CIFAR-10 datasets, respectively. We

can see that the robustness values calculated by differ-

ent adversarial attack algorithms are highly correlated

(in particular, all the PCC values are no less than 0.6).

Therefore, it is reasonable to assume that these quan-

tities prescribe consist and sound measures for DNN

robustness, which, from a practical point of view, pro-

vide a valuable alternative for large-scale DNN models

other than costly methods based on formal verification.

The training set for the robustness predictor can

then be collected as follows. Recall that the dataset

for Mo is composed by pairs of the form (xi, yi) for

the image example xi with the classification label yi.

The dataset for the robustness predictor Mr is thus

(φl(xi), ri), where φl(xi) is the neuron output vector

and ri is the robustness value.

Table 1. PCC of attack-based robustness measurements

DNN model Measurement C&W Deepfool BIM

LeNet-5 (MNIST)

C&W 1.0 0.86 0.92

Deepfool 0.86 1.0 0.85

BIM 0.92 0.85 1.0

VGG-19 (CIFAR-10)

C&W 1.0 0.73 0.76

Deepfool 0.73 1.0 0.60

BIM 0.76 0.60 1.0

First Author et al.: Shortened Title Within 45 Characters 9

For a given example xi, its robustness prediction is

given as:

r = Mr(φl(x)) (10)

We note that training the DNN Mr is completed

offline and there is no overhead to collect new data

online. Moreover, during the training process of Mo,

practitioners can calculate the robustness values of all

the test examples to assess how robust Mo is.

3.3 Adversarial Example Detection

The detector is designed following the same frame-

work as the robustness predictor. The basic principle

is that we hypothesize that natural examples have a

higher degree of robustness than adversarial examples.

As a result, one can learn a threshold to separate them.

To this end, we use the neuron output from both

adversarial examples and natural examples to train the

detector model Md, for which we use the neurons of the

penultimate layer as the input of Md. For a new input

of the DNN model, Md outputs a score to indicate the

degree that the input is an adversarial example. For

training purposes, the score values of adversarial exam-

ples are set to be 0, and 1 for natural examples.

For a given input x, the score is computed as follow.

s = Md(φl(x)) (11)

The lower the score is, the more likely the input is an

adversarial example.

4 Evaluation

In this section, we evaluate the performance of our

approaches. We focus on the following four research

questions:

• RQ1 (Effectiveness and efficiency of the

predictor): Can the robustness predictor predict

the robustness effectively and efficiently?

• RQ2 (Applicability of the predictor): Can

the robustness predictor be applied to DNN models

with different accuracies?

• RQ3 (Layer selection): Does considering neu-

ron outputs from more layers improve the robust-

ness predictor?

• RQ4 (Effectiveness of the detector): Can the

detector detect adversarial examples effectively?

4.1 Experiment Setup

Datasets and DNN Models. We select four well-

adopted image classification datasets, MNIST [17],

CIFAR-10 [13], SVHN [44], and ImageNet [56]. MNIST

is a handwritten digit database with 60,000 training ex-

amples and 10,000 testing examples, for which we con-

struct three DNN models in the LeNet family [18] (e.g.,

LeNet-1, LeNet-4 and LeNet-5). CIFAR-10 is an image

recognition dataset composed of 50,000 training exam-

ples and 10,000 testing examples, for which we con-

struct three DNN models, i.e., VGG-16 with two fully-

connected layers [55], VGG-19 [32] and ResNet-50 [7].

SVHN is a house number recognition dataset obtained

from Google Street View images containing 73,257 ex-

amples for training and 26,032 examples for testing, for

which we construct two DNN models, i.e., VGG-16 [32]

and ResNet-50 [7]. ImageNet is a large-scale image

recognition dataset with more than 1,000,000 images,

for which we construct a ResNet-50 [7] model.

Evaluation Metrics. We use the widely adopted

Pearson correlation coefficient (PCC) [2] and Mean Ab-

solute Error (MAE) as the metrics for robustness pre-

diction, and Area Under the ROC curve (AUC) for the

metric of adversarial example detection.

PCC is a measure of the linear correlation between

two variables, which is calculated as follows:

ρX,Y =
cov(X,Y)

σXσY
(12)

10 J. Comput. Sci. & Technol., January 2018, Vol., No.

Table 2. Information about the datasets and DNNs used in our experiments

Dataset Dataset Description DNN Model
Neurons of Layers of

Accuracy
DNN Model DNN Model

LeNet-1 52 7 98.06%

LeNet-4 148 8 98.43%MNIST Handwritten digit recognition dataset

LeNet-5 268 9 96.29%

SVHN House numbers recognition dataset
VGG-16 14,888 22 94.28%

ResNet-50 94,059 176 91.71%

VGG-16 14,888 22 93.59%

VGG-19 16,168 25 86.44%CIFAR10 Object recognition dataset

ResNet-50 94,059 176 84.36%

where X and Y are two random variables; cov(X,Y)

is the covariance of X and Y ; σX and σY are the stan-

dard deviations of X and Y . The sign of ρX,Y in-

dicates whether X and Y are positively or negatively

correlated. (The range of ρX,Y is [−1, 1].) In general,

if the absolute value of ρX,Y is more than 0.5, X and

Y are considered to be strongly correlated.

MAE measures the absolute value difference be-

tween two variables, which is calculated as follows:

MAE =

∑n
i=1 |xi − yi|

n
(13)

where xi and yi are the i-th entry of X and Y with the

same dimension n.

AUC is defined as the area under the ROC curve,

with the value range [0.5, 1]. AUC is based on the True

Positive Rate (TPR) and False Positive Rate (FPR) to

measure the quality of a classifier. The closer the AUC

value is to 1, the better the classifier is for the task.

4.2 (RQ1) Effectiveness and efficiency of the
predictor

Each target DNN model is equipped with a robust-

ness predictor whose architectures are shown in Table

3. In our experiments, we distill 10,000 and 1,000 pairs

of neuron output and robustness values from the orig-

inal training and test datasets respectively, which are

used to train and test the robustness predictor.

As shown in Table 4, the third column, the robust-

ness values of 1,000 test examples predicted by the

trained robustness predictor are strongly correlated to

the values computed by the C&W method, in particu-

lar, all the PCC values are more than 0.7. In Table 5,

the value in Mean of robustness column is the mean

value of 1,000 examples in the test set computed by

C&W.

Note that the MAE of VGG-16 is greater than oth-

ers, this is because, in VGG-16, the images are nor-

malized by subtracting the mean value from each pixel

value and then being divided by the standard devia-

tion, while for other datasets, the pixel value is scaled

to [0, 1]. For the MNIST dataset, each image is 28×28

resolution and the pixel value is scaled to [0, 1]. The

MAE results show that the robustness predicted by the

robustness predictor is sufficiently accurate with 10%-

30% errors. These results show that the robustness

predictor is effective in robustness prediction.

Table 3. Architecture of the robustness predictors

Dataset DNN Model Robustness Predictor

MNIST

LeNet-1 588×120×84×10×1

LeNet-4 84×120×84×10×1

LeNet-5 84×120×84×10×1

CIFAR-10

VGG-16 512×256×256×10×1

VGG-19 512×256×256×10×1

ResNet-50 2048×256×256×10×1

SVHN
VGG-16 512×256×256×10×1

ResNet-50 512×256×256×10×1

To further demonstrate the effectiveness of our ap-

proach, we consider three measures in literature which

First Author et al.: Shortened Title Within 45 Characters 11

Table 4. PCC for predicting the robustness

Dataset DNN Model
Robustness Measures

Robustness Predictor Confidence Regression LSA Regression DSA Regression

MNIST
LeNet-1 0.92 0.81 0.22 0.61

LeNet-4 0.95 0.69 0.38 0.68

LeNet-5 0.95 0.86 0.10 0.08

CIFAR-10

VGG-16 0.83 0.36 0.63 0.69

VGG-19 0.90 0.31 0.53 0.73

ResNet-50 0.80 0.22 0.27 0.63

SVHN
VGG-16 0.73 0.55 0.38 0.58

ResNet-50 0.78 0.48 0.07 0.01

Table 5. MAE for predicting the robustness

Dataset DNN Model
Robustness Measures Mean of

Robustness Predictor Confidence Regression LSA Regression DSA Regression Robustness

MNIST

LeNet-1 0.15 0.24 0.39 0.31 1.30

LeNet-4 0.13 0.31 0.40 0.31 1.40

LeNet-5 0.13 0.23 0.46 0.46 1.37

CIFAR-10

VGG-16 0.20 0.38 0.29 0.26 0.93

VGG-19 0.07 0.77 0.13 0.10 0.32

ResNet-50 0.05 140.52 0.09 0.07 0.18

SVHN
VGG-16 0.13 0.17 0.19 0.17 0.43

ResNet-50 0.05 0.08 0.10 0.10 0.16

are generally linked to robustness. These measures in-

clude confidence and two variants of surprise adequacy,

which are reasonable features for robustness prediction.

Confidence: A DNN-based classifier gives the proba-

bility of each class in the output layer. The class with

the maximum probability is the prescribed classification

result, which is also referred to as confidence, present-

ing how confident the DNN model is with regards to the

classification result. In general, high confidence means

that the DNN model would not change the classifica-

tion result easily, so in some sense confidence reflects

the robustness of the DNN model. It gives a convenient

robustness score as it comes from the normal classifica-

tion process without overhead.

Surprise Adequacy: Surprise Adequacy (SA) is pro-

posed as a metric to measure the quality of the test

set for the DNN model [12], which provides users the

surprising degree of each test example.The surprising

degree is measured by the behavior difference of the

DNN model caused by the test example and the train-

ing data, which also indicates the robustness of the test

example. The DNN model is programmed by the train-

ing data and the behavior space caused by the training

data represents the learned logic inside the DNN model.

If an input example is more surprising, it causes more

behavior differences with the training data and is rarer

for the DNN model, leading its classification result less

confident. So an SA value also indicates the robustness

value of a given example.

According to [12], the SA metric has two variants,

i.e., the Likelihood-based Surprise Adequacy (LSA) and

the Distance-based Surprise Adequacy (DSA). LSA es-

timates the probability density of a given input example

with the training data using Kernel Density Estimation

(KDE), which is defined as follow:

g(x) =
1

|αl(T)|
∑
xi∈T

K(αl(x)− αl(xi)) (14)

where T is the training dataset, αl is the vector of acti-

12 J. Comput. Sci. & Technol., January 2018, Vol., No.

vation values for the selected layer l, |αl(T)| is dimen-

sionality of the neuron outputs in the training set, and

K is the KDE function. LSA is defined as follow:

LSA(x) = − log(g(x)) (15)

DSA measures the surprising degree through the

Euclidean distance of the neuron output vectors gen-

erated by the a given input and examples in the train-

ing dataset, which provides the information about the

closeness of the given input to the decision boundary.

For a new test input x with the class C, let xi be the

nearest example of x with the same classification C,

and xj be the nearest example of xi with the different

classification other than C. disti is the Euclidean dis-

tance of neuron outputs between x and xi, and distj

is the Euclidean distance of neuron outputs between xi

and xj . Then DSA is defined as

DSA(x) =
disti
distj

(16)

We adopt the polynomial regression to predict the

robustness with SA values as the input. Namely, we

vary polynomials of degrees up to n and select the one

with the best PCC value. (In the experiment, we set

n = 10.) Formally, we have

r = w1c
n + w2c

n−1 + ...+ wnc
1 + b (17)

where r represents the robustness value, c is the confi-

dence, DSA, or RSA, and w1, · · · , wn, b are the coeffi-

cients to be learned.

For LSA and DSA, as they compare the difference

between the test input and the training data, we can-

not use the examples in the original training dataset

to compute the LSA and DSA. Hence, we use 5,000

test examples in the test set to compute LSA and DSA

values respectively as the training set to train the poly-

nomial regression model, and other 1,000 test examples

as the test set to evaluate the polynomial regression

model.

Table 4 and Table 5 show the PCC and the MAE

results of the confidence regression model. The PCC

values of the robustness predictor are higher than those

of the confidence regression model, whereas The MAE

values of the robustness predictor are lower than those

of the confidence regression model. The results suggest

that the robustness predictor is superior to the confi-

dence regression model in predicting the robustness.

It is worth noticing that the MAE value of the

ResNet-50 model for CIFAR-10 dataset is much larger

the others, because most of the confidence values are

1.0. This shows that the confidence has a weaker re-

lationship with the robustness. This is the inherent

defect of DNN models as they could prescribe a fragile

classification result very confidently.

For all the DNN models, PCC values of the robust-

ness predictor are higher and MAE values are lower

than both values of LSA and DSA, revealing that the

robustness predictor outperforms the regression models

based on LSA and DSA.

Table 6 presents the time cost of obtaining the ro-

bustness values of 5,000 examples through the C&W

algorithm and the robustness predictor. The experi-

ment for the C&W algorithm is conducted with the

source code in [11]. We can see that the C&W algo-

rithm needs several hours, but the robustness predictor

only needs less than one second for the robustness cal-

culation of 5000 examples. Most of the adversarial at-

tack techniques aim to get the minimum perturbation

by iterative algorithms, which means that the accurate

robustness result needs a certain number of iterations,

i.e., the high time cost. When a new input comes, the

attack algorithm needs to execute again to calculate

the robustness value for this input. In contrast, the

proposed robustness predictor only needs a number of

First Author et al.: Shortened Title Within 45 Characters 13

robustness values. The time cost of the training pro-

cess is offline, which does not have any influence during

the using process and can be accepted. When the new

input comes, the regression model predicts the robust-

ness based on the output from the penultimate layer

of the new input. The time cost mainly comes from

the DNN forward calculation, which is much less than

the cost of optimization-based adversarial attack algo-

rithms. Table 7 shows the memory and time cost of

the robustness predictor for LeNet-5 on three types of

android platforms. The robustness predictor can conve-

niently be applied on the mobile applications with the

acceptable running cost. In conclusion, the robustness

predictor is efficient for getting the robustness value.

For the ImageNet dataset, we trained a robustness

predictor for a ResNet-50 model. Since the ImageNet

is a large-scale image dataset with 224×224×3 images

and 1,000 classes, we increase the scale of the train-

ing data for the robustness predictor to 100,000 in-

stances of neuron outputs from the penultimate layer.

The architecture we design for the robustness predictor

is 2048×1000×2048×1024×512×256×128×10×1 fully

connected neural network. Besides, we use the weights

of 2048×1000 layer from the original ResNet-50 model

to be the weights of the first layer (2048×1000) in the

robustness predictor, and use the L1 norm regulariza-

tion in the 1000 layer. The results are shown in Table 8.

The robustness predictor achieves the result of PCC

0.67 and MAE 39.46. The MAE shows the 34% addi-

tional errors with mean of robustness 116.64, which is

the mean value of 1000 test examples’ robustness com-

puted by C&W. Compared to the result of confidence

regression of PCC 0.61 and MAE 43.32, the robust-

ness predictor works well on large-scale dataset. For

the surprise-adequacy regression, it needs to compare

the features of the test input and the training dataset,

which is impossible for the large-scale ImageNet train-

ing dataset. As for the design of the robustness predic-

tor, we suggest referring to the last few fully connected

layers of the target DNN model. For the ResNet-50

model on ImageNet dataset, we use the last two lay-

ers in ResNet-50 as the first two layers to leverage the

representations learnt by the target model. Since the

dimension of representations of ResNet-50 on ImageNet

are much higher than that on small datasets, we add

more layers as dimension reduction and representation

learning for the final regression task. During the practi-

cal usage of the robustness predictor for other datasets,

users could first try the architecture of fully connected

layers in the target DNN model, and then add layers for

further dimension reduction and representation learn-

ing. According to our research, the predictor should

not require a neural network with more than 10 layers.

Answer to RQ1: the robustness predictor can predict

the robustness of individual input instances effectively

and efficiently.

Table 6. Time cost (seconds) of the C&W adversarial attack

measure and the robustness predictor

Dataset DNN Model C&W Robustness Predictor

MNIST

LeNet-1 3,242.59 0.15

LeNet-4 3,441.25 0.16

LeNet-5 3,344.78 0.15

CIFAR-10

VGG-16 17,340.78 0.16

VGG-19 13,116.62 0.16

ResNet-50 44,129.12 0.16

SVHN
VGG-16 1995.18 0.07

ResNet-50 4376.64 0.07

Table 7. Memory (MB) and time cost (ms) of the robustness

predictor for LeNet-5 on android platforms

Type Memory Time Cost

Galaxy Nexus 31.38 21

Nexus 6 43.52 12

Pixel 44.48 10

Table 8. Results for ImageNet dataset

14 J. Comput. Sci. & Technol., January 2018, Vol., No.

Robsutness Measures PCC MAE
Mean of

Robustness

Robustness Predictor 0.67 39.46
116.64

Confidence Regression 0.61 43.32

4.3 (RQ2) Application range of the predictor

75.60% 80.49% 85.47% 90.07% 95.29%

DNN Model Accuracy

1.45

1.50

1.55

1.60

1.65

1.70

1.75

1.80

1.85

M
e
a

n
 V

a
lu

e
 o

f
R

o
b
u
s
tn

e
s
s

Fig. 4. DNN models’ robustness with different accuracies

Since users may have different skills and experiences

in training DNN models, not all the models can be

trained well to reach high accuracy. We measure the

mean robustness value of 1,000 examples in the MNIST

test set for five LeNet-5 models with accuracies 75.60%,

80.49%, 85.47%, 90.07%, and 95.29%, respectively. The

results are shown in Fig. 4.

In addition to the MNIST dataset, we also train

three VGG-16 models for the CIFAR-10 dataset, with

accuracies 71.71%, 82.16%, and 93.59% respectively.

We observe that, for the same dataset and layer archi-

tecture, DNN models with different accuracies tend to

have different performance on the robustness, with the

same result for the CIFAR-10 dataset with the mean

robustness values 0.96, 0.96 and 0.93 for the accuracies

71.71%, 82.16% and 93.59%.

We next examine whether the robustness predictor

is effective for DNN models with different accuracies.

For the evaluation, as before, we compare the result of

the robustness predictor with those based confidence,

LSA and DSA on DNN models. Fig. 5 and Fig. 6 show

the evaluation results, where RP, CR, LSA and DSA

standard for robustness predictor, confidence, LSA and

DSA respectively.

For PCC, the robustness predictor obtains the val-

ues of no less than 0.9 for the MNIST dataset and no

less than 0.7 for the CIFAR-10 dataset. For MAE, the

robustness predictor achieves 0.1-0.17 and 0.20-0.22 for

the MNIST and CIFAR-10 datasets. Both confirm the

efficacy of our approach in handling models of different

accuracies, and its superiority over other methods.

Answer to RQ2: the robustness predictor can be ap-

plied to DNN models with different accuracies.

4.4 (RQ3) Layer selection

Table 9. Result of layer selection on MNIST

Layer PCC MAE

Penultimate 0.95 0.13

Penultimate, dense 2 0.96 0.12

Penultimate, dense 2, pooling 2 0.96 0.13

Penultimate, dense 2, pooling 2, pooling 1 0.95 0.13

Table 10. Result of layer selection for VGG-16 on CIFAR-10

Layer PCC MAE

Penultimate 0.83 0.20

Penultimate, pooling 5 0.83 0.20

Penultimate, pooling 5, pooling 4 0.81 0.21

Penultimate, pooling 5, pooling 4, pooling 3 0.80 0.22

Table 11. Result of layer selection for ResNet-50 on CIFAR-10

Layer PCC MAE

Penultimate 0.80 0.05

Penultimate, pooling 5 0.77 0.06

Penultimate, add 16, add 15 0.79 0.06

Penultimate, add 16, add 15, add 14 0.79 0.06

Using the neuron output from the penultimate layer

to train the robustness predictor is based on our intu-

ition that the features in the deeper layers are more

useful. However, it is important to study the impact

of the selection of layers on the robustness predictor.

To this end, we add neuron output from other layers to

train the robustness predictor and compute the PCC

and MAE results. In the experiment, we use three DNN

First Author et al.: Shortened Title Within 45 Characters 15

75.60% 80.49% 85.47% 90.07% 95.29%

DNN Model Accuracy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
C

C
OA

CR

LSA

DSA

(a)

71.71% 82.16% 93.59%

DNN Model Accuracy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
C

C

OA

CR

LSA

DSA

(b)

Fig.5. PCC results of DNN models with different accuracies

75.60% 80.49% 85.47% 90.07% 95.29%

DNN Model Accuracy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
A

E

OA

CR

LSA

DSA

(a)

71.71% 82.16% 93.59%

DNN Model Accuracy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
A

E

OA

CR

LSA

DSA

(b)

Fig.6. MAE results of DNN models with different accuracies

models, LeNet-5 for classifying the MNIST dataset,

VGG-16 and ResNet-50 for classifying the CIFAR-10

dataset. As the number of neurons in some layers may

be too large, we randomly select 100 neurons. (If there

are no more than 100 neurons for a layer, all will be

included.) As the input data becomes more compli-

cated, we also add some layers the robustness predic-

tor to improve its capacity. Specifically, we gradu-

ally add the neuron outputs from dense 2, pooling 2

and pooling 1 of LeNet-5 and the neuron outputs from

pooling 5, pooling 4 and pooling 3 of VGG-16, add 16,

add 15 and add 14 of ResNet-50 to the training data

for the robustness predictor. For VGG-16, we choose

the pooling layers, which are the last layers of the con-

volutional blocks. For ResNet-50, we choose the add

layers, which are last layers of the residual blocks. As

for the architecture, we use 120×100×100×84×10 fully

connected layers for the robustness predictor of LeNet-

5 and 256×256×256×256×10 fully connected layers for

that of VGG-16 and ResNet-50. The results are shown

in Table 8 and Table 9. No substantial difference is

observed for both PCC and MAE. This suggests that

adding extra neuron output from other layer may not

further improve the performance of the robustness pre-

dictor. Namely, considering the neuron output from

the penultimate layer gives sufficient features for the

robustness prediction.

Answer to RQ3: there is no significant improvement

16 J. Comput. Sci. & Technol., January 2018, Vol., No.

for the robustness predictor by adding neuron outputs

from other layers.

4.5 (RQ4) Effectiveness of the detector

To evaluate the effectiveness of the adversarial ex-

ample detection, we compare the proposed detector

with two state-of-the-art detection methods based on

kernel density (KD) and local intrinsic dimensionality

(LID), respectively.

We trained six DNN models (LeNet-4 and LeNet-

5 for the MNIST dataset, VGG-16 and ResNet-50 for

both SVHN and CIFAR-10 datasets) for evaluation.

Following the experimental setting [42], the logistic re-

gression detectors of KD and LID are trained by the

scores of adversarial examples generated by FGSM. For

the detector in our approach, we use the scores of adver-

sarial examples generated by C&W. 1,000 adversarial

examples generated by FGSM, C&W, BIM and JSMA

respectively are used as the test set. We compare the

AUROC results of the proposed detector with KD and

LID based detectors as shown in Table 10.

We can see that the proposed detector obtains bet-

ter performance than KD and LID detectors for C&W,

BIM and JSMA, which are based on the optimization

algorithms, on SVHN and CIFAR-10 datasets. For

LeNet-5, the proposed detector outperforms the other

methods for adversarial examples generated by the four

adversarial attacks, the same for LeNet-4 except for the

BIM. Based on the experimental results, we conclude

that the proposed detector works effectively for detect-

ing adversarial examples generated by those optimiza-

tion algorithms.

Moreover, although the proposed detector has a

weaker effect on the FGSM attack, it is still mean-

ingful in detecting adversarial examples. Adversarial

examples generated by FGSM are usually easy to de-

tect, since the perturbation is relatively obvious, while

adversarial examples generated by the optimization al-

gorithms with imperceptible perturbation are difficult

to detect, which is the strength of our approach.

Answer to RQ4: the detector can detect adversarial

examples effectively.

4.6 Threats of Validity

In this section, we analyze threats to internal, ex-

ternal and construct validity for our work.

The selection of the datasets and the DNN models

may externally threaten the validity of our evaluations.

For this problem, we choose three popular datasets, in-

cluding MNIST, CIFAR-10 and SVHN, and six state-

of-the-art DNN models, including LeNet-1, LeNet-4,

LeNet-5, VGG-16, VGG-19 and ResNet-50, as the ex-

perimental subjects. The datasets and the DNN mod-

els are diverse and representative for our experiments

to draw the conclusions. The implementation in our

experiments may also threaten the external validity of

our conclusions. We depend on the widely used Python

libraries, including Numpy, Sklearn, and Scipy to im-

plement our code for experiments.

The internal threat of the validity might come from

that we need a white-box DNN model for our ap-

proaches. Both the robustness predictor and the detec-

tor for detecting adversarial examples need the neuron

outputs inside the target DNN model as the training

data, which narrows the application range of our ap-

proaches. Usually, our approaches are used by users,

who provide the DNN models. The predictor and the

detector can be trained during the training process of

the target DNN model and used as the auxiliary tools.

Moreover, the robustness predictor is also a DNN-based

model, so it would also suffer from the adversarial at-

tack. Note that we provide the robustness predictor as

the quality of service of the DNN model and strive to

make the robustness prediction convenient to use and

First Author et al.: Shortened Title Within 45 Characters 17

Table 12. AUC (%) results for detecting adversarial examples

Dataset DNN Model Detector
Adversarial Attack

FGSM C&W BIM JSMA

MNIST

LeNet-4

KD 81.97 97.52 90.91 98.52

LID 89.12 99.69 98.36 99.06

Ours 93.21 99.65 96.40 99.08

LeNet-5

KD 72.70 89.86 75.65 94.61

LID 78.68 97.78 92.01 93.26

Ours 91.32 98.80 95.97 97.73

SVHN

VGG-16

KD 79.31 85.45 79.15 85.95

LID 70.54 84.45 73.89 83.84

Ours 78.20 97.63 82.76 97.43

ResNet-50

KD 57.41 61.67 57.62 59.57

LID 79.90 85.30 77.88 71.93

Ours 78.18 92.85 82.39 92.77

CIFAR-10

VGG-16

KD 72.37 98.02 91.79 98.40

LID 74.78 98.32 91.24 98.63

Ours 72.82 98.44 95.70 98.78

ResNet-50

KD 53.13 69.86 53.35 68.31

LID 75.46 76.85 68.94 80.70

Ours 66.13 97.86 71.90 94.30

less costly. In practice, the robustness predictor can

be used in at least two ways. First, it predicts the ro-

bustness value as the quality measurement during the

training process to, for instance, obtain a better DNN

model. Second, it can be deployed as a part of the

target DNN model to indicate the robustness of the

prediction for a new input instance. Usually users are

harder to acquire the internal neuron output of the tar-

get DNN model, so it would be much more difficult to

synthesize the adversarial example for the robustness

predictor.

As for the threat of construction validity, the met-

rics for evaluating the experimental results are impor-

tant. We use PCC to measure the correlation between

the results predicted by the regression model and the

robustness values computed by the C&W attack, which

is commonly applied to measure the linear correlation

in, for instance, statistics and data mining. We use

MAE to measure the absolute error between the pre-

diction results and the robustness values, which is also

a generic measurement for the numerical difference in

machine learning research. We use AUC to measure the

effectiveness of detecting adversarial examples, which is

standard for comparison between classifiers in the ma-

chine learning.

5 Conclusion and Future Work

In this paper, we have proposed a fast robustness

predictor, which is to predict a robustness measure for

a new input example of DNN-based classifiers. The

robustness predictor can be co-trained with the clas-

sifier. The lightweight feature of the approach makes

it feasible to deploy on resource-constrained platforms

such as mobile devices. Based on the framework of the

robustness predictor, we also devised a detector for ad-

versarial examples generated by optimization based at-

tacks. The experimental results show the effectiveness

and efficiency of the proposed robustness predictor and

adversarial example detector.

In this paper, we only consider one type of perturba-

tion, the L2 norm distance metric and other robustness

properties, such as light change, image rotation and so

18 J. Comput. Sci. & Technol., January 2018, Vol., No.

on, are also expected to be considered. Towards the dif-

ferent forms of the perturbation, neuron output solely

may not be enough; Extra information, such as the neu-

ron positions in the DNN model may be needed. These

deserve further investigation. Furthermore, since we are

able to use the neuron output and the DNN structure to

predict the robustness of DNN models, it is conceivable

one may apply to, e.g., DNN interpretation along this

avenue. Since we only evaluate the proposed predic-

tor on CNN models, another direction is to extend the

scope of our approach to other types of DNN models,

such as classic DNN and RNN models.

References

[1] Andor D, Alberti C, Weiss D, Severyn A, Presta A,

Ganchev K, Petrov S, Collins M. Globally normalized

transition-based neural networks. arXiv:1603.06042, 2016.

https://arxiv.org/abs/1603.06042.

[2] Benesty J, Chen J, Huang Y, Cohen I. Pearson correla-

tion coefficient. In Noise reduction in speech processing,

Springer, pp.1-4.

[3] Bojarski M, Testa D D, Dworakowski D, Firner B, Flepp

B, Goyal P, Jackel L D, Monfort M, Muller U, Zhang J.

End to end learning for self-driving cars. arXiv:1604.07316,

2016. https://arxiv.org/abs/1604.07316.

[4] Carlini N, Wagner D. Towards evaluating the robustness of

neural networks. In 2017 IEEE Symposium on Security and

Privacy (SP), IEEE, 2017, pp.39-57.

[5] Esteva A, Kuprel B, Novoa R A, Ko J, Swetter S M, Blau H

M, Thrun S. Dermatologist-level classification of skin cancer

with deep neural networks. Nature, 2017, 542(7639): 115.

[6] Goodfellow I J, Shlens J, Szegedy C. Explaining and

harnessing adversarial examples. arXiv:1412.6572, 2014,

https://arxiv.org/abs/1412.6572.

[7] He K, Zhang X, Ren S, Sun J. Deep residual learning for im-

age recognition. In Proceedings of the IEEE conference on

computer vision and pattern recognition, 2016, pp.770-778.

[8] Hinton G, Deng L, Yu D, Dahl G, Mohamed A, Jaitly N, Se-

nior A, Vanhoucke V, Nguyen P, Kingsbury B. Deep neural

networks for acoustic modeling in speech recognition. IEEE

Signal processing magazine, 2012, 29.

[9] Huang X, Kroening D, Kwiatkowska M, Ruan W, Sun Y,

Thamo E, Wu M, Yi X. Safety and trustworthiness of

deep neural networks: a survey. arXiv:1812.08342, 2018,

https://arxiv.org/abs/1812.08342.

[10] Huang X, Kwiatkowska M, Wang S, Wu M. Safety verifica-

tion of deep neural networks. In International Conference

on Computer Aided Verification, Springer, 2017, pp.3-29.

[11] Katz G, Barrett C, Dill D L, Julian K, Kochenderfer M J.

Reluplex: An efficient SMT solver for verifying deep neural

networks. In International Conference on Computer Aided

Verification, Springer, 2017, pp.97-117.

[12] Kim J, Feldt R, Yoo S. Guiding deep learning system testing

using surprise adequacy. In Proceedings of the 41st Inter-

national Conference on Software Engineering, IEEE Press,

2019, pp.1039-1049.

[13] Krizhevsky A, Hinton G. Learning multiple layers of fea-

tures from tiny images. Technical Report, Citeseer, 2009.

[14] Krizhevsky A, Sutskever I, Hinton G E. Imagenet classifica-

tion with deep convolutional neural networks. In Advances

in neural information processing systems, 2012, pp.1097-

1105.

[15] Kurakin A, Goodfellow I, Bengio S. Adversarial ex-

amples in the physical world. arXiv:1607.02533, 2016,

https://arxiv.org/abs/1607.02533.

[16] LeCun L, Bengio Y, Hinton G. Deep learning. Nature, 2015,

521(7553): 436.

[17] LeCun L, Boser B, Denker J S, Henderson D, Howard R E,

Hubbard W, Jackel L D. Backpropagation applied to hand-

written zip code recognition. Neural computation, 1989,

1(4): pp.541-551.

[18] LeCun L, Bottou L, Bengio Y, Haffner P. Gradient-based

learning applied to document recognition. Proceedings of

the IEEE, 1998, 86(11): 2278-2324.

[19] Ma J, Sheridan R P, Liaw A, Dahl G E, Svetnik V. Deep

neural nets as a method for quantitative structure–activity

relationships. Journal of chemical information and model-

ing, 2015, 55(2): pp.263-274.

[20] Ma L, Juefei-Xu F, Zhang F, Sun J, Xue M, Li B, Chen C,

Su T, Yang L, Liu Y. Deepgauge: Multi-granularity test-

ing criteria for deep learning systems. In Proceedings of the

33rd ACM/IEEE International Conference on Automated

Software Engineering, ACM, 2018, pp.120-131.

[21] Ma L, Zhang F, Xue M, Li B, Liu Y, Zhao J, Wang

Y. Combinatorial testing for deep learning systems.

arXiv:1806.07723, 2018, https://arxiv.org/abs/1806.07723.

[22] Moosavi-Dezfooli S, Fawzi A, Fawzi O, Frossard P. Univer-

sal adversarial perturbations. In Proceedings of the IEEE

conference on computer vision and pattern recognition,

2017, pp.1765-1773.

[23] Moosavi-Dezfooli S, Fawzi A, Frossard P. Deepfool: a sim-

ple and accurate method to fool deep neural networks. In

Proceedings of the IEEE conference on computer vision and

pattern recognition, 2016, pp.2574-2582.

First Author et al.: Shortened Title Within 45 Characters 19

[24] Papernot N, McDaniel P, Goodfellow I, Jha S, Celik Z

B, Swami A. Practical black-box attacks against machine

learning. In Proceedings of the 2017 ACM on Asia con-

ference on computer and communications security, 2017,

pp.506-519.

[25] Papernot N, McDaniel P, Jha S, Fredrikson M, Celik Z B,

Swami A. The limitations of deep learning in adversarial

settings. In 2016 IEEE European Symposium on Security

and Privacy (EuroS&P), IEEE, 2016, pp.372-387.

[26] Pei K, Cao Y, Yang J, Jana S. Deepxplore: Automated

whitebox testing of deep learning systems. In Proceedings

of the 26th Symposium on Operating Systems Principles,

2017, pp.1-18.

[27] Pulina L, Tacchella A. An abstraction-refinement approach

to verification of artificial neural networks. In International

Conference on Computer Aided Verification, Springer,

2010, pp.243-257.

[28] Pulina L, Tacchella A. Challenging SMT solvers to verify

neural networks. Ai Communications, 2012, 25(2): 117-135.

[29] Ruan W, Huang X, Kwiatkowska M. Reachability anal-

ysis of deep neural networks with provable guarantees.

arXiv:1805.02242, 2018, https://arxiv.org/abs/1805.02242.

[30] Rumelhart D E, Hinton G E, Williams R J. Learning repre-

sentations by back-propagating errors. Cognitive modeling,

1988, 5(3): 1.

[31] Silver D, Huang A, Maddison C J, Guez A, Sifre L, Driess-

che G V D, Schrittwieser J, Antonoglou I, Panneershelvam

V, Lanctot M. Mastering the game of Go with deep neural

networks and tree search. Nature, 2016, 529(7587): pp.484.

[32] Simonyan K, Zisserman A. Very deep convolutional net-

works for large-scale image recognition. arXiv:1409.1556,

2014, https://arxiv.org/abs/1409.1556.

[33] Singh G, Gehr T, Püschel M, Vechev M. An abstract do-

main for certifying neural networks. Proceedings of the

ACM on Programming Languages, 2019, 3(POPL): 41.

[34] Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z. Re-

thinking the inception architecture for computer vision. In

Proceedings of the IEEE conference on computer vision and

pattern recognition, 2016, pp.2818-2826.

[35] Szegedy C, Zaremba W, Sutskever I, Bruna J, Er-

han D, Goodfellow I, Fergus R. Intriguing prop-

erties of neural networks. arXiv:1312.6199, 2013,

https://arxiv.org/abs/1312.6199.

[36] Weng T, Zhang H, Chen H, Song Z, Hsieh C, Boning D,

Dhillon I S, Daniel L. Towards fast computation of certi-

fied robustness for relu networks. arXiv:1804.09699, 2018,

https://arxiv.org/abs/1804.09699.

[37] Wu Y, Schuster M, Chen Z, Le Q V, Norouzi M, Macherey

W, Krikun M, Cao Y, Gao Q, Macherey K. Google’s neu-

ral machine translation system: Bridging the gap between

human and machine translation. arXiv:1609.08144, 2016,

https://arxiv.org/abs/1609.08144.

[38] Xiang W, Tran H, Johnson T T. Output reachable set es-

timation and verification for multilayer neural networks.

IEEE transactions on neural networks and learning sys-

tems, 2018, 29(11): 5777-5783.

[39] Xiong W, Droppo J, Huang X, Seide F, Seltzer M, Stol-

cke A, Yu D, Zweig G. Achieving human parity in con-

versational speech recognition. arXiv:1610.05256, 2016,

https://arxiv.org/abs/1610.05256.

[40] Yuan Z, Lu Y, Wang Z, Xue Y. Droid-sec: deep learning

in android malware detection. ACM SIGCOMM Computer

Communication Review, 2014, 44(4): 371-372.

[41] Feinman R, Curtin R R, Shintre S, Gardner A B. Detecting

adversarial samples from artifacts. 2017, arXiv:1703.00410,

https://arxiv.org/abs/1703.00410.

[42] Ma X, Li B, Wang Y, Erfani S M, Wijewick-

rema S, Schoenebeck G, Song D, Houle M E, Bai-

ley J. Characterizing adversarial subspaces using lo-

cal intrinsic dimensionality. 2018, arXiv:1801.02613,

https://arxiv.org/abs/1801.02613.

[43] Papernot N, McDaniel P, Jha S, Fredrikson M, Celik Z B,

Swami A. The limitations of deep learning in adversarial

settings. In 2016 IEEE European Symposium on Security

and Privacy (EuroS&P), pp.372-387.

[44] Netzer Y, Wang T, Coates A, Bissacco A, Wu B, Ng A

Y. Reading digits in natural images with unsupervised

feature learning. http://ufldl.stanford.edu/housenumbers/

nips2011 housenumbers.pdf, 2011.

[45] TensorFlow Lite. https://www.tensorflow.org/lite.

[46] PyTorch Mobile. https://pytorch.org/mobile/home/.

[47] Pang T, Du C, Dong Y, Zhu J. Towards robust detection of

adversarial examples. In Advances in Neural Information

Processing Systems, 2018, pp.4579-4589.

[48] Santhanam G K, Grnarova P. Defending against adversarial

attacks by leveraging an entire gan. 2018, arXiv:1805.10652,

https://arxiv.org/abs/1805.10652.

[49] Grosse K, Manoharan P, Papernot N, et al. On the

(statistical) detection of adversarial examples. 2017,

arXiv:1702.06280, https://arxiv.org/abs/1702.06280.

[50] Carlini N, Wagner D. Adversarial examples are not easily

detected: Bypassing ten detection methods. In Proceedings

of the 10th ACM Workshop on Artificial Intelligence and

Security, 2017: 3-14.

[51] Xu W, Evans D, Qi Y. Feature squeezing: Detect-

ing adversarial examples in deep neural networks. 2017,

arXiv:1704.01155, https://arxiv.org/abs/1704.01155.

[52] Wang X, Huang C, Yao L, Benatallah B, Dong M. A survey

on expert recommendation in community question answer-

ing. Journal of Computer Science and Technology, 2018,

33(4), 625-653.

20 J. Comput. Sci. & Technol., January 2018, Vol., No.

[53] Liu Q, Zhao H K, Wu L, Li Z, Chen E H. Illuminating

Recommendation by Understanding the Explicit Item Re-

lations. Journal of Computer Science and Technology, 2018,

33(4), 739-755.

[54] Ameur H, Jamoussi S, Hamadou A B. A new method for

sentiment analysis using contextual auto-encoders. Journal

of Computer Science and Technology, 2018 33(6), 1307-

1319.

[55] https://github.com/geifmany/cifar-vgg

[56] Deng J, Dong W, Socher R, Li L J, Li K, Fei-Fei L. Im-

agenet: A large-scale hierarchical image database. In 2009

IEEE conference on Computer Vision and Pattern Recog-

nition, June 2009, pp.248-255.

[57] Li Z, Ma X, Xu C, Xu J, Cao C, Lü J. Operational calibra-

tion: debugging confidence errors for DNNs in the Field.

2019, arXiv:1910.02352, https://arxiv.org/abs/1910.02352.

[58] Li Z, Ma X, Xu C, Cao C, Xu J, Lü J. Boosting opera-

tional dnn testing efficiency through conditioning. In Pro-

ceedings of the 2019 27th ACM Joint Meeting on European

Software Engineering Conference and Symposium on the

Foundations of Software Engineering, 2019, pp. 499-509.

[59] LeCun Y, Bengio Y, Hinton G. Deep Learning. MIT Press,

2016.

[60] Bastani O, Ioannou Y, Lampropoulos L, Vytiniotis D, Nori

A, Criminisi A. Measuring neural net robustness with con-

straints. In Advances in neural information processing sys-

tems, 2016, pp.2613-2621.

[61] Hendrycks D, Gimpel K. A baseline for detecting misclas-

sified and out-of-distribution examples in neural networks.

2016, arXiv:1610.02136, https://arxiv.org/abs/1610.02136.

[62] Burrell J. How the machine ’thinks’: Understanding opacity

in machine learning algorithms. Big Data & Society, 2016,

3(1): 2053951715622512.

[63] Athalye A, Carlini N, Wagner D. Obfuscated gradi-

ents give a false sense of security: Circumventing de-

fenses to adversarial examples. 2018, arXiv:1802.00420,

https://arxiv.org/abs/1802.00420.

[64] Wong E, Kolter J Z. Provable defenses against adversarial

examples via the convex outer adversarial polytope. 2017,

arXiv:1711.00851, https://arxiv.org/abs/1711.00851.

[65] Gopinath D, Pasareanu C S, Wang K, Zhang M, Khurshid

S. Symbolic execution for attribution and attack synthesis

in neural networks. In IEEE/ACM 41st International Con-

ference on Software Engineering: Companion Proceedings

(ICSE-Companion)., 2019, pp.282-283.

[66] Wang Y, Li Z, Xu J, Yu P, Ma X. Fast Robustness Predic-

tion for Deep Neural Network. In Proceedings of the 11th

Asia-Pacific Symposium on Internetware., 2019, pp.1-10.

