Skip to main content
Log in

Answering Non-Answer Questions on Reverse Top-k Geo-Social Keyword Queries

  • Regular Paper
  • Published:
Journal of Computer Science and Technology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Due to the wide-spread use of geo-positioning technologies and geo-social networks, the reverse top-k geo-social keyword query has attracted considerable attention from both industry and research communities. A reverse top-k geosocial keyword (RkGSK) query finds the users who are spatially near, textually similar, and socially relevant to a specified point of interest. RkGSK queries are useful in many real-life applications. For example, they can help the query issuer identify potential customers in marketing decisions. However, the query constraints could be too strict sometimes, making it hard to find any result for the RkGSK query. The query issuers may wonder how to modify their original queries to get a certain number of query results. In this paper, we study non-answer questions on reverse top-k geo-social keyword queries (NARGSK). Given an RkGSK query and the required number \( \mathcal{M} \) of query results, NARGSK aim to find the refined RkGSK query having \( \mathcal{M} \) users in its result set. To efficiently answer NARGSK, we propose two algorithms (ERQ and NRG) based on query relaxation. As this is the first work to address NARGSK to the best of our knowledge, ERQ is the baseline extended from the state-of-the-art method, while NRG further improves the efficiency of ERQ. Extensive experiments using real-life datasets demonstrate the efficiency of our proposed algorithms, and the performance of NRG is improved by a factor of 1–2 on average compared with ERQ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Zhao J, Gao Y, Chen G, Jensen C S, Chen R, Cai D. Reverse top-k geo-social keyword queries in road networks. In Proc. the 33rd IEEE International Conference on Data Engineering, April 2017, pp.387-398. https://doi.org/10.1109/ICDE.2017.97.

  2. Zhang J, Kong X, Yu P S. Predicting social links for new users across aligned heterogeneoussocial networks. In Proc. the 13th IEEE International Conference on Data Mining, December 2013, pp.1289-1294. https://doi.org/10.1109/ICDM.2013.134.

  3. Muslea I. Machine learning for online query relaxation. In Proc. the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, August 2004, pp.246-255. https://doi.org/10.1145/1014052.1014081.

  4. Mottin D, Marascu A, Roy S B, Das G, Palpanas T, Velegrakis Y. A probabilistic optimization framework for the empty-answer problem. Proceedings of the VLDB Endowment, 2013, 6(14): 1762-1773. https://doi.org/10.14778/2556549.2556560.

    Article  Google Scholar 

  5. Vasilyeva E, Heinze T, Thiele M, Lehner W. DebEAQ—Debugging empty-answer queries on large data graphs. In Proc. the 32nd IEEE International Conference on Data Engineering, May 2016, pp.1402-1405. https://doi.org/10.1109/ICDE.2016.7498355.

  6. Gao Y, Liu Q. Why-few and why-many questions on reverse skyline queries. In Preference Query Analysis and Optimization, Gao Y, Liu Q (eds.), Springer Singapore, 2017, pp.75-99. https://doi.org/10.1007/978-981-10-6635-1_4.

  7. Tong Q, Cheng J, Zhang F. Relaxing of exible RDF queries: A relative proximity relation-based approach. Journal of Intelligent & Fuzzy Systems, 2017, 32(6): 4145-4157. https://doi.org/10.3233/JIFS-16675.

    Article  MATH  Google Scholar 

  8. Naseriparsa M, Islam M S, Liu C, Moser I. No-but-semantic-match: Computing semantically matched XML keyword search results. World Wide Web, 2018, 21(5): 1223-1257. https://doi.org/10.1007/s11280-017-0503-8.

    Article  Google Scholar 

  9. Muslea I, Lee T J. Online query relaxation via Bayesian causal structures discovery. In Proc. the 20th National Conference on Artificial Intelligence and the 17th Innovative Applications of Artificial Intelligence Conference, July 2005, pp.831-836.

  10. Amami A, Elouedi Z, Hadjali A. A clustering based approach for query relaxation in evidential databases. In Proc. the 13th IEEE/ACS International Conference of Computer Systems and Applications, November 29-December 2, 2016. https://doi.org/10.1109/AICCSA.2016.7945733.

  11. Caruccio L, Deufemia V, Polese G. Learning effective query management strategies from big data. In Proc. the 16th IEEE International Conference on Machine Learning and Applications, December 2017, pp.643-648. https://doi.org/10.1109/ICMLA.2017.00-88.

  12. Chen X, Shin H, Lee H W. Learning to evaluate and recommend query in restaurant search systems. Information Systems and e-Business Management, 2017, 15(1): 51-68. https://doi.org/10.1007/s10257-016-0309-8.

    Article  Google Scholar 

  13. Wang M, Wang R, Liu J, Chen Y, Zhang L, Qi G. Towards empty answers in SPARQL: Approximating querying with RDF embedding. In Proc. the 17th International Semantic Web Conference, October 2018, pp.513-529. https://doi.org/10.1007/978-3-030-00671-6_30.

  14. Mai G, Yan B, Janowicz K, Zhu R. Relaxing unanswerable geographic questions using a spatially explicit knowledge graph embedding model. In Proc. the 22nd AGILE Conference on Geographic Information Science, June 2019, pp.21-39. https://doi.org/10.1007/978-3-030-14745-7_2.

  15. Mishra C, Koudas N. Interactive query refinement. In Proc. the 12th International Conference Database Technology, March 2009, pp.862-873. https://doi.org/10.1145/1516360.1516459.

  16. Liu Q, Gao Y, Zhou L, Chen G. IS2R: A system for refining reverse top-k queries. In Proc. the 33rd IEEE International Conference on Data Engineering, April 2017, pp.1371-1372. https://doi.org/10.1109/ICDE.2017.182.

  17. Mottin D, Marascu A, Basu Roy S, Das G, Palpanas T, Velegrakis Y. IQR: An interactive query relaxation system for the empty-answer problem. In Proc. the 2014 ACM SIGMOD International Conference on Management of Data, June 2014, pp.1095-1098. https://doi.org/10.1145/2588555.2594512.

  18. Mottin D, Marascu A, Roy S B, Das G, Palpanas T, Velegrakis Y. A holistic and principled approach for the empty-answer problem. The VLDB Journal, 2016, 25(4): 597-622. https://doi.org/10.1007/s00778-016-0431-8.

    Article  Google Scholar 

  19. Koudas N, Li C, Tung A K, Vernica R. Relaxing join and selection queries. In Proc. the 32nd International Conference on Very Large Data, September 2006, pp.199-210.

  20. Meng X, Ma Z M, Yan L. Answering approximate queries over autonomous web databases. In Proc. the 18th International Conference on World Wide Web, April 2009, pp.1021-1030. https://doi.org/10.1145/1526709.1526846.

  21. Hassine M A B, Nasri C A, Ounelli H. Search space reduction for an efficient handling of empty answers in database flexible querying. In Proc. the 14th International Conference on Knowledge-Based and Intelligent Information and Engineering Systems, September 2010, pp.532-543. https://doi.org/10.1007/978-3-642-15387-7_57.

  22. Vasilyeva E, Thiele M, Mocan A, Lehner W. Relaxation of subgraph queries delivering empty results. In Proc. the 27th International Conference on Scientific and Statistical Database Management, June 29-July 1, 2015, Article No. 28. https://doi.org/10.1145/2791347.2791382.

  23. Dellal I, Jean S, Hadjali A, Chardin B, Baron M. Query answering over uncertain RDF knowledge bases: Explain and obviate unsuccessful query results. Knowledge and Information Systems, 2019, 61(3): 1633-1665. https://doi.org/10.1007/s10115-019-01332-7.

    Article  Google Scholar 

  24. Bai L, Duan X, Qin B. Adaptive query relaxation and top-k result sorting of fuzzy spatiotemporal data based on XML. International Journal of Intelligent Systems, 2022, 37(3): 2502-2520. https://doi.org/10.1002/int.22781.

    Article  Google Scholar 

  25. Ahuja R, Armenatzoglou N, Papadias D, Fakas G J. Geosocial keyword search. In Proc. the 14th International Symposium on Spatial and Temporal Databases, August 2015, pp.431-450. https://doi.org/10.1007/978-3-319-22363-6_23.

  26. Lu J, Lu Y, Cong G. Reverse spatial and textual k nearest neighbor search. In Proc. the 2011 ACM SIGMOD International Conference on Management of Data, June 2011, pp.349-360. https://doi.org/10.1145/1989323.1989361.

  27. Zobel J, Moffat A. Inverted files for text search engines. ACM Comput. Surv., 2006, 38(2): Article No. 6. https://doi.org/10.1145/1132956.1132959.

  28. Chen L, Xu J, Lin X, Jensen C S, Hu H. Answering why-not spatial keyword top-k queries via keyword adaption. In Proc. the 32nd IEEE International Conference on Data Engineering, May 2016, pp.697-708. https://doi.org/10.1109/ICDE.2016.7498282.

  29. Chen L, Lin X, Hu H, Jensen C S, Xu J. Answering why-not questions on spatial keyword top-k queries. In Proc. the 31st IEEE International Conference on Data Engineering, April 2015, pp.279-290. https://doi.org/10.1109/ICDE.2015.7113291.

  30. Zhao J, Gao Y, Chen G, Chen R. Why-not questions on top-k geo-social keyword queries in road networks. In Proc. the 34th IEEE International Conference on Data Engineering, April 2018, pp.965-976. https://doi.org/10.1109/ICDE.2018.00091.

  31. Dijkstra E W. A note on two problems in connexion with graphs. Numerische Mathematik, 1959, 1: 269-271. https://doi.org/10.1007/BF01386390.

    Article  MathSciNet  MATH  Google Scholar 

  32. Lee K C, Lee W C, Zheng B, Tian Y. ROAD: A new spatial object search framework for road networks. IEEE Transactions on Knowledge and Data Engineering, 2012, 24(3): 547-560. https://doi.org/10.1109/TKDE.2010.243.

    Article  Google Scholar 

  33. Liu P, Wang M, Cui J, Li H. Top-k competitive location selection over moving objects. Data Sci. Eng., 2021, 6(4): 392-401. https://doi.org/10.1007/s41019-021-00157-1.

    Article  Google Scholar 

  34. Chen B, Zhu H, Liu W, Yin J, Lee W, Xu J. Querying optimal routes for group meetup. Data Sci. Eng., 2021, 6(2): 180-191. https://doi.org/10.1007/s41019-021-00153-5.

    Article  Google Scholar 

  35. Yang D N, Shen C Y, Lee W C, Chen M S. On sociospatial group query for location-based social networks. In Proc. the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, August 2012, pp.949-957. https://doi.org/10.1145/2339530.2339679.

  36. Armenatzoglou N, Papadopoulos S, Papadias D. A general framework for geo-social query processing. Proceedings of the VLDB Endowment, 2013, 6(10): 913-924. https://doi.org/10.14778/2536206.2536218.

    Article  Google Scholar 

  37. Shim C, Kim W, Heo W, Yi S, Chung Y D. Nearest close friend search in geo-social networks. Information Sciences, 2018, 423: 235-256. https://doi.org/10.1016/j.ins.2017.09.049.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun-Jun Gao.

Supplementary Information

ESM 1

(PDF 244 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, XQ., Luo, CY., Yu, HL. et al. Answering Non-Answer Questions on Reverse Top-k Geo-Social Keyword Queries. J. Comput. Sci. Technol. 37, 1320–1336 (2022). https://doi.org/10.1007/s11390-022-2414-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11390-022-2414-0

Keywords

Navigation