Skip to main content
Log in

Multi-Scale Deep Cascade Bi-Forest for Electrocardiogram Biometric Recognition

  • Regular Paper
  • Published:
Journal of Computer Science and Technology Aims and scope Submit manuscript

Abstract

Electrocardiogram (ECG) biometric recognition has emerged as a hot research topic in the past decade. Although some promising results have been reported, especially using sparse representation learning (SRL) and deep neural network, robust identification for small-scale data is still a challenge. To address this issue, we integrate SRL into a deep cascade model, and propose a multi-scale deep cascade bi-forest (MDCBF) model for ECG biometric recognition. We design the bi-forest based feature generator by fusing L1-norm sparsity and L2-norm collaborative representation to efficiently deal with noise. Then we propose a deep cascade framework, which includes multi-scale signal coding and deep cascade coding. In the former, we design an adaptive weighted pooling operation, which can fully explore the discriminative information of segments with low noise. In deep cascade coding, we propose level-wise class coding without backpropagation to mine more discriminative features. Extensive experiments are conducted on four small-scale ECG databases, and the results demonstrate that the proposed method performs competitively with state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Odinaka I, Lai P H, Kaplan A D, Osullivan J A, Sire-vaag E J, Rohrbaugh J W. ECG biometric recognition: A comparative analysis. IEEE Trans. Information Forensics and Security, 2012, 7(6): 1812-1824. DOI: https://doi.org/10.1109/TIFS.2012.2215324.

    Article  Google Scholar 

  2. Kim M, Pan S B. Deep learning based on 1-D ensemble networks using ECG for real time user recognition. IEEE Trans. Industrial Informatics, 2019, 15(10): 5656-5663. DOI: https://doi.org/10.1109/TII.2019.2909730.

    Article  Google Scholar 

  3. Wang J, She M, Nahavandi S, Kouzani A Z. Human identification from ECG signals via sparse representation of local segments. IEEE Signal Processing Letters, 2013, 20(10): 937-940. DOI: https://doi.org/10.1109/LSP.2013.2267593.

    Article  Google Scholar 

  4. Jaafar H, Ramli N, Nasir A S A. Implementation of kernel sparse representation classifier for ECG biometric system. Journal of Telecommunication, Electronic and Computer Engineering, 2018, 10(1-13): 89-94

    Google Scholar 

  5. Li R, Yang G, Wang K, Huang Y, Yuan F, Yin Y. Robust ECG biometrics using GNMF and sparse representation. Pattern Recognition Letters, 2019, 129: 70-76. DOI: https://doi.org/10.1016/j.patrec.2019.11.005.

    Article  Google Scholar 

  6. Goshvarpour A, Goshvarpour A. Human identification using a new matching pursuit-based feature set of ECG. Computer Methods and Programs in Biomedicine, 2019, 172: 87-94. DOI: https://doi.org/10.1016/j.cmpb.2019.02.009.

    Article  Google Scholar 

  7. Zhang L, Liu J, Zhang B, Zhang D, Zhu C. Deep cascade model-based face recognition: When deep-layered learning meets small data. IEEE Trans. Image Process, 2019, 29: 1016-1029. DOI: https://doi.org/10.1109/TIP.2019.2938307.

    Article  MathSciNet  Google Scholar 

  8. Abdeldayem S S, Bourlai T. A novel approach for ECG-based human identification using spectral correlation and deep learning. IEEE Trans. Biometrics, Behavior, and Identity Science, 2020, 2(1): 1-14. DOI: https://doi.org/10.1109/TBIOM.2019.2947434.

    Article  Google Scholar 

  9. Labati R D, Munoz E, Piuri V, Sassi R, Scotti F. Deep-ECG: Convolutional neural networks for ECG biometric recognition. Pattern Recognition Letter, 2019, 126: 78-85. DOI: https://doi.org/10.1016/j.patrec.2018.03.028.

    Article  Google Scholar 

  10. da Silva Luz E, Moreira G, Oliveira L S, Schwartz W R, Menotti D. Learning deep off-the-person heart biometrics representations. IEEE Trans. Information Forensics and Security, 2017, 13(5): 1258-1270. DOI: https://doi.org/10.1109/TIFS.2017.2784362.

    Article  Google Scholar 

  11. Hammad M, Liu Y, Wang K. Multimodal biometric authentication systems using convolution neural network based on different level fusion of ECG and fingerprint. IEEE Access, 2019, 7: 26527-26542. DOI: https://doi.org/10.1109/AC-CESS.2018.2886573.

    Article  Google Scholar 

  12. Zhang Y, Xiao Z, Guo Z, Wang Z. ECG-based personal recognition using a convolutional neural network. Pattern Recognition Letter, 2019, 125: 668-676. DOI: https://doi.org/10.1016/j.patrec.2019.07.009.

    Article  Google Scholar 

  13. Zhou Z, Feng J. Deep forest: Towards an alternative to deep neural networks. In Proc. the 26th Int. Artificial Intelligence, August 2017, pp.3553-3559. DOI: 10.24963/ij-cai.2017/497.

  14. Liu X B, Wang R, Cai Z, Cai Y, Yin X. Deep multi-grained cascade forest for hyperspectral image classification. IEEE Trans. Geoscience and Remote Sensing, 2019, 57(10): 8169-8183. DOI: 0.1109/TGRS.2019.2918587.

  15. Wen H, Zhang J, Lin Q, Yang K, Huang P. Multi-level deep cascade trees for conversion rate prediction in recommendation system. In Proc. the 23rd Int. Artificial Intelligence, May 2019, pp.338-345. DOI: https://doi.org/10.1609/aaai.v33i01.3301338.

  16. Lim C, Woo W L, Dlay S, Gao B. Heartrate-dependent heartwave biometric identification with thresholding-based GMM-HMM methodology. IEEE Trans. Industrial Informatics, 2019, 15(1): 45-53. DOI: https://doi.org/10.1109/TII.2018.2874462.

    Article  Google Scholar 

  17. Meltzer D, Luengo D. Fiducial ECG-based biometry: Comparison of classifiers and dimensionality reduction methods. In Proc. the 42nd Int. Telecommunications and Signal Processing, Jul. 2019, pp.552-556. DOI: https://doi.org/10.1109/TSP.2019.8768891.

  18. Diab M O, Seif A, El-Abed M, Sabbah M. Individual identification using ECG signals. Journal of Computer and Communications, 2018, 6: 74-80. DOI: https://doi.org/10.4236/jcc.2018.61008.

    Article  Google Scholar 

  19. Dong X, Si W, Huang W. ECG-based identity recognition via deterministic learning. Biotechnology & Biotech-nological Equipment, 2018, 32(3): 769-777. DOI: https://doi.org/10.1080/13102818.2018.1428500.

    Article  Google Scholar 

  20. Rahman S A E. Biometric human recognition system based on ECG. Multimedia Tools and Applications, 2019, 78(3): 17555-17572. DOI: https://doi.org/10.1007/s11042-019-7152-0.

    Article  Google Scholar 

  21. Srivastva R, Singh Y N. Human recognition using discrete cosine transform and discriminant analysis of ECG. In Proc. the 4th Int. Image Information Processing, Dec. 2017, pp.368-372. DOI: https://doi.org/10.1109/ICIIP.2017.8313742.

  22. Bassiouni M M, El-Dahshan E A, Khalefa W, Salem A M. Intelligent hybrid approaches for human ECG signals identification. Signal, Image and Video Processing, 2018, 12(5): 941-949. DOI: https://doi.org/10.1007/s11760-018-1237-5.

    Article  Google Scholar 

  23. Ur Rehman U, Kamal K, Iqbal J, Sheikh M F. Biometric identification through ECG signal using a hybridized approach. In Proc. the 5th Int. Computing and Artificial Intelligence, Apr. 2019, pp.226-230. DOI: https://doi.org/10.1145/3330482.3330496.

  24. Wu S C, Chen P T, Swindlehurst A L, Hung P L. Cancelable biometric recognition with ECGs: Subspace-based approaches. IEEE Trans. Information Forensics and Security, 2019, 14(5): 1323-1336. DOI: https://doi.org/10.1109/TIFS.2018.2876838.

    Article  Google Scholar 

  25. He H, Tan Y. Automatic pattern recognition of ECG signals using entropy-based adaptive dimensionality reduction and clustering. Applied Soft Computing, 2017, 55: 238-252. DOI: https://doi.org/10.1016/j.asoc.2017.02.001.

    Article  Google Scholar 

  26. Srivastva R, Singh Y. ECG biometric analysis using Walsh-Hadamard transform. In Advances in Data and Information Sciences, Kolhe M L, Trivedi M C, Tiwari S, Singh V (eds.), Springer, 2018, pp.201-210. DOI: 10.1007/978-981-10-8360-0_19.

  27. Zheng G, Wang Y, Sun X, Sun Y, Ji S. Study on Matthew effect based feature extraction for ECG biometric. In Proc. the 8th Int. Conf. Intelligent Science and Big Data Engineering, Aug. 2018, pp.623-634. DOI: https://doi.org/10.1007/978-3-030-02698-1-54.

  28. Pinto J R, Cardoso J S, Lourenço A. Evolution, current challenges, and future possibilities in ECG biometrics. IEEE Access, 2018, 6: 34746-34776. DOI: https://doi.org/10.1109/AC-CESS.2018.2849870.

    Article  Google Scholar 

  29. Pal A, Singh Y. ECG biometric recognition. In Proc. the 4th Int. Conf. Mathematics and Computing, Jan. 2018, pp.61-73. DOI: https://doi.org/10.1007/978-981-13-0023-37.

  30. Hejazi M, Al-Haddad S A R, Singh Y P, Hashim S J, Aziz A F A. ECG biometric authentication based on non-fiducial approach using kernel methods. Digital Signal Processing, 2016, 52: 72-86. DOI: https://doi.org/10.1016/j.dsp.2016.02.008.

    Article  Google Scholar 

  31. Chen H, Huang C, Huang Q, Zhang Q, Wang W. ECGadv: Generating adversarial electrocardiogram to misguide arrhythmia classification system. In Proc. the 34th AAAI Conference on Artificial Intelligence, Feb. 2020, pp.3446-3453. DOI: 10.1609/aaai.v34i04.5748.

  32. Utkin L V, Ryabinin M A. Discriminative metric learning with deep forest. International Journal of Artificial Intelligence Tools, 2017, 28(2): 195-204. DOI: https://doi.org/10.1142/S0218213019500076.

    Article  Google Scholar 

  33. Su R, Liu X,Wei L, Zou Q. Deep-Resp-forest: A deep forest model to predict anti-cancer drug response. Methods, 2019, 166: 91-102. DOI: https://doi.org/10.1016/j.ymeth.2019.02.009.

    Article  Google Scholar 

  34. Pang M, Ting K M, Zhao P, Zhou Z. Improving deep forest by confidence screening. In Proc. the 20th Int. Data Mining, Nov. 2018, pp.1194-1199. DOI: https://doi.org/10.1109/ICDM.2018.00158.

  35. Lan X, Zhang S, Yuen P C, Chellappa R. Learning common and feature-specific patterns: A novel multiple-sparse-representation-based tracker. IEEE Trans. Image Processing, 2017, 27(4): 2022-2037. DOI: https://doi.org/10.1109/TIP.2017.2777183.

    Article  MathSciNet  MATH  Google Scholar 

  36. Panagakis Y, Kotropoulos C, Arce G R. Music genre classification via joint sparse low-rank representation of audio features. IEEE/ACM Trans. Audio, Speech, and Language Processing, 2014, 22(12): 1905-1917. DOI: https://doi.org/10.1109/TASLP.2014.2355774.

    Article  Google Scholar 

  37. Wright J, Yang A Y, Ganesh A, Sastry S, Ma Y. Robust face recognition via sparse representation. IEEE Trans. Pattern Analysis and Machine Intelligence, 2009, 31(2): 210-227. DOI: https://doi.org/10.1109/TPAMI.2008.79.

    Article  Google Scholar 

  38. Moody G B, Mark R G. The impact of the MIT-BIH arrhythmia database. IEEE Engineering in Medicine and Biology Magazine, 2001, 20(3): 45-50. DOI: https://doi.org/10.1109/51.932724.

    Article  Google Scholar 

  39. Bousseljot R, Kreiseler D, Schnabel A. Nutzung der EKG-signaldatenbank CARDIODAT der PTB uber das internet. Biomedizinische Technik/Biomedical Engineering, 2009, 40(s1): 317-318. DOI: https://doi.org/10.1515/bmte.1995.40.s1.317.

    Article  Google Scholar 

  40. Da Silva H P, Lourenço A, Fred A, Raposo N, Airesde-Sousa M. Check your biosignals here: A new dataset for off-the-person ECG biometrics. Computer Methods and Programs in Biomedicine, 2014, 113(2): 503-514. DOI: https://doi.org/10.1016/j.cmpb.2013.11.017.

    Article  Google Scholar 

  41. Pouryayevali S, Wahabi S, Hari S, Hatzinakos D. On establishing evaluation standards for ECG biometrics. In Proc. the 2014 Int. Conf. Acoustics, Speech and Signal Processing, May 2014, pp.3774-3778. DOI: https://doi.org/10.1109/ICASSP.2014.6854307.

  42. Pan J, Tompkins W J. A real-time QRS detection algo-rithm. IEEE Trans. Biomedical Engineering, 1985, BME-32(3): 230-236. DOI: https://doi.org/10.1109/TBME.1985.325532.

    Article  Google Scholar 

  43. Biel L, Pettersson O, Philipson L, Wide P. ECG analysis: A new approach in human identification. IEEE Trans. Instrumentation and Measurement, 2001, 50(3): 808-812. DOI: https://doi.org/10.1109/19.930458.

    Article  Google Scholar 

  44. Chan A A, Hamdy M M, Badre A, Badee V. Wavelet distance measure for person identification using electrocar-diograms. IEEE Trans. Instrumentation & Measurement, 2008, 57(2): 248-253. DOI: https://doi.org/10.1109/TIM.2007.909996.

    Article  Google Scholar 

  45. Yang J, Yu K, Gong Y, Huang T S. Linear spatial pyramid matching using sparse coding for image classification. In Proc. the 2009 Computer Vision and Pattern Recognition, Jun. 2009, pp.1794-1801. DOI: 10.1109/CVPR.2009.5206757.

  46. Wang K, Yang G, Huang Y, Yin Y. Multi-scale differential feature for ECG biometrics with collective matrix factorization. Pattern Recognition, 2020, 102: Article No. 107211. DOI: 10.1016/j.patcog.2020.107211.

  47. Chu Y, Shen H, Huang K. ECG authentication method based on parallel multi-scale one-dimensional residual net-work with center and margin loss. IEEE Access, 2019, 7: 51598-51607. DOI: https://doi.org/10.1109/ACCESS.2019.2912519.

    Article  Google Scholar 

  48. Komeili M, Louis W, Armanfard N, Hatzinakos D. Feature selection for nonstationary data: Application to human recognition using medical biometrics. IEEE Trans. Cybern:, 2018, 48(5): 1446-1459. DOI: https://doi.org/10.1109/TCYB.2017.2702059.

    Article  Google Scholar 

  49. Huang Y W, Yang G P, Wang K K, Liu H Y, Yin Y L. Learning joint and specific patterns: A unified sparse representation for o_-the-person ECG biometric recognition. IEEE Trans. Information Forensics & Security, 2021, 16(1): 147-160. DOI: https://doi.org/10.1109/TIFS.2020.3006384.

    Article  Google Scholar 

  50. Lynn H M, Pan S B, Kim P. A deep bidirectional GRU net-work model for biometric electrocardiogram classification based on recurrent neural networks. IEEE Access, 2019, 7: 145395-145405. DOI: https://doi.org/10.1109/ACCESS.2019.2939947.

    Article  Google Scholar 

  51. Louis W, Komeili M, Hatzinakos D. Continuous authentication using one-dimensional multi-resolution local binary patterns (1DMRLBP) in ECG biometrics. IEEE Trans. Information Forensics & Security, 2016, 11(12): 2818-2832. DOI: https://doi.org/10.1109/TIFS.2016.2599270.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gong-Ping Yang.

Supplementary Information

ESM 1

(PDF 170 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, YW., Yang, GP., Wang, KK. et al. Multi-Scale Deep Cascade Bi-Forest for Electrocardiogram Biometric Recognition. J. Comput. Sci. Technol. 36, 617–632 (2021). https://doi.org/10.1007/s11390-021-1033-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11390-021-1033-5

Keywords

Navigation