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Abstract In this paper, we study the problem of extracting variable-depth “logical document hierarchy” from long

documents, namely organizing the recognized “physical document objects” into hierarchical structures. The discovery

of logical document hierarchy is the vital step to support many downstream applications (e.g. passage-based retrieval

and high-quality information extraction). However, long documents, containing hundreds or even thousands of pages and

variable-depth hierarchy, challenge the existing methods. To address these challenges, we develop a framework, namely

Hierarchy Extraction from Long Document (HELD), where we “sequentially” insert each physical object at the proper on

of the current tree. Determining whether each possible position is proper or not can be formulated as a binary classification

problem. To further improve its effectiveness and efficiency, we study the design variants in HELD, including traversal orders

of the insertion positions, heading extraction explicitly or implicitly, tolerance to insertion errors in predecessor steps, and

so on. As for evaluations, we find that previous studies ignore the error that the depth of a node is correct while its path to

the root is wrong. Since such mistakes may worsen the downstream applications seriously, a new measure is developed for

more careful evaluation. The empirical experiments based on thousands of long documents from Chinese, English financial

market and English scientific publication show that the HELD model with the “root-to-leaf” traversal order and explicit

heading extraction is the best choice to achieve the tradeoff between effectiveness and efficiency with the accuracy of 0.9726,

0.7291 and 0.9578 in Chinese financial, English financial and arXiv datasets, respectively. Finally, we show that logical

document hierarchy can be employed to significantly improve the performance of the downstream passage retrieval task. In

summary, we conduct a systematic study on this task in terms of methods, evaluations, and applications.

Keywords logical document hierarchy, long documents, passage retrieval

1 Introduction

Recently, the amount of electronic documents have

increased rapidly along with the IT penetration into

various vertical domains, such as financial, legal, gov-

ernment and education fields. To gain valuable insights

from these unstructured documents, it is of the highest

importance to obtain their underlying document struc-

tures so that these documents can be reedited, restyled,

or reflowed to support many downstream natural lan-

guage processing (NLP) and text mining applications.

However, the transformation from the editing formats

(e.g. WORD and LaTeX) of these documents to their
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1. Aluminum products

(1) Operation subject

The distributor’s aluminum products sector mainly includes: …

(2) Overall operation situation

This sector is profitable by selling aluminum products. The basic 

pattern consists of producing and outsourcing raw materials, 

using the company’s ability to process and ……

1. raw material

The raw material of aluminum products mainly consist of 

bauxite, liquid caustic and anthracite ……

Main Sector Analysis

2. capacity

By the end of 2009, the company has formed an annual output of 

2 million tons of alumina, 450,000 tons of electrolytic 

aluminum ……

2. Electric power bussiness

(1) Operation subject

(2) Overall operation situation

The distributor’s electric power bussiness sector mainly 

includes: ……

By the end of 2009, the total installed capacity of the issuer 

participating in the construction is 18.48 million kilowatts, and 

the total installed capacity of the rights and interests is 7.02 

million kilowatts ……
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Fig.1. An example about logical document hierarchy discovery. (a) The example document page and the physical objects on this page.
(b) The logical document hierarchy of this document page.

display formats (e.g. PDF and JPG) only guarantees

the appropriateness of document layout, while their un-

derlying physical and logical structures are either par-

tially or even completely lost [1]. Hence, it is still an

open issue to make this transformation reversible gen-

erally.

To this end, in this paper, we study the problem

of extracting variable-depth logical document hierar-

chy from long documents, which aims to organize the

recognized “physical document objects” into hierarchi-

cal structures. A typical example of this task with a

one-page document and its logical document hierarchy

is shown in Fig. 1. Here, physical objects refer to para-

graphs, tables, charts and figures in a document [2].

We assume that a predecessor step detects these objects

and ranks them by the reading order already. The goal

of this study is to transform the flat structure of these

physical objects into a hierarchical structure, which re-

flects the parallel and containment relationship between

these physical objects. The discovery of logical docu-

ment hierarchy helps to support many downstream ap-

plications such as hierarchical browsing, passage-based

retrieval, high-quality information extraction and read-

ing comprehension [3, 4, 5, 6].

Although the recovery of logical document hierar-

chy attracts extensive researches [7, 8, 9, 10, 11, 12],

most studies focus on scientific papers or web pages,

where only tens of pages are contained and the logi-

cal hierarchy is often fixed and shallow (4 levels at the

most). Recently, millions of disclosure documents in the

financial area from different countries are published ev-

ery year. However, these documents, such as annual



Extracting Logical Document Hierarchy 3

 0

 5

 10

 15

 20

 25

0 250
500

750
1000

1250
1500

1750
2000

2250
2500

2750
3000

3250
3500

3750
4000

4250
4500

4750
5000

Pr
op

or
tio

n(
%

)

Physical Object Number of Document

(a)

 0
 5

 10
 15
 20
 25
 30
 35

1 2 3 4 6 5 7 8 9 10 11

Pr
op

or
tio

n(
%

)

Node Depth

(b)

Fig.2. The distribution on the benchmark documents. (a) Distribution of physical object number. (b) Distribution of headings on each
depth

reports, prospectuses, etc., usually have hundreds of

pages, and their hierarchies are much deeper with vari-

able depth. Based on the thousands of benchmark doc-

uments with their annotated hierarchies, Fig. 2 shows

the distribution of physical object numbers and the dis-

tribution of headings on each depth. We observe that

all the documents have at least 500 physical objects,

90% of headings locate on the 3rd to 7th level of the

trees, and the maximal depth is 11.

Such variable-depth logical hierarchy from long doc-

ument challenges the existing methods on logical hier-

archy recovery [8, 10, 11, 12]. Previous solutions can

be grouped into three types. The first type [11, 12]

formulates this task as a sequence labeling task, which

employs Long Short Term Memory (LSTM) or Condi-

tional Random Field (CRF) to extract contextual fea-

tures of surrounding physical objects and classifies each

heading into the absolute hierarchical depth. However,

this type of method fixes the space of depth labels and

assigns an “absolute” depth to each physical object. In

this study, we argue that since the hierarchical depth of

physical objects depends on the containment and par-

allel relationship between contextual physical objects,

the hierarchical depth should be considered as a “rel-

ative” concept than an “absolute” one. Additionally,

due to extremely long distances among physical objects

in the documents with hundreds of pages, sequence la-

beling based methods might not work well in capturing

such long-distance context. The experimental results in

this study also show that these methods obtain lower

accuracy on our benchmark documents. The second

type of method in [10, 13] is the rule-based method.

They mostly propose some assumptions on logical hier-

archy. For example, the study in [10] assumes that the

headings with the same visual and textual style always

locate at the same hierarchical depth. However, as illus-

trated by our benchmark documents, these assumptions

are not always true. The third type is the hierarchy gen-

eration based method in [8]. It dynamically generates

the logical hierarchy by considering the containment

and parallel relationship between headings. However,

this work lacks systematic studies on the possible vari-

ants of the generation process.

Inspired by how humans construct hierarchical trees

in reading, we propose a novel model, namely Hierarchy

Extraction from Long Document (HELD). Specifically,

we sequentially insert each physical object at the proper

position of the tree. By a certain traversal order, we

inquire about all the possible insertion positions in the

current tree until we find the proper one. Determining

whether each possible position is proper or not can be

formulated as a binary classification problem, namely

the “put-or-skip” module. The hierarchical tree is gen-

erated until all the physical objects have been inserted.

In this framework, the put-or-skip module is the key

step. We propose an LSTM based sub-model to detect
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the relative containment and parallel relationships be-

tween physical objects. The combination of both visual

and textual features is adopted to capture the relation-

ship between the local context of each insertion position

and the physical object to be inserted. Furthermore, we

study the design variants in HELD, including traver-

sal orders of the insertion positions, heading extraction

explicitly or implicitly, tolerance to insertion errors in

predecessor steps, and so on.

As for evaluations, we find that previous studies ig-

nore the error that the depth of a node is correct while

its path to the root is wrong. Since such mistakes might

seriously worsen the downstream applications, we pro-

pose a new measure, where an inserted node is correct

if and only the path from the root to itself is completely

the same as the ground-truth path. We argue that this

measure should be adopted in future studies of logical

document hierarchy discovery.

Based on 1030 Chinese documents from the finan-

cial domain (namely the Chinese dataset), 1203 En-

glish documents from the financial domain (namely

the English dataset) and 1732 arXiv documents from

the scientific domain (namely the arXiv dataset), we

compare the proposed HELD model with the rule-

based, sequence-tagging and existing generation-based

methods. In the Chinese dataset, the HELD model

achieves the best accuracy of 0.9731, while the rule-

based, sequence-tagging and existing generation-based

methods obtain the accuracy of 0.3764, 0.9403 and

0.9339 respectively. In the English dataset, the HELD

model achieves the best accuracy of 0.7301, while the

three baseline methods obtain the accuracy of 0.4779,

0.6436 and 0.6563, respectively. In the arXiv dataset,

the HELD model achieves the best accuracy of 0.9578,

while the three baseline methods obtain the accuracy of

0.8375, 0.8908 and 0.9034, respectively. To achieve the

tradeoff between effectiveness and efficiency, the HELD

model with the “root-to-leaf” traversal order and ex-

plicit heading extraction is the best choice with 0.9726,

0.7291 and 0.9567 accuracy on Chinese, English and

arXiv datasets, respectively, and 8.3x speedup in infer-

ence efficiency.

Finally, we demonstrate that logical document hi-

erarchy can be employed to significantly improve the

performance of a downstream application, namely pas-

sage retrieval in a long document.

In summary, we conduct a systematic study on

extracting variable-depth logical document hierarchy

from long documents in terms of methods, evaluations,

and applications.

This paper has the following organization. In Sec-

tion 2, we review some related work. Details of the pro-

posed HELD model are described in Section 3. Section

4 and Section 5 present the configurations and results of

experiments. Section 6 introduces a downstream appli-

cation - passage-based retrieval. This paper ends with

a summary and a brief discussion of future work.

2 Related Work

2.1 Logical Document Hierarchy Extraction

The discovery of logical document hierarchy is a

conventional task, Summers et al. [6] gave a proper

definition: logical structure consists of a hierarchy of

segments of the document, each of which corresponds

to a visually distinguished semantic component of the

document. Generally, previous studies can be grouped

into the rule-based method and learning-based method.

For rule-based methods, Tsujimoto et al. [14] aimed

to discover logical structure in multi-article newspa-

pers, by using some generic transformation rules and

a virtual field separator technique. Conway et al. [13]

used a set of grammar rules, which is a string of com-

ponents specified by neighbor relation, and page pars-

ing techniques to recognize document logical structure.



Extracting Logical Document Hierarchy 5

Manabe et al. [10] proposed some assumptions, like two

headings with the same visual style should locate at the

same significant level. Then, they sort these headings

by some visual styles (e.g. font size, bold or italic) and

then generate a heading hierarchy.

Learning-based methods can be further separated

into two classes, sequence labeling-based and tree

generation-based methods. Some of sequence labeling-

based methods first recognize physical objects and de-

termine the reading order of them, then use different

models to classify the absolute hierarchical depth of

each physical object. For example, Luong et al. [7] used

conditional random field (CRF), Rahman et al. [11]

used RNNs and Bentabet et al. [12] used LSTMs to clas-

sify physical into four categories: main-text, section-

header, subsection-header and subsubsection-header.

Other work [15, 16] combine rule-based and model-

based method to extract logical structure. For tree

generation-based method, Pembe et al. [8] proposed a

tree-based learning approach to generate logical hierar-

chy node by node, by considering the containment and

parallel relationship between nodes.

2.2 Physical Structure Recognition

Physical structure recognition is a basic step for ex-

tracting logical document hierarchy. It focuses on divid-

ing the document into flat segmentations, rather than

a hierarchy [17]. Here, flat segmentation represents an

ordered list of physical objects (e.g. tables, paragraphs,

figures, etc. [2]). Physical structure recognition can be

categorized into top-down and bottom-up approaches.

The top-down approach [14, 18, 19] starts from the

whole document and split it into smaller components

iteratively. Tsujimoto et al. [14] divided the document

page into some rectangle blocks and used simple rules to

classify each block. Nagy et al. [19] proposed a vertical

and horizontal cut-off-lines-based and Baird et al. [18]

proposed a shape-directed-covers-based method to re-

cursively split the document page into smaller regions.

The Bottom-up approach gathers pixels or charac-

ters into text lines then combines them into physical

objects. Early work [13, 20] are grammar-based meth-

ods, which design different layout grammars to analyze

the physical structure. Later work consider the task

as semantic segmentation or sequence tagging problem.

By regarding as the semantic segmentation problem,

some work [21, 22] detect the contour of each physical

object (by length algorithm [23]) and classify pixels in

it (by FCN, VGG [24, 25]) to determine the type of

physical objects. By regarding as the sequence tagging

problem, some work [7, 26] split the document into an

ordered list of text lines and determine the reading or-

der of these text lines. Then, different methods (e.g.

CRF, RNNs) are used to classify the type of each text

line. Neighboring text lines with the same type will be

grouped into a physical object.

3 Hierarchy Extraction from Long Document

Model

Here, we introduce Hierarchy Extraction from Long

Document (HELD) model to convert an ordered list

of physical objects (e.g. paragraphs, tables, charts and

figures), namely C = {ci}Ni=1 where N is the total num-

ber of physical objects, into a hierarchical tree T . We

assume that the list C is obtained in a predecessor step

- physical structure recognition. Hence, after a careful

evaluation, we adopt a commercial product, PDFLux1

for this step. It can obtain physical structures and de-

termine a reading order on various financial documents

with high accuracy, especially for disclosed financial

documents.

1https://pdflux.com/. Last visited in 2021/04/28.

https://pdflux.com/
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Fig.3. Example about tree generation. (a) Inserting physical object g, the rightmost-branch, is φ, a, c and f . (b) Hierarchical tree
when inserting g. p1, p2, p3 and p4 are possible positions for g to be inserted and each has a probability. (c) The results after inserting
g under three traversal methods.

3.1 Framework of Hierarchical Tree Genera-

tion Sub-model

When a human reads a document, in her/his mind

she/he actually constructs the logical document hier-

archy gradually along the sequential reading process.

When encountering a physical object in the document,

she makes the decision on inserting this node into one

of the possible positions in the current tree. Inspired by

this human process, we propose the framework of Hier-

archy Extraction from Long Document (HELD). Specif-

ically, HELD sequentially checks each physical object in

C one by one and inserts it into a proper position of the

current tree. The key to this process is to clearly define

all the possible insertion positions of the current tree.

Before that, we first define the rightmost-branch of the

current tree as follow.

Definition 1. The rightmost-branch of the tree is an

ordered list of nodes, where the first node is root φ, and

each next node is the rightmost child of the previous

node.

For example, as shown in Fig. 3, for the current tree

its rightmost-branch is “φ, a, c, f”, where each node is

highlighted with red circle.

With this rightmost-branch of the tree, we further

define the possible insertion positions of the current tree

as follow.

Definition 2. For a new node to insert, its possible

insertion positions are all the last children of the nodes

in the rightmost-branch of the current tree.

As shown in Fig. 3, there are four nodes in the

rightmost-branch, thus there are four possible insertion

positions: p1, p2, p3, p4 are the last children of φ, a, c,

f , respectively.

The correctness of this definition of possible inser-

tion positions is guaranteed by the following theoretical

analysis. It is clear that the pre-order traverse of the

document hierarchical tree generates the list of physi-

cal objects in the reading order of the document. This

definition can theoretically guarantee that the node to

insert is always ranked at the last position of the pre-
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order traverse of the tree after insertion only if it is

inserted into any one of these possible positions.

With all these possible positions, we need a module

to decide which position is proper for the current node.

Next, Subsection 3.2 gives the training objective func-

tion of the whole framework, and Subsection 3.3 details

the module of selecting the right insertion position.

3.2 Objective Function

For each document with the physical nodes of

{ci}Ni=1, the joint probability of the tree can be de-

composed into the probability of each physical object

ci, in the condition that its previous physical objects

have been already inserted. Specifically, it can be rep-

resented as follows,

logP (T ) =

N∑
i=1

logP (ci|Tc1,c2,··· ,ci−1
),

where Tc1,c2,··· ,ci−1 is the sub-tree constructed by the

nodes of c1, c2, · · · , ci−1.

In the sub-tree Tc1,c2,··· ,ci−1 , we only consider all the

possible insertion positions, denoted as Si = {sji}
Mi
j=1

where sji is the j-th possible insertion position, and Mi

represents the number of possible insertion positions.

Among these positions, we denote s∗i as the correct in-

sertion position.

Then, logP (ci|Tc1,c2,··· ,ci−1
) can be further ex-

panded as

Mi∑
j=1

(
1

(
sji = s∗i

)
× logP

(
ci |ctx(sji )

)
−1
(
sji 6= s∗i

)
× logP

(
ci |ctx(sji )

))
,

where P
(
ci |ctx(sji )

)
stands for the probability of in-

serting node ci into sji and ctx(sji ) represents the con-

textual information of position sji . 1(·) is the indicator

function, which equals to 1 if the condition holds oth-

erwise equals to 0.

Then, for a corpus of L trees {T1, · · · , TL} we aim

to maximize the following objective function

L∑
k=1

Nk∑
i=1

Mi∑
j=1

(
1

(
sji = s∗i

)
× logP

(
ci |ctx(sji )

)
−1
(
sji 6= s∗i

)
× logP

(
ci |ctx(sji )

))
,

where Nk is the number of physical nodes in the k-th

tree Tk. In this objective function, we aim to maxi-

mize P
(
ci |ctx(sji )

)
when sji is the true position of ci.

Otherwise, we aim to minimize it.

With any annotated tree T , it is easy to transform

it into the labeled data for training P
(
ci |ctx(sji )

)
.

Specifically, for each physical object ci, we find out

each possible insertion position sji , and get all the cor-

responding tuples < ci, ctx(sji ), l
j
i >, where lji equals to

1 if position sji is the correct position of ci; otherwise

it equals to 0. In this way, we can build a huge set of

such tuples from all the annotated trees to train the

parameters in P
(
ci |ctx(sji )

)
.

Note that all these training data are generated with

the assumption that when inserting ci, all the nodes

c1, c2, · · · , ci−1 before ci are all correctly inserted. How-

ever, this is not always true in the inference process of

a new document. In Subsection 3.5.3, we will show how

the training data can be enriched to be tolerant to some

insertion errors in the predecessor steps.

3.3 Put-Or-Skip Module

Next, we will present how the put-or-skip module

is built. It aims to estimate the probability of insert-

ing a physical object c into a possible insertion position

s, denoted as P (c|ctx(s)). It can be regarded as a bi-

nary classification problem. Here, ctx(s) refers to the

contextual information of the position s. As shown in

Fig. 4, this context may include the siblings of s, and its

immediate parent. We observe that this local context

provides vital cues for this classification. Specifically,
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if s is the right position for c, the siblings of s, namely

g1, g2, · · · , gK , might have the same format features and

consecutive item number with c, and its immediate par-

ent z might have more prominent format style than c.

Thus, the module is required to consider all the textual

and visual features inside the local context.

s

z

1g
2g Kg……

Parent of s
Inserting c Here

……

…… …… ……

Siblings of s

Grandparent of s

Root

……

……



z

Fig.4. The context of determining whether insert physical object
c into position s.

To capture the textual features, we use a Bi-

LSTM [27] to model the text inside each physical ob-

ject in the context. Specifically, it successively receives

every word in the text of each physical object x, and

outputs a fixed-length vector, namely vx. Thus, we

can obtain text representation of c, g1, · · · , gK and z,

namely vc,vg1 , · · · ,vgK and vz, respectively. In or-

der to combine these text representations and extract

relationships among these representations, we use an-

other Bi-LSTM to calculate a final text representation

v. To capture the visual features, for each physical ob-

ject x we integrate all its format information, including

font family, font size, font color, bold, italic, centering

and indent, into a vector ux. Thus, for the nodes of

c, g1, · · · , gK and z, we get uc,ug1 , · · · ,ugK and uz,

respectively. Similarly, we use the third Bi-LSTM to

get a final visual representation u. Next, we concate-

nate v and u, and send the combination vector into a

feed-forward networks to obtain a synthetic representa-

tion. Finally, we use a Sigmoid function to obtain the

probability P̂ (c|ctx(s)).

Readers may suggest that the context be expanded

to consider all its other ancestors besides the immedi-

ate parent. However, this expansion definitely increases

computational complexity.

3.4 Inference

For a new document, we aim to find out the opti-

mal possible position sequence, s∗1, s
∗
2, · · · , s∗N via max-

imizing the joint probability of inserting every physical

object into a proper position. We have

(s∗1, s
∗
2, · · · , s∗N ) = arg max

s1,s2,··· ,sN

N∑
i=1

logP (ci | ctx(si)) ,

where si ∈ Si and Si represents the possible positions

to insert ci.

Note that searching the optimal path,

s∗1, s
∗
2, · · · , s∗N , has exponential complexity, which

makes the optimal result hard to search. Beam search

is traditionally adopted for sequence or tree genera-

tion [28, 29], which considers multiple cases simultane-

ously in each step. In detail, we set a small integer bs

as the beam size, which represents the number of candi-

date trees. At each step, we extend each candidate tree

in the beam with the top bs most probable insertion

positions. Thus, we obtain bs× bs candidate trees and

remain the bs most probable candidate trees according

to their joint probability. When all the physical objects

are inserted, we select the final hierarchical tree with

the highest joint probability. When we set bs = 1,

the inference is the greedy method. The experiments

in Section 5 will show that in different settings on bs

the greedy method achieves the best tradeoff between

effectiveness and efficiency.
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3.5 Design Variants in HELD

3.5.1 Traversal Orders of the Insertion Positions

In the inference process, when inserting ci we check

all the possible insertion positions in a certain or-

der. Specifically, we propose three traversal methods:

traversal-all, root-to-leaf and leaf-to-root, and intro-

duce them using the example in Fig. 3.

First, for the traversal-all method, we inquire about

each insertion position and find out the position with

the highest probability. Next, for the root-to-leaf

method, we inquire about each insertion position in the

order from the root to the leaf node. Once we find a po-

sition with the probability of more than 0.5, we return

it as the result. Finally, the leaf-to-root method is the

same as the root-to-leaf method except that the traver-

sal order changes to from the leaf to the root node. For

the example in Fig. 3, the results from these three meth-

ods are p2, p1, p3, respectively. This example is delib-

erately generated to show the difference among them.

Note that different traversal methods involve dif-

ferent numbers of checks on the insertion positions.

The theoretical analysis in Subsection 3.6 shows that

to reach the proper insertion position the leaf-to-root

method and traversal-all method check the smallest and

largest number of positions, respectively. The results

in Section 5 further empirically validate this. Addi-

tionally, the experimental results also show that the

traversal-all and root-to-leaf methods achieve similar

accuracy. Hence, the root-to-leaf method is the best

choice.

3.5.2 Heading Extraction Explicitly or Implicitly

We observe that all the internal nodes in the hierar-

chical tree T correspond to the headings of logical sec-

tions and all the leaf nodes of T correspond to concrete

objects (e.g. paragraphs, tables, charts). Additionally,

a section is usually semantically summarizable and vi-

sually observable by its heading [6]. Thus, another pos-

sible solution to our task is: first classify each physical

object into heading or non-heading, second generate hi-

erarchical tree for all the heading nodes, finally insert

each non-heading object as the leaf child of its first pre-

vious heading object in the input sequence of physical

objects. In other words, this new solution suggests a

separated step of explicit heading extraction before the

hierarchical tree generation.

We find that a separated step of explicit heading ex-

traction brings about some benefits to our task. First, it

might alleviate the difficulty of classification in the put-

or-skip module, seeing the example in Fig. 1 without

a separated step of explicit heading extraction. Con-

sider the insertion of node g, which is a heading. This

node should be located at the same level as the node

f , which is a non-heading object. For this situation

that heading nodes and non-heading nodes are siblings,

the model usually fails since heading and non-heading

nodes usually have features of great differences. With

an additional step of heading extraction, tree building

is much easier for only the heading nodes. The exper-

iments in Section 5 further validate that this two-step

solution increases the model accuracy.

Second, although heading extraction introduces ad-

ditional computing overhead the following computing

of node insertion will greatly decrease. Specifically, the

model is applied to the heading nodes for tree genera-

tion, and the other non-heading nodes are inserted by

the rule. Overall, this two-step solution gains much in-

crease in time efficiency, which is also demonstrated by

the experiments.

Note that distinguishing heading nodes from non-

heading ones can be formulated as a sequence labeling

task. In detail, we use Bi-LSTM [27] to extract textual

and format features of the local context and then apply

multi-layers CNNs [24] to consider the long-distance as-



10 J. Comput. Sci. & Technol., January 2018, Vol., No.

a

cb

Logical Document Hierarchy

g

h

e f

id

 Total:

6 6 36 6 3

16 14 1116 14 11

1 1 11 1 1 1 1 11 1 1 3 2 23 2 2

1 1 11 1 1 1 0 11 0 1

2 2 12 2 1

1 1 11 1 1 0 0 00 0 0

Fig.5. Inquiry number in hierarchy generation. The digits in the boxes represent total inquiry number of each node under different
traversal methods. Specifically, red, yellow and green boxes represent the traversal-all, root-to-leaf and leaf-to-root method, respectively.

sociation. Inspired by the previous work [30], we add

a self-attention layer [31]. Finally, a Sigmoid layer is

used to classify whether a physical object is heading or

not.

3.5.3 Tolerance to Insertion Errors in Predecessor
Steps

Note that in the actual inference for a document,

before inserting a node ci some previous nodes in

{c1, , · · · , ci−1} might be inserted into wrong positions.

Thus, we need to deliberately make some training data

with such insertion errors. Specifically, we simulate the

tree-building process with some random insertion er-

rors, where a node is inserted into one of the other pos-

sible positions except the right one. Based on the re-

sultant tree, some extra training data can be generated

accordingly. The experimental results show that these

new training data bring about significant improvements

in terms of effectiveness.

3.6 Theoretical analysis on the efficiency of dif-

ferent traversal methods

In the following, for each traversal method, we will

theoretically count the number of checks on the inser-

tion positions, which is required to reach the ground-

truth position. Note that in this analysis we assume

that the ground-truth position for inserting each node

is provided. This number is equal to the one when an

ideal model with 100% accuracy is adopted in inference.

Specifically, after estimating P (c|ctx(s)) the parent

node of s will be counted once. To sum up the num-

bers on all the nodes, we get the final total, denoted as

Nall, Nr2l and Nl2r for the three methods of traversal-

all, root-to-leaf and leaf-to-root. We have

Nall =

N∑
i=1

(si + 1(node i is not on the rightmost-branch)),

Nr2l =

N∑
i=1

(si + 1(node i has next sibling)),

Nl2r =

N∑
i=1

(s′i + 1(node i is not on the rightmost-branch)),

where si and s′i refer to the number of all the descen-

dants and non-leaf descendants of a node i in the tree,

N refers to the number of nodes in the tree, 1(·) is the

indicator function. Fig. 5 shows an example with the

inquiry numbers for these three methods.

Next, we calculate the relationships between these

numbers as follow,

Nall −Nr2l = I − l � 0,

Nall −Nl2r =

N∑
i=1

(si − s′i) � L � I > Nall −Nr2l,

where I and L is the number of the internal node and

leaf node in the tree respectively, l is the length of its

rightmost-branch.
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Fig.6. We calculate the distribution of the number of nodes at different depth in the Chinese, English and arXiv datasets. (a) Depth-
number distribution on Chinese dataset. (b) Depth-number distribution on English dataset. (c) Depth-number distribution on arXiv
dataset.

Usually, we have L � I � l. This is also true for

all the hierarchical trees used in this study. Thus, we

have Nl2r < Nr2l < Nall.

Finally, we argue that although these three numbers

might not equal the inquiry numbers with the actual

model when its accuracy is less than 100%, they are a

good approximation of the actual number. This is also

demonstrated in the experiments in Section 5.

4 Experiment Details

4.1 Dataset

Since the documents in published datasets for our

task [8, 10, 11, 12] only contain tens of pages and

have shallow (4 levels at the most) logical hierarchy,

we build three datasets with variable-depth logical hi-

erarchy from long documents: 1) the Chinese dataset

that contains prospectuses and annual reports from

the China Securities Exchange market, 2) the English

dataset that contains annual reports from Hongkong

Exchange market, and 3) the arXiv dataset that con-

tains English scientific publications from arXiv. The

documents in the Chinese and English dataset can be

downloaded from CNINFO2 and the documents in the

arXiv dataset can be downloaded from arXiv3.

Each document is assigned to at least two annota-

tors for annotating its logical document hierarchy. If

the results on a document are different, another senior

annotator will address the conflicts and output the final

answer.

For three datasets, we split training, validation

and test set with around 8:1:1 split. For the Chinese

dataset, we split 1030 documents into 830 for training,

2http://www.cninfo.com.cn/. Last visited in 2021/04/28.
3https://arxiv.org/. Last visited in 2021/04/28.

http://www.cninfo.com.cn/
https://arxiv.org/
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Fig.7. We calculate the distribution of the number of matched key word-level features at different depth in the Chinese, English and
arXiv datasets. (a) Depth-regex distribution on Chinese dataset. (b) Depth-regex distribution on English dataset. (c) Depth-regex
distribution on arXiv dataset.

100 for validation and 100 for test. For the English

dataset, we split 1110 documents into 910 for train-

ing, 100 for validation and 100 for test. For the arXiv

dataset, we split 1732 documents into 1432 for training,

150 for validation and 150 for test.

4.2 Dataset Analysis

In this subsection, we further analyze these three

datasets and illustrate some observations in Fig. 6 and

Fig. 7.

On the one hand, we calculate the number of inter-

nal nodes at each level in each document and depicit

the distribution in Fig. 6(a), Fig. 6(b) and Fig. 6(c) for

three datasets, respectively. For example, in the Chi-

nese dataset, we find that most documents have 10 -

20 headings in level 1. However, for levels 3 to 7, most

documents have a different number of headings, there-

fore the distribution is very uniform. In the English

dataset, for every level, most documents have a differ-

ent number of headings, which means that the degree

of difference in the English dataset is greater than that

in the Chinese dataset. In the arXiv dataset, the num-

ber of headings at each depth is relatively concentrated,

since the logical hierarchies in scientific publications are

usually pre-defined.

On the other hand, we aim to observe whether these

documents follow some types of templates. First, we

conclude 44 types of patterns to represent item number

in headings. For example, headings c, e,m, o in Fig. 1

follow the pattern of “(1), (2), · · · ”. Headings b, h, i, l in

Fig. 1 follow the pattern of “1., 2., · · · ”. For each type

of pattern, we can design one regex to match it, thus, we

design 44 regexes to represent these patterns. Then, for

a given document hierarchy, we can check each internal

node in this hierarchy and decide whether it matches

one of the 44 regexes. Thus, for the internal nodes on
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Fig.8. The comparison of old and new evaluation metrics. (a) The ground-truth hierarchy. (b) The predicted hierarchy and the
correctness of each node under previous metric. (c) The predicted hierarchy and the correctness of each node under our metric.

each level in all the documents in the dataset, we count

the matching ratio of these 44 regexes and draw the

distribution graph in Fig. 7(a), Fig. 7(b) and Fig. 7(c).

For example in Fig. 7(a), we observe that most internal

nodes in the first level match regexes 0, 1 and 3. Here,

regex 0 means the node matches none of the 44 regexes.

Almost all the internal nodes in the second level match

regex 7. Clearly, in some deeper levels, such as levels

5 - 9, these internal nodes match more various regexes.

Especially, in the English dataset, most headings do not

match any regexes. Therefore, the hierarchies in these

documents have differences to some degree, therefore

the hierarchy is not definitely pre-defined. Moreover,

the degree of difference in the English dataset is greater

than that in the Chinese dataset.

4.3 Evaluation Methods

In this study, we propose a new metric to judge

whether a certain node is inserted correctly or not.

First, we define that physical object ci is inserted cor-

rectly if its predicted path r̂i completely equals to its

ground-truth path ri. Here, the path of ci means an or-

dered node list that consists of ci and all its ancestors

up to the root φ. Note that previous studies [7, 15, 16]

define that a node ci is inserted correctly if it is put at

the right level of the tree. They ignore the error that

the depth of a node is correct while its path to the root

is wrong. For example, in Fig. 8 node g is considered

as an error by the new measure since its path to the

root, namely (g → f → a → φ), is not equal to the

ground-truth path (g → c → a → φ). However, it is

considered as a correct insertion since it is put into the

right level of 3.

With this new definition of correct insertion, we can

calculate the overall accuracy of node insertion. Addi-

tionally, for any tree level k we can also calculate the

precision, recall, and F1 denoted as pk, rk and F1k,

respectively. In the experimental results, we use these

measures in micro average for all the testing documents.

To evaluate the efficiency in processing new docu-

ments, we record the average execution time of each

document. Additionally, we also count the number

of calls for the put-or-skip module, denoted as ”#in-

quiry”, since they are the major time consumption.

4.4 Baselines

HEPS Model [10] This is a rule-based method for

our task. The original HEPS model focuses on web
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Table 1. Comparing HELD and baseline models on the test set of the Chinese dataset.

Model acc F11 F12 F13 F14 F15 F16 F17 F18 F19 F110 F111
HEPS [10] 0.3764 0.8030 0.6794 0.4913 0.4781 0.2926 0.1287 0.0138 0.0000 0.0000 0.0000 0.0000
TOC [12] 0.9403 0.9804 0.9408 0.9562 0.9632 0.9528 0.9333 0.8512 0.6305 0.2645 0.0000 0.0000
Pembe’s [8] 0.9339 0.9573 0.9445 0.9674 0.9666 0.9501 0.9305 0.8627 0.6944 0.4418 0.0629 0.0000
1step-HELD 0.9583 0.9918 0.9577 0.9748 0.9695 0.9617 0.9486 0.9179 0.8693 0.6810 0.4620 0.2483
2step-HELD (l2r) 0.9720 0.9892 0.9483 0.9769 0.9831 0.9761 0.9662 0.9471 0.9145 0.8299 0.8491 0.7059
2step-HELD (r2l) 0.9726 0.9892 0.9486 0.9779 0.9832 0.9771 0.9670 0.9454 0.9179 0.8531 0.7950 0.7347
2step-HELD (ta) 0.9731 0.9892 0.9489 0.9784 0.9838 0.9778 0.9675 0.9449 0.9174 0.8521 0.8517 0.7059
- Tolerance Errors 0.9725 0.9892 0.9481 0.9769 0.9833 0.9768 0.9671 0.9481 0.9138 0.8501 0.8517 0.7059

Table 2. Comparing HELD and baseline models on the test set of the English dataset.

Model acc F11 F12 F13 F14 F15 F16 F17 F18 F19
HEPS [10] 0.4779 0.6882 0.6630 0.6265 0.4871 0.2976 0.1744 0.0525 0.0187 0.0000
TOC [12] 0.6436 0.8296 0.7928 0.7785 0.6190 0.3671 0.2111 0.0776 0.0000 0.0000
Pembe’s [8] 0.6563 0.8062 0.7964 0.7716 0.6460 0.4364 0.3286 0.2337 0.0602 0.0000
1step-HELD 0.6117 0.7008 0.6865 0.7053 0.5984 0.4830 0.3591 0.2600 0.0485 0.0000
2step-HELD (l2r) 0.7075 0.8555 0.8365 0.8119 0.7026 0.5577 0.4200 0.3136 0.3296 0.3982
2step-HELD (r2l) 0.7291 0.8264 0.8250 0.8133 0.7196 0.6022 0.4658 0.4738 0.4883 0.5325
2step-HELD (ta) 0.7301 0.8556 0.8380 0.8180 0.7211 0.6048 0.4807 0.3763 0.4258 0.4245
- Tolerance Errors 0.7095 0.8324 0.8120 0.7942 0.6955 0.5867 0.4646 0.4469 0.3686 0.3719

Table 3. Comparing HELD and baseline models on the test set of the arXiv dataset.

Model acc F11 F12 F13 F14
HEPS [10] 0.8375 0.9385 0.8975 0.5963 0.3218
TOC [12] 0.8908 0.9800 0.9301 0.7634 0.5828
Pembe’s [8] 0.9034 0.9734 0.9243 0.8236 0.6842
2step-HELD (l2r) 0.9546 0.9923 0.9705 0.9032 0.7069
2step-HELD (r2l) 0.9567 0.9926 0.9720 0.9073 0.7069
2step-HELD (ta) 0.9578 0.9926 0.9730 0.9104 0.7178

pages. Some of the features from web pages cannot be

obtained in PDF files. Thus, this method is tailored to

use only the features in PDF files.

TOC Model [12] TOC model [12] is a sequence

labeling-based model. Since the document length is

greatly longer than the documents in the TOC model,

we use CNNs to replace LSTMs in sequence labeling to

improve efficiency.

Pembe’s Model [8] Pembe’s model is a tree

generation-based model. In this method logistic regres-

sion is adopted to select the proper position for node

insertions.

4.5 Hyper-parameters configuration

Here, we introduce some hyper-parameters of the

proposed HELD model. First, we use skip-gram [32] to

pre-train character embeddings with 24-dimension. In

heading recognition step, we use a 9-layer Network In

the Network [33] to extract contextual features. The

kernel size of each layer is 5, 1, 5, 5, 1, 5, 5, 1, 5. The

kernel number of each layer is 128, 64, 128, 256, 128,

256, 512, 256, 512. We adopt batch normalization [34]

immediately after each convolution and before all ReLU

activate functions [35]. In put-or-skip model (according

to Subsection 3.3), we set hidden dimension as 128, 512

and 64 for vx, vT and uF , respectively. We use “tanh”

activate function in LSTMs. We set hidden dimension

as 128 for FNN layer. Then, weight initialization in [36]

is used to initialize parameters and Adam [37] optimizer

is used to update parameters. We set mini-batch size as

128 and learning rate as 0.00005. We train the model on

2 Titan 1080Ti GPUs and use Horovod [38] to update

parameters in a distributed way.

5 Experiment Results

5.1 Results

In this subsection, we aim to answer these research

questions:
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• RQ1: What is the effectiveness of HELD model

compared with other baselines?

• RQ2: What is the effectiveness and efficiency of

different traversal methods in HELD model?

• RQ3: What are the effectiveness and efficiency of

the one-step and two-step framework?

• RQ4: What is the effectiveness of adding tolerance

to insertion errors in predecessor steps?

• RQ5: What is the effectiveness of different fea-

tures in the put-or-skip module?

• RQ6: What is the effectiveness and efficiency of

beam size?

• RQ7: What is the influence of noise in document

layout recognition?

For RQ1, we compare the proposed two-step

HELD model with three baseline models, by evaluat-

ing F1k on the test set of three datasets. The results

are shown in Table 1, Table 2 and Table 3, respectively.

Note that, we extract headings explicitly (two-step),

use the traversal-all method and set beam size as 1 in

the inference process to obtain the best HELD model.

The proposed HELD obtains 0.9731, 0.9301 and 0.9578

node accuracy on each dataset, respectively. How-

ever, the HEPS model obtains 0.3764, 0.4779, 0.8375

node accuracy, the TOC model obtains 0.9403, 0.6436,

0.8905 node accuracy and the Pembe’s model ob-

tains 0.9339, 0.6563, 0.9034 node accuracy, respectively.

Clearly, on each dataset, the proposed HELD model

has great improvement on the F1 value of every level

(F1k) and total node accuracy (acc) compared with

three baseline models. Note that, compared with the

other two datasets, all the models obtain lower accu-

racy on the English dataset, since the visual and textual

cues are more implicit in this dataset. Like the intu-

itive analysis in Section 1, the rule-based model (HEPS

model) obtains low accuracy since the assumptions in

this model are not always true. Sequence labeling-based

model (TOC model) cannot predict well for the physi-

cal objects on deep levels since it considers hierarchical

depth as an absolute concept and neglects the contain-

ment and parallel relation between physical objects. As

shown in Fig. 7(a), Fig. 7(b) and Fig. 7(c), headings

at the same level match different regexes and headings

that match the same regex locate at different levels.

That is to say, it is hard to directly predict the level of

each heading, especially for the headings on deeper lev-

els. Therefore, the TOC model obtains lower accuracy,

especially for the headings on deeper levels. Pembe’s

model is based on hierarchy generation, however, it is

not good at extracting format and semantic features,

thus it underperforms the proposed HELD model. Es-

pecially on the English dataset, many headings match

no regex as shown in Fig. 7(b), thus predicting the level

of these headings depends on both format and semantic

features. Therefore, Pembe’s model obtains low accu-

racy on the English dataset. By combining format and

semantic features to extract containment and parallel

relation between physical objects, the proposed HELD

model outperforms the other baselines and obtains the

node accuracy of 0.9731 and 0.7301 on Chinese and En-

glish datasets, respectively.

For RQ2, we compare three different traversal

methods in the HELD model, by evaluating F1k and

#inquiry on the test set of three datasets. The results

are shown in Fig. 9(a), Table 1, Table 2 and Table 3,

respectively.

The traversal-all method obtains accuracy of 0.9731,

0.7301 and 0.9578 on Chinese, English and arXiv

datasets, respectively. Root-to-leaf method obtains ac-

curacy of 0.9726, 0.7291 and 0.9567 on Chinese, En-

glish and arXiv datasets, respectively. Apparently,

the traversal-all method outperforms the root-to-leaf

method, since the traversal-all method inquiries all the

possible insertion positions, however, the gap between
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Fig.9. Results on efficiency of different models. (a) Comparing different traversal methods in HELD model. (b) Comparing 1step-HELD
model and 2step-HELD model.

them is subtle. Note that the leaf-to-root method ob-

tains lower accuracy than other traversal methods. Be-

cause the root-to-leaf method assigns lower priority for

those physical objects on the shallow level, these nodes

on the shallow level have higher importance than the

other nodes. The reason is that if the parent node is

inserted into incorrect positions, all of its descendant

nodes will be wrong under our evaluation measure.

To explore the efficiency of three traversal methods,

we count the processing time for an average document

and #inquiry in Fig. 9(a). The traversal-all method

consumes 42.58 seconds and 2168.35 #inquiry on aver-

age to process a document. For comparison, the root-

to-leaf method consumes 36.00 seconds and 2023.05

#inquiry to process a document on average (obtaining

1.2x speedup ratio) and the leaf-to-root method only

consumes 17.64 seconds and 1016.5 #inquiry to pro-

cess a document on average (obtaining 2.4x speedup

ratio). Note that, the efficiency order of three traver-

sal methods in practice is “leaf-to-root > root-to-leaf >

traversal-all”, which empirically validates the efficiency

order in theory (shown in Subsection 3.6).

Therefore, we can use the traversal-all method if

higher accuracy is required, and use the root-to-leaf

method if higher efficiency is required. Since the leaf-to-

root method obtains great improvement on efficiency,

it can be used if the requirement of efficiency is much

higher than effectiveness.

For RQ3, we compare one-step HELD with two-

step HELD, by evaluating F1k and #inquiry on the

test set of three datasets. The results are shown in

Fig. 9(b), Table 1, Table 2 and Table 3, respectively.

Apparently, the best 2step-HELD model obtains

node accuracy of 0.9731 and 0.7301 on the Chinese

and English datasets, respectively. By comparison, the

1step-HELD model obtains node accuracy of 0.9583

and 0.6117 on the Chinese and English datasets, re-

spectively. In other words, the 2step-HELD model

greatly outperforms the 1step-HELD model on effec-

tiveness. The reason is that generating hierarchy based

on heading objects sequence alleviates the difficulty of

classification in the put-or-skip module (according to

analysis in Subsection 3.5.2). Note that, the 1step-

HELD model obtains higher F11 and F12 than the

2step-HELD model on the Chinese dataset, because the

2step-HELD model might make some classification mis-

takes in heading recognition step. In general, extracting

heading objects explicitly obtains great improvement

on effectiveness.

From the efficiency view, as shown in Fig. 9(b), the
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2step-HELD model consumes less execution time and

demands fewer inquiry number. In our dataset, we ob-

serve that there are average 590 heading objects and

average 2300 physical objects in a document. Thus, the

2step-HELD model reduces around 75% nodes for gen-

erating hierarchy, which causes average inquiry number

reducing around 78%. The 1step-HELD model con-

sumes 355.18 seconds to process a document on average.

In the 2step-HELD model, the heading recognition step

consumes 1.2 seconds (2.8% time) and the heading hi-

erarchy generation step consumes 41.38 seconds (97.2%

time) on average, which means that the major time con-

sumption comes from the heading hierarchy generation

step. Thus, the 2step-HELD model obtains around 8.3x

speedup ratio (from 355.18 to 42.58 seconds) in general

compared with the 1step-HELD model.

In summary, to obtain higher effectiveness and effi-

ciency, we extract headings explicitly in HELD model.

For RQ4, we explore the tolerance to insertion er-

rors of predecessor steps in HELD model, by evaluating

F1k on the test set of the Chinese and English datasets.

The results are shown in Table 1, Table 2 and Table 3,

respectively.

For comparison, we choose the best HELD model,

which is 2step-HELD with the traversal-all method as

the baseline. Note that the tolerance to insertion er-

rors of predecessor steps is used in this model. Then,

based on the best HELD model, we remove the toler-

ance to insertion errors of predecessor steps and obtain

the last row in Table 1 and Table 2. Clearly, after

removing this process, the HELD model obtains node

accuracy of 0.9725 and 0.7095 on the Chinese and En-

glish datasets, respectively. The results show that it

obtains 0.0006 and 0.0206 decrease of node accuracy on

the Chinese and English datasets, respectively. In other

words, the tolerance to insertion errors obtains greater

improvement on the English dataset, since there exist

more insertion errors and adding the tolerance to in-

sertion errors can make the HELD model insert nodes

correctly based on some insertion errors of predecessor

steps.

In summary, to obtain higher effectiveness, we add

the tolerance to insertion errors of predecessor steps.

For RQ5, we design an ablation experiment to

show the importance of contextual features in HELD

model. Note that, according to Subsection 3.3, we con-

sider that contextual features contain the previous sib-

lings and the parent of the current node. For com-

parison, we choose the best HELD model, which is the

2step-HELD with the traversal-all method, as the base-

line. Then, we remove the features of previous siblings

and the parent in the put-or-skip module respectively to

present the importance of another one. The experimen-

tal results are shown in Table 4 and Table 5. Clearly,

removing parent features obtains the node accuracy of

0.9659 and 0.7007 on the Chinese and English datasets,

respectively, with the decrease in the node accuracy of

0.0072 and 0.0294, respectively. On the other hand,

removing previous siblings’ features obtains the node

accuracy of 0.9659 and 0.7007 on the Chinese and En-

glish datasets, respectively, with the decrease in the

node accuracy of 0.0330 and 0.3286, respectively. In

other words, adding previous siblings’ features can ob-

tain prominent improvement on effectiveness for the

put-or-skip module, since previous siblings often have

the same format features and consecutive item num-

bers with the current node. Since the previous siblings

and the parent features both obtain improvement on

effectiveness, we use both of them in the put-or-skip

module.

For RQ6, beam search is traditionally adopted for

tree generation. In Subsection 3.4, we have introduced

how to use beam search in the proposed HELD model.

Here, to explore the effectiveness and efficiency of using
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Table 4. Exploring the performance of different features in put-or-skip model on the test set of the Chinese dataset.

Model acc F11 F12 F13 F14 F15 F16 F17 F18 F19 F110 F111
2step-HELD (ta) 0.9731 0.9892 0.9489 0.9784 0.9838 0.9778 0.9675 0.9449 0.9174 0.8521 0.8517 0.7059
- Parent 0.9659 0.9889 0.9465 0.9729 0.9782 0.9686 0.9563 0.9410 0.9075 0.8481 0.9084 1.0000
- Siblings 0.9402 0.9581 0.9131 0.9492 0.9564 0.9448 0.9334 0.9051 0.8471 0.6903 0.6575 0.3789

Table 5. Exploring the performance of different features in put-or-skip model on the test set of the English dataset.

Model acc F11 F12 F13 F14 F15 F16 F17 F18 F19
2step-HELD (ta) 0.7301 0.8556 0.8380 0.8180 0.7211 0.6048 0.4807 0.3763 0.4258 0.4245
- Parent 0.7007 0.7225 0.7608 0.7772 0.6902 0.5937 0.4908 0.4540 0.4643 0.4545
- Siblings 0.6445 0.8242 0.7923 0.7614 0.6431 0.4642 0.3327 0.2609 0.1477 0.0000

beam search, we choose the best HELD model, which is

the 2step-HELD with the traversal-all method and set

beam size as 1 (using greedy search), as the baseline.

Then, we set beam size as 3 for comparison and the ex-

perimental results on the Chinese and English datasets

are shown in Table 6 and Table 7, respectively. Clearly,

setting beam size as 3 obtains the node accuracy of

0.9736 and 0.7275 on Chinese and English datasets,

respectively. In other words, setting beam size as 3

will not prominently improve the accuracy and even de-

crease the accuracy on the English dataset. The reason

is that the put-or-skip module can distinguish different

possible positions apparently in inference, thus it does

not need to expend several possible positions in each

search step.

Meanwhile, we also count the processing time and

#inquiry for an average document compared with set-

ting beam size with 1 and 3. The results show that gen-

erating logical hierarchy for each document consumes

42.58 seconds on average when setting beam search as

1 and consumes 413.78 seconds on average when setting

beam search as 3. In other words, using beam search

obtains about 10x decrease in efficiency.

In summary, since setting beam size as 1 achieves

the best tradeoff between effectiveness and efficiency,

we use the greedy search (without beam search) in the

HELD model.

For RQ7, we aim to explore the influence of noise in

document layout recognition. As mentioned previously,

we adopt a commercial product, PDFLux4, for docu-

ment layout recognition, which detects physical objects

(e.g. paragraphs, tables, graphs) on each document

page. Since the document physical objects are labeled

by annotations in each dataset, we can evaluate the

performance of PDFLux. Here, we use a rigorous met-

ric. First, we define the exact match of a predicted

object if it detects the exact region without missing

any text or containing any redundant text outside ob-

jects compared with the ground-truth object. Then, we

can calculate the precision, recall and F1 value of the

exact-matched physical objects.

The results of Chinese and English datasets are

shown in Table 8. PDFLux obtains 0.9667 and 0.9738

F1 in the Chinese and English datasets, respectively.

In other words, around 97% predicted physical objects

exactly match the ground-truth objects.

Next, based on the predicted physical objects, we

can use the HELD model to recognize the logical hier-

archy of each document. Thus, we evaluate the logical

hierarchy based on the predicted physical objects as

shown in Table 9 and Table 10. Compared with rec-

ognizing logical hierarchy based on the labeled physi-

cal objects, recognizing logical hierarchy based on pre-

dicted physical objects obtains 0.0155 (from 0.9731 to

0.9576) and 0.0063 (from 0.7301 to 0.7238) decrease of

accuracy in the Chinese and English dataset. That is

4https://pdflux.com/. Last visited in 2021/04/28.

https://pdflux.com/
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Table 6. Exploring the performance of beam search on the test set of the Chinese dataset.

Model acc F11 F12 F13 F14 F15 F16 F17 F18 F19 F110 F111
HELD (bs=1) 0.9731 0.9892 0.9489 0.9784 0.9838 0.9778 0.9675 0.9449 0.9174 0.8521 0.8517 0.7059
HELD (bs=3) 0.9736 0.9892 0.9489 0.9784 0.9838 0.9778 0.9685 0.9488 0.9179 0.8523 0.8734 1.0000

Table 7. Exploring the performance of beam search on the test set of the English dataset.

Model acc F11 F12 F13 F14 F15 F16 F17 F18 F19
HELD (bs=1) 0.7301 0.8556 0.8380 0.8180 0.7211 0.6048 0.4807 0.3763 0.4258 0.4245
HELD (bs=3) 0.7275 0.8277 0.8262 0.8148 0.7199 0.6053 0.4838 0.3775 0.4373 0.4813

Table 8. Exploring the performance of document layout recognition.

Dataset p r F1

Chinese dataset 0.9668 0.9666 0.9667
English dataset 0.9734 0.9742 0.9738

Table 9. Comparing logical hierarchy based on the predicted and labeled document layout in the Chinese dataset.

Level Total 1 2 3 4 5 6 7 8 9 10 11
Labeled Layout 0.9731 0.9892 0.9489 0.9784 0.9838 0.9778 0.9675 0.9449 0.9174 0.8521 0.8517 0.7059
Predicted Layout 0.9576 0.9646 0.9273 0.9737 0.9623 0.9608 0.9535 0.9423 0.9103 0.8466 0.8345 0.6667

Table 10. Comparing logical hierarchy based on the predicted and labeled document layout in the English dataset.

Level Total 1 2 3 4 5 6 7 8 9
Labeled Layout 0.7301 0.8556 0.8380 0.8180 0.7211 0.6048 0.4807 0.3763 0.4258 0.4245
Predicted Layout 0.7238 0.8491 0.8315 0.8051 0.7110 0.5939 0.4586 0.3605 0.3976 0.4138

to say, the noise of document layout recognition has

limited influence on the discovery of logical document

hierarchy.

5.2 Experimental Summary

In summary, HELD model greatly outperforms

three baseline models on effectiveness. Meanwhile,

since extracting headings explicitly obtains great im-

provement on effectiveness and efficiency, we choose the

2step-HELD model. To obtain higher generalization

ability, we add the tolerance to insertion errors in the

predecessor step. To achieve the tradeoff between effec-

tiveness and efficiency, we choose root-to-leaf traversal

order. Additionally, leaf-to-root traversal method can

be used if the requirement of efficiency is much higher

in the real-world production.

5.3 Case Studies

In this subsection, we first show an example to com-

pare the HELD model, the HEPS model (rule-based)

and the TOC model (sequence labeling-based) models.

As shown in Fig. 10(a), the difficulty of this example

is that high-level and low-level headings use the same

pattern (the pattern starts with a number and a punc-

tuation, like “1. · · · ”, “2.· · · ”), so that it is hard to

decide the true level of each heading. The HEPS model

predicts the incorrect position of “2. non-current asset”

with its descendants and the TOC model also predicts

incorrectly for the last three headings. However, the

HELD model correctly predicts hierarchy via text and

contextual information, since it considers the parent

and siblings information simultaneously for each head-

ing.

Then, we use another example to show the limi-

tation of the proposed HELD model. For example in

Fig. 10(b), the ground-truth hierarchy is shown on the

right part. Note that, the next sibling of heading a,

“(III) Changes · · · ”, is heading d, “(III) Risks · · · ”.

The heading (IV) · · · is omitted for some reasons, like

the errors of heading detection step or the errors of orig-
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Fig.10. Case Studies. (a) Comparing HEPS, TOC and HELD model. (b) An example to show the limitation of the HELD model.

inal document editing. In this scenario, the put-or-skip

module predicts heading d as the child of heading c by

mistake, which causes that all the subsequent headings

are predicted incorrectly. Thus, the HELD model has a

limitation. It is hard to correctly predict the headings

in the lower level once a heading in the higher level is

predicted incorrectly. The main reason may be that the

hierarchy generation process is a greedy search process
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in the HELD model. In the future, we aim to tackle this

problem via the Monte Carlo Tree Search technique.

6 Downstream Application

We further explore how the logical document hier-

archy can be leveraged in a downstream application of

passage retrieval. Professionals usually need to retrieve

the relevant passages in a document with hundreds of

pages. Here, we define “passage” as paragraph, table,

figure and so on in the document. Clearly, this task

can be formulated as a learning-to-rank problem for all

the content passages within a document. We show that

the features extracted from the document hierarchy can

significantly improve retrieval performance.

Generally, for any passage corresponding to a node

in the logical tree, the features on the path from this

node to the root may help on this task. Hence, besides

the traditional BM25 feature four more features are ex-

tracted based on the document hierarchy. Specifically,

“BM25AncMax” is the maximum BM25 score among

the ancestor nodes of a given passage. The heading of

a section usually contains the general description of its

subsections. If the section heading hits the query key-

word, the passages in this section are more likely to be

relevant. “SameWordAnc” is the number of the same

words between a given passage and its ancestors. We

merge all the ancestors of the passage into one text and

calculate the intersection number of words between the

passage and the merged text. The ancestor nodes con-

tain a general summary about the content under them,

so the passage that contains more intersecting words

has higher importance. “Pos” and “PosRatio” are the

absolute and relative indexes of a given passage among

its siblings. Note that, PosRatio = Pos
c , where c is the

number of siblings of the passage. These two features

point out the positional information of children, where

the first and last child often provide an integrated de-

scription that may have a higher rank. Based on these

features, Gradient Boosting Decision Tree (GBDT) [39]

is adopted to rank the passages.

Table 11. The results of passage retrieval.

Adding Features mAP
recall@k

k=1 k=5 k=10
Only BM25 0.149 0.083 0.296 0.412
BM25 + BM25AncMax 0.269 0.184 0.376 0.465
BM25 + SameWordAnc 0.223 0.126 0.336 0.487
BM25 + Pos 0.254 0.165 0.403 0.519
BM25 + PosRatio 0.219 0.127 0.335 0.478
BM25 + All Four Features 0.338 0.218 0.471 0.576

The dataset contains 110 IPO prospectus in the Chi-

nese market and a set of 138 queries are applied to

each document. We spilt the dataset by queries with

88 queries for training and 50 queries for testing. Ta-

ble 11 shows the measures of mAP and recall on this

testing for different sets of used features. The baseline

model is to use only the BM25 feature. Then, each of

the four new features is combined to get another four

baseline models. Finally, we combine the four features

with BM25 to get the final model. The experimental

results show that each of the four features can improve

the retrieval performance and the BM25AncMax and

Pos feature get relative prominent improvement. With

all the four features together, we obtain 0.189 increase

on mAP and 0.135 increase on recall@1. In conclusion,

logical document hierarchy can be employed to signifi-

cantly improve the performance of the downstream pas-

sage retrieval task.

It is worth mentioning that the proposed four new

features heavily depend on the path from a node to the

root. Any errors in this path might seriously worsen

this application. Therefore, we argue again that the

proposed measure which checks the path from any node

to the root is more reasonable.

7 Conclusion

In this paper, we conducted a systematic study on

the task of extracting logical document hierarchy from
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long documents in terms of methods, evaluations, and

applications. We showed that the proposed HELD

model with the root-to-leaf traversal order and explicit

heading extraction is suitable to achieve the tradeoff

between effectiveness and efficiency. Furthermore, we

demonstrated that the downstream passage retrieval

task significantly benefits from the extracted tree. We

also argued that this proposed new measure should be

adopted in future studies of this task.
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