Skip to main content
Log in

Fault-Tolerant Hamiltonicity and Hamiltonian Connectivity of BCube with Various Faulty Elements

  • Regular Paper
  • Published:
Journal of Computer Science and Technology Aims and scope Submit manuscript

Abstract

BCube is one kind of important data center networks. Hamiltonicity and Hamiltonian connectivity have significant applications in communication networks. So far, there have been many results concerning fault-tolerant Hamiltonicity and fault-tolerant Hamiltonian connectivity in some data center networks. However, these results only consider faulty edges and faulty servers. In this paper, we study the fault-tolerant Hamiltonicity and the fault-tolerant Hamiltonian connectivity of BCube(n, k) under considering faulty servers, faulty links/edges, and faulty switches. For any integers n ≥ 2 and k ≥ 0, let BCn,k be the logic structure of BCube(n, k) and F be the union of faulty elements of BCn,k. Let fv, fe, and fs be the number of faulty servers, faulty edges, and faulty switches of BCube(n, k), respectively. We show that BCn,kF is fault-tolerant Hamiltonian if fv +fe + (n − 1)fs ≤ (n − 1)(k + 1) − 2 and BCn,kF is fault-tolerant Hamiltonian-connected if fv + fe + (n − 1)fs ≤ (n − 1)(k + 1) − 3. To the best of our knowledge, this paper is the first work which takes faulty switches into account to study the fault-tolerant Hamiltonicity and the fault-tolerant Hamiltonian connectivity in data center networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Guo C, Wu H, Tan K, Shi L, Zhang Y, Lu S. DCell: A scalable and fault-tolerant network structure for data centers. In Proc. the 2008 ACM SIGCOMM Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications, August 2008, pp.75-86.

  2. Ahn J H, Binkert N, Davis A, McLaren M, Schreiber R S. HyperX: Topology, routing, and packaging of efficient large-scale networks. In Proc. the Conference on High Performance Computing Networking, Storage and Analysis, November 2009, Article No. 41.

  3. Guo C, Lu G, Li D et al. BCube: A high performance, server-centric network architecture for modular data centers. In Proc. the ACM SIGCOMM Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications, August 2009, pp.63-74.

  4. Liao Y, Yin J, Yin D, Gao L. DPillar: Dual-port server interconnection network for large scale data centers. Computer Networks, 2012, 56(8): 2132-2147.

    Article  Google Scholar 

  5. Guo D, Chen T, Li D, Li M, Liu Y, Chen G. Expandable and cost-effective network structures for data centers using dual-port servers. IEEE Transaction on Computers, 2013, 62(7): 1303-1317.

    Article  MathSciNet  MATH  Google Scholar 

  6. Li D, Wu J. On the design and analysis of data center network architectures for interconnecting dual-port servers. In Proc. the 2004 IEEE Conference on Computer Communications, April 2014, pp.1851-1859.

  7. Li D, Wu J, Liu Z, Zhang F. Dual-centric data center network architectures. In Proc. the 44th International Conference on Parallel Processing, September 2015, pp.679-688.

  8. Wang X, Fan J, Lin C K, Zhou J, Liu Z. BCDC: A high-performance, server-centric data center network. Journal of Computer Science and Technology, 2018, 33(2): 400-416.

    Article  MathSciNet  Google Scholar 

  9. Leighton F T. Introduction to Parallel Algorithms and Architecture: Arrays Trees Hypercubes (1st edition). Morgan Kaufmann Pub, 1991.

  10. Xu J. Topological Structure and Analysis of Interconnection Networks. Springer, 2002.

  11. Xu J M, Ma M. Survey on path and cycle embedding in some networks. Frontiers of Mathematics in China, 2009, 4(2): 217-252.

    Article  MathSciNet  MATH  Google Scholar 

  12. Xu D, Fan J, Jia X, Zhang S, Wang X. Hamiltonian properties of honeycomb meshes. Information Sciences, 2013, 240: 184-190.

  13. Xue L, Yang W, Zhang S. Number of proper paths in edge-colored hypercubes. Applied Mathematics and Computation, 2018, 332: 420-424.

    Article  MathSciNet  MATH  Google Scholar 

  14. Lv M, Zhou S, Sun X, Lian G, Liu J. Reliability of (n, k)-star network based on g-extra conditional fault. Theoretical Computer Science, 2019, 757: 44-55.

    Article  MathSciNet  MATH  Google Scholar 

  15. Lin L, Xu L, Huang Y, Xiang Y, He X. On exploiting priority relation graph for reliable multi-path communication in mobile social networks. Information Sciences, 2019, 477: 490-507.

    Article  MathSciNet  MATH  Google Scholar 

  16. Li X J, Liu B, Ma M, Xu J M. Many-to-many disjoint paths in hypercubes with faulty vertices. Discrete Applied Mathematics, 2017, 217: 229-242.

    Article  MathSciNet  MATH  Google Scholar 

  17. Sabir E, Meng J. Parallel routing in regular networks with faults. Information Processing Letters, 2019, 142: 84-89.

    Article  MathSciNet  MATH  Google Scholar 

  18. Fujita S, Araki T. Three-round adaptive diagnosis in binary n-cubes. In Proc. the 15th International Symposium on Algorithms and Computation, December 2004, pp.442-451.

  19. Ye L C, Liang J R. Five-round adaptive diagnosis in Hamiltonian networks. IEEE Transaction on Parallel and Distributed Systems, 2015, 26(9): 2459-2464.

    Article  Google Scholar 

  20. Lin X, Ni L M. Deadlock-free multicast wormhole routing in multicomputer networks. In Proc. the 18th Annual International Symposium on Computer Architecture, May 1991, pp.116-125.

  21. Bahrebar P, Stroobandt D. The Hamiltonian-based odd-even turn model for adaptive routing in interconnection networks. In Proc. the 2013 International Conference on Reconfigurable Computing and FPGAs, December 2013.

  22. Yang Y, Zhang L. Fault-tolerant-prescribed Hamiltonian laceability of balanced hypercubes. Information Processing Letters, 2019, 145: 11-15.

    Article  MathSciNet  MATH  Google Scholar 

  23. Liu H, Hu X, Gao S. Hamiltonian cycles and paths in faulty twisted hypercubes. Discrete Applied Mathematics, 2019, 257: 243-249.

    Article  MathSciNet  MATH  Google Scholar 

  24. Zhou S, Xu J M. Conditional fault tolerance of arrangement graphs. Information Processing Letters, 2011, 111(21): 1037-1043.

    Article  MathSciNet  MATH  Google Scholar 

  25. Wang X, Fan J, Zhou J, Lin C K. The restricted h-connectivity of the data center network DCell. Discrete Applied Mathematics, 2016, 203: 144-157.

    Article  MathSciNet  MATH  Google Scholar 

  26. Tsai C H, Tan J J M, Liang T, Hsu L H. Fault-tolerant hamiltonian laceability of hypercubes. Information Processing Letters, 2002, 83(6): 301-306.

    Article  MathSciNet  MATH  Google Scholar 

  27. Liu M, Liu H. Conditional edge-fault-tolerant hamiltonicity of enhanced hypercube. In Proc. the 2011 International Conference on Computer Science and Service System, June 2011, pp.297-300.

  28. Lee C W, Lin T J, Hsieh S Y. Hamiltonicity of product networks with faulty elements. IEEE Transactions on Parallel and Distributed Systems, 2014, 25(9): 2318-2331.

    Article  Google Scholar 

  29. Hsieh S Y, Lee C W, Huang C H. Conditional edge-fault hamiltonian-connectivity of restricted hypercube-like networks. Information and Computation, 2016, 251: 314-334

    Article  MathSciNet  MATH  Google Scholar 

  30. Lv Y, Lin C K, Fan J, Jia X. Hamiltonian cycle and path embeddings in 3-ary n-cubes based on K1, 3-structure faults. Journal of Parallel and Distributed Computing, 2018, 120: 148-158.

    Article  Google Scholar 

  31. Wang X, Erickson A, Fan J, Jia X. Hamiltonian properties of DCell networks. The Computer Journal, 2015, 58(11): 2944-2956.

    Article  Google Scholar 

  32. Qin X, Hao R. Conditional edge-fault-tolerant Hamiltonicity of the data center network. Discrete Applied Mathematics, 2018, 247: 165-179.

    Article  MathSciNet  MATH  Google Scholar 

  33. Li X, Fan J, Lin C K, Jia X. Diagnosability evaluation of the data center network DCell. The Computer Journal, 2017, 61(1): 129-143.

    Article  MathSciNet  Google Scholar 

  34. Hsu L H, Lin C K. Graph Theory and Interconnection Networks (1st edition). CRC press, 2008.

  35. Tsai C H, Tan J J M, Liang T, Hsu L H. Fault-tolerant Hamiltonian laceability of hypercubes. Information Processing Letters, 2002, 83(6): 301-306.

    Article  MathSciNet  MATH  Google Scholar 

  36. Hsieh S Y, Lin T J. Super fault-tolerant Hamiltonicity of product networks. In Proc. the 2010 IEEE International Symposium on Parallel and Distributed Processing with Applications, September 2010, pp.236-243.

  37. Cheng C W, Lee C W, Hsieh S Y. Conditional edge-fault Hamiltonicity of Cartesian product graphs. IEEE Transactionson Parallel and Distributed Systems, 2013, 24(10): 1951-1960.

    Article  Google Scholar 

  38. Bhuyan L N, Agrawal D P. Generalized hypercube and hyperbus structures for a computer network. IEEE Transactions on Computers, 1984, 33(4): 323-333.

    Article  MATH  Google Scholar 

  39. Hsu H C, Li T K, Tan J J M. Fault Hamiltonicity and fault Hamiltonian connectivity of the arrangement graphs. IEEE Transactions on Computers, 2004, 53(1): 39-53.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Xi Fan.

Electronic supplementary material

ESM 1

(PDF 276 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, GJ., Lin, CK., Fan, JX. et al. Fault-Tolerant Hamiltonicity and Hamiltonian Connectivity of BCube with Various Faulty Elements. J. Comput. Sci. Technol. 35, 1064–1083 (2020). https://doi.org/10.1007/s11390-020-9508-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11390-020-9508-3

Keywords

Navigation