Auto-Sign: An Automatic Signature Generator for

High-Speed Malware Filtering Devices

Gil Tahan (Gilta@bgu.ac.il)
Chanan Glezer(Chanan@bgu.ac))l
Yuval Elovici (Elovici@bgu.ac.il)
Lior Rokach (liorrk@bgu.ac.il)
Deutsche Telekom Laboratory at Ben Gurion Universit

Beer Sheva, Israel 84105

ABSTRACT
This research proposes a novel automatic methochgte Auto-Sign) for extracting unique
signatures of malware executables to be used bydpged malware filtering devices based
on deep-packet inspection and operating in reakti@ontrary to extant string and token-
based signature generation methods, we implemefAtdd-Signan automatic signature
generation method that can be used on large-sizevarea by disregarding signature
candidates which appear in benign executables.liRésom experimental evaluation of the
proposed method suggest that picking a collectioaxecutables which closely represents
commonly used code, plays a key role in achieviigiplis specific signatures which yield

low false positives.

Keywords

Malware, Automatic Signature Generation (ASG),Uston Detection Systems

! Corresponding author, Telefax + 972-3-6440414

1. INTRODUCTION

The time interval from the release of new malicisofiware to the wild till the time that the
security software/hardware companies detects thevana analyze it, generate a signature
and release an update to its clients is highlycatit During this time interval the malware is
undetectable by most of the signature-based conmahesclutions and thus it can easily
propagate [1]. For that reason, it is highly impattto detect a new malware as soon as
possible and rapidly generate a good signaturbatcabundant signature-based solutions can
be updated.

One way to protect organizations from malware ideploy high-speed malware filtering
appliances on the communication lines that contfeetorganization to the outside world.
Such appliances are based on deep-packet inspentiozal-time and thus support very
simple signatures for detecting malware. Securipliances are an appealing solution
because they require no local overhead to managm,tget they work continuously to
protect the enterprise [14].

This research focuses on automating the procegeradrating signatures to be installed
on such appliances for known malware that needsetéiltered by the appliances. Various
techniques have been proposed to derive malwamnatsiges automatically, including among
others: vulnerability-based signatures [1]; payladed signatures ([7]; [19]); content sifting
[17]; semantic-aware signatures [21]; The Amd atbar [2]; Honeypot-based signatures
([8]; [15]; [18]), and polymorphic content-basedysatureg14][26]. These studies examine
code by matching and analyzing the distributioistahg patterns in communication packets;
classifying unsuccessful connections; and modetiagriant code structures. Such signatures
were tested and reported to be effective for ssiaéd malware (usually worms) [1, 7, 19].

Nevertheless, the employed approaches for sign@gemeration ignore the fact that many

types of malware appear as full-fledged executabtetherefore contain a significant portion
of repetitive code emanating from code generattegelopment tools and platforms.

Considering the fact that signature-based syst#mmsot account for such large common
code segments, the quality of existing signatuneegaion mechanisms is degraded. Such
guality is measured using sensitivity (low falseyaieve for malware) and specificity (low
false positive for innocuous traffic) measures.

In order to address the problems stated abovs,rdsearch proposes and evaluates a
signature generation technique, termfaato-Sign for generating signatures which can be
used by Network Intrusion Detection and Protecti®ystems (NIDS/NIPS) operating as
malware filtering devices [27]. For such devicesitkSign needs to generate a very simple
signature that a network appliance can use faariiiy malware in real-time. A very simple
signature is actually a string of bytes or a simplgular expression of bytes at the most. To
improve its precision, Auto-Sign employs an exhiaesand structured technique which first
sanitizes malware from segments of common benigle @nd only then generates unique
signatures which can be later used for detectianalivare traffic.

The scope of this research is on tackling malioade in the form of adware, spyware,
Trojans, and viruses. Auto-Sign was tested alstaaye, full-fledged malicious applications
and not necessarily on short stream-based malwiageavcommon code is not relevant.

Auto-Sign raises many questions with regards tooua aspects of the proposed
technique. In this research we were interestednidirfg the optimal length and selection
criteria of a signature among several candidat@esdar to minimize false positives as well as
the size and type of the training set in order tmimize false positives. This research
describes the Auto-Sign technique and a set of rerpats which were performed am
collection of malicious and benign executables.cABign is capable of automatic signature

generation as part of the eDare framework [22] wiiffers "malware filtering as a service"

and is targeted for Network Service Providers (N&Rgrnet service Providers (ISP), small

and large enterprises.

2. RELATED WORK ON AUTOMATIC SIGNATURE GENERATION (ASG)

Automated signature generation for new attacksisftlype is extremely difficult due to the
following reasons [18]. In order to create a makvaignature, we must identify and isolate
malicious traffic from benign traffic, which is nah easy task under all circumstances due to
sophistication of hacking techniques. The diffiguf signature generation for new attacks is
also difficult since as soon as the signature gditer methods are known to the attacker and
especially the statistical ones, he may be abtiefeat them by using statistical simulability
as presented in [28][29]. The signature must beeggrenough to capture all instances
malicious traffic while at the same time specifimagh to avoid overlapping with the content
of benign traffic in order to reduce false posiiv&his problem has so far been handled in an
ad-hoc way based on human judgment. As a case imt, prurrent rule-based network
Intrusion Detection Systems (IDS) can do littlestop zero-day worms [19]. They depend on
content, protocol-anomaly and behavioral signatwiegh can only be generated in a delay
after the malware has been launched and alreadtedrsubstantial damage.

Several approaches have been employed in ordexgedite the process of signature
generation for effective containment of wormgitograph[7] stores source and destination
addresses of each inbound unsuccessful TCP coaoneatibserves. Once an external host
has made unsuccessful connection attempts to rmared internal IP addresses, the flow
classifier considers it to be a scanner. All susftesonnections from an IP address, flagged
as a scanner, are classified as suspicious, airdrtheund packets written to the suspicious
flow pool. Autograph next selects the most frequayte sequences across the flows in the
suspicious flow pool as signatures. At the stad @form’s propagation, the aggregate rate at

which all infected hosts scan the IP address sigageite low. Because Autograph relies on

overhearing unsuccessful scans to identify suspscisource IP addresses, early in an
epidemic an Autograph monitor will be slow to acadate suspicious addresses, and in turn
slow to accumulate worm payloads. To address tiuiblem Autograph uses a tattler that, as
its name suggests, shares suspicious source agli@s®ng all monitors, toward the goal of
accelerating the accumulation of worm payloads.

Honeycomb [8] tries to spot patterns in trafficeygpusly seen on the honeypot.
Honeycomb overlays parts of flows in the traffidarse d.ongest Common SubstrigigCS)
[4] algorithm to spot similarities in packet payitsa [18] followed-up this work by designing
a double-honeypot system, deployed in a local ndtvior automatic detection of worm
attacks from the Internet. Two algorithms basedExpectation-Maximization [10] and
Gibbs sampling [9] are proposed for efficient comapion of Position Aware Distribution
Signature (PADS). Th@AYL sensofl9] employ anomaly detection which is based an th
principle that “zero-day” attacks are deliveredperckets whose data is unusual and distinct
from all prior “normal content” flowing to or frorthe victim's site. Th&lemean architecture
[21] is a semantic-aware Network Intrusion Detactystem (NIDS) which contains two
components: a data abstraction component that niaeagackets from individual sessions
and renders semantic context, and a signature gerercomponent that clusters similar
sessions and uses machine-learning techniquesnirage signatures for each cluster. In a
related study, thédmd algorithm generates semantic-aware code tempdatespecifies the
conditions for a match between the templates ared glograms being checked [2].
Polygraph[13] provides a content-based signature generagohniques for polymorphic
worms. The underlying assumption is that possiblautomatically generate signatures that
match many variants of polymorphic worms offerirayl false positives and low false
negatives. Newsome et al. (2005) propose and dealugystem that expands to notion of

single substring signatures (tokens) to conjuctiomrslered sets of multiple tokens and

Bayesian (score) token&arlyBird [17] sifts through the invariant portion of a worm’s
content will appear frequently on the network aspiteads or attempts to spreadNktspy
[19] the invariant portion of network traffic gea¢ed by a spyware program is used to derive
a spyware signature. This is because a signatatd#ls content related to specific user input
will miss network activity generated by the program other user input. Netspy uses a
variant of the longest common subsequence (LCSgq)ithm [6] to find such invariants
sections.

Filiol [26] address the problem that commerciahailable anti-viruses are not resistant
against black-box analysis. He suggested generatmdfiple sub-signatures that are
randomly selected from a longer signature. Subasiges are distributed such that “any sub-
pattern is a fixed value which depends on the aserputer identification data”.

The aforementioned automatic signature generatemhniques focus on analyzing
similarities and anomalies in executables’ subgfincode tokens as well as statistical
distribution of code across variants of malwarengamuently, testing of such signatures was
performed on short, stream-based malware such asld\iCode Red/Code Red I, MS
Blaster (1.8KB long), Sober, Netsky and B[e]aghevertheless, larger malware executable
files, carrying full-fledged applications usuallgrgain a significant portion of common code
segments which are planted by software developmlatiorms spawning the malware but
are found also in benign executables. As a regutgmatically selecting a signature that will
be both sensitive and specific is a very challeggask in the case of these large files.

The goal of this research is to generalize thevabmork by proposing an automatic
signature generation technique, termed Auto-Sigpable of generating highly-sensitive and
highly-specific signatures for malware of any sarel type operating in any operating system
environment (i.e., Trojan horses, spyware, adwareses, and worms). The technique is also

capable of handling malware such as self-decrypédfeéxecuted files; or archive files (i.e.,

CAB, MSI, Zip). Of course a signature derived fameacrypted/uncompressed malware
cannot be used for detecting the same malware enygted or compressed files. Short,
stream-based malware (not a self-contained apgigatvhich does not include significant

portions of common code is also not a typical cdatdi for Auto-sign.

3. THE PROPOSED AUTOMATIC SIGNATURE GENERATION METHOD

In order to create and employ signature for efiecind efficient detection of malware in
executables, our technique should generate a signawvhich complies with several
requirements. First, we are interesting to findgaatures of length s with a low probability
po to appear in a benign file. lelassical signature-based detectidhe number of

appearances of@ntiguoussignatures in a benign file of bytes is distributed &s

Z -~ N((n—z) g\/(n-2) p(l- g)) (1)

The false positive rate of such detectodiiectly determined by, Thus lowering the value
of po will result in a lower false positive. In order &pply with a certain level of false

positive rate, one should require that thevpl not exceed a certain valee

However estimatingqis not an easy task. Assuming we are using avelatsmall sample
of benign files, then simply measuring the frequeoicsignatures in the sample might be
unreliable. As proposed in [26] , we can usest-farder Markov model to estimate the

probability p of a signature containings bytes as:

P (o) = Pr(t)CPr(y| b)OPr(b| b Y- OPrp] b,

2 This is slightly different from therobabilistic law presented in [28] because heeenatt refering to the
general case of which the signature bytes areew#gsary contiguous,

whereb; is the ' bytes ino.

Let f*(x) represents a function that returns a signatulengfthx that appears in the malware
code and has loweg,. However iff*(s) is not sufficient, i.e.p, (f*(s)) < e, then we are
compelled to search for a larger signatii(e+1). Note thatp, (f *(x))is monotonically

decreasing ix because there are only two cases:

1 If £*(x)0 f*(x+1) then , (f*(x+1)) = fy((X)) Pr(k,,

g)< B #(3)
(which satisfies monotony)

2. If £*(x)0 f*(x+1) then P, (f*(x+1))< fy(f* (%)) because by definition of f*

Po(f*(x+1))< fy(f*(¥& b where & indicates the concatenation operation.

Other requirements from the signature are: Theasuge should be sufficiently short to
decrease the problems of Internet packet splits detdction hardware storage limitations
(i.e., various IDS/IPS devices such as Defensebljp Third, the signature should comply to
the limitations of high-speed deep packet inspectievices that can detect and remove
malware in real-time in high-speed data streamalBinit should be well-defined to enable
totally automatic generation. The major challengeconforming to the aforementioned
requirements was to develop a methodology thalarzate code segment or segments highly
unique to a given malware instance and can thexe$erve as a powerful and unique
signature meeting the stringent requirement sah foy commercial high-speed malware
filtering devices.
Since many malware executables nowadays are indfaatloped using" Generation

development platforms (e.g. MSVC, J2EE, DelpHig binary code of malware nowadays

contains a large portion of code placed by theseldpment platform. These portions of

common code are identical or almost identical ek@afuress references. Such common
segments were not developed by the authoring halsliemvere linked to the malware as part
of the underlying code generator’s library andtarened Common Function Code (CFC). To
significantly decrease the risk of selecting subbralant segments as a signature that may
lead to high false positive rate, we must firshitify and disregard the CFC part. The CFC of
a malware file can be identified by analyzing thelware content against a repository of
CFC which is termed a Common Function Library (CFDe CFL can be derived based on
a collection of benign executables and should lgeilagly updated in order to take into
account the evolution of benign (and potentiallylionaus) files.

To meet the requirements stated above, we dewtlibgeAuto-Sign methodology which

is schematically described in Figure 1.

Setup
Phase Construct CFL/CTL
S. t A 4
Igna u_re Generate Signature candidates
Generation <
Phase 1 Al
Compute Indices for signature candidate
candidates were
trimmed
A 4
Trim unsatisfactory signature

candidates.

A 4
Rank remaining signature
candidates (by distance,
probability, entropy)
A 4
Select best and final
signature.
Figure 1: The Auto-Sign methodology
3.1 Setup:

During the setup phase a data structure (libraggresenting a collection of benign

executables is constructed. The data structusrnseid CFL.

The CFL is comprises of the following data struetur

1) 3-gram-frequency. A vector of 224 (~16 million) entries where each cell represéms
number of occurrences of each 3-gram (three cotisechytes) in the collection of
benign files. The n-gram size was chosen to be 8rder to comply with memory

constraints. N-Gram was also used in [23] for madwdetection and in [24] and [25] for

10

malware phylogenyThe collection of benign files used for construgtithe CFL is
scanned sequentially in order to record the nurabeccurrences of each 3-gram.

2) 3-gram-Files-association A 2124 X 64 bit-map where a '1' Binary value in a ¢gli)
indicates the appearance of a specific 3-granthenth group of files. The CFL files are
divided into 64 groups.

3) 3-gram-relative-position-within-file: A 2124 X 64 bit-map where a '1' Binary value in a
cell (i, j) indicates the appearance of 3-grann the [internal segment of a file
(assuming the file is divided into 64 equal lengdigments).

The common threat library termed CTL can be congtdias a separate data structure in a

similar manner.

Maintaining lookup tables which capture the appeeeaof each possible 3-gram in a file (or

group of files for large CTL/CFLSs), as well as tteative position of 3-grams in each file

promotes the scalability of Auto-Sign. This enaltesdling large repositories of CFL/CTL
files representing many heterogeneous softwardophas, when other techniques such as

LcSeq [6] are not feasible anymore.

3.2 Signature Generation:

11

The aim of this process is to auto generate anieffi signature. The process is repreated for
each malware M. First, a set of signature candsdegeextracted from different positions
within the malwaréM. Each signature candidalg looks for a fixed contiguous sequence of
bytesCy € {0, 1, 2, . . . ,255}° with s = |Cy|. Using our3-grams representatioGy
comprises a number of 3-grams depending on theéHesfggthe signature (e.g. a signature of
length 4 bytes is comprised from two 3-grams thadrlap by two bytes). Employing the 3
data structures prepared during the setup stagg (Be following indices are calculated for

each signature candidate extracted from the maiware

1) Spread In subsection 3.1 we have divided each file i6tb segments. The “Spread”
measure represents the spread of the signatuigran3s along the various segments for
all the files in the CFL. For example, Spread=1ligates that the signature is located in
only one segment in all the files of the CFL.

The match of a certain 3gramrka benign subs& of three contiguous bytes may be

described as a Bernoulli variable

xs _ 1 pgramk
k 0 1- pgramk

The value p?®™", is determined by the efficiency of the k's 3-gram.

We define the following variableith respect to a segmejnt

1iff O3ramO G, ,Ofiled CFL:3grami] segmen(fi)
Y. = (2)
0,else

where segmeytfile) denote the' internal segment of file.

12

Let pk,; represent the probability of k’'s 3gram to appddeast one time in segmenof a
benign filei. pk; can be estimated the complementary probabiliy,that the probability of

the event that k is not been found in the segment:

‘segmeqt i(‘)— :

Pk, :1'(157") 3)

Thus Yj is distributed aBernoulli with success probability of

psegj = DM P (4)
kbc, iOCFL
seg .

- g — - .
Note that because the segments are equally sizadoi =P HI#E

The following formula specifies the spread measure:

64
Spread.; (G) = Z Y %)
=1

Spreacis distributed as the sum of 64 identically digitdxd Bernoulli random variables

which can be approximated to Normal distributill§1664EpSeg \/ 6400p* (- p°%9)) .

4) Freq: The average frequency of all 3-grams that compaseandidate signature
(computed using the 3-gram-frequency data strugtitigher “Freq” may indicate a
bad signature candidate. The following formula #jecthe probability measure:

X Sk

OkOCy;|§=3 OfiledCFL 0O S filg $3

cFL([c.[-2) ©

Freg.,, Cy)=

Note that|CM | -2 represent the number of 3gram in the signatye C

13

Freq is a sum of distributed Bernoulli random Malea. Note that theentral limit theorem
can not be applied here directly as the X’s arddwttically distributed (different success

probabilities). Thus we are using Poisson approtionaas proposed in [30]:

k U
Pr(Freq= k) = A k&j (7)
where:
| file =2 Cp*™",
= OkOCy ;| 9=3 OfileCFL 8
(Cul-2) v

The cumulative distribution function (CDF) is:

Pr(Freq< k) :M (9)

k!

wherel'(x,y) is the Incomplete gamma function ahd | is the floor function.

3) R=Freq/Spread By dividing the aforementioned freq and spreadane able to further
increase and normalize the crude probability metoc a candidate signature. For
example, when all the comprising 3-grams of thedwhate signature are concentrated in
the same area within an executable (most likelycatthg an area of common code) the
normalized score will yield a higher value compateda situation (in a different
executable) where the 3-grams are found spreadrirerous relative positions within the

executable.

We hypothesize that those m candidates are lesdy lilo appear within CFL files in
consistent areas of a file thus less likely to bgldo chunks common code.hi§
hypothesis indicates that low ratio candidate diges are associated with lower

signature probabilities in benign files (signataficiency)

14

Proposition 1 mathematically examines this hypathesder limited circumstances. In

section 4.2 we empirically examine this hypoth&sigeneral circumstances.

Proposition 1: Let R1 and R2 represent the ratios of two candidignatures Cand G

both of lengths=3 test on single file. If §#C,) < Py(C,) then E(R1)<E(R2)
Proof:

R1 and R2 are ratio of two Poisson variables. Thus:

Probability, . 1
E = Bl ———= | = H Probability) O
(R) (Spread j L Probabilty %Spreawﬂ

Using the approximation of theean of the inverse of a Normal distributi¢82]:

According to the theorem condition (sz}GFL| =1) and using Eq. (8) we obtain:

2, =|file -2/, (C,)

|file],/
w=oq 1(1G) |

file — 2| p, (C
E(R)= | = |Ep0(ﬁlel) >
64(1-(1-95 G) ™ j

We assume the file is large enough (i.e. largem 6¥t4 which is reasonable assumptions as

usually files contains thousands of bytes). In ta@se moving from JC;) to R(C)), i.e.

the probability is mcreasee‘M times will result in increasing the nominator by

R(C)

15

R(C) times but the denominator to be increased in ﬂhaaw times. Thus the

R(C) R(C)

entire rate is increased Bsoposition 1 argues.
4) Distance:

We examine the distance of each candidate sign#tatedoes not appear in the common

library to its nearest signature that does appetra common library.

The structure of executable is built from a contias! partition of common library functions
and then a unique code partition. For the sakelaftg we assume that there is only one
partition of each type as illustrated in FigureEach line represents a segment of 64 bytes
which is also the length of the candidates thaewa&mine. Let assume for the example that
we know that the 2% segment is part of the common library (by lookintp many other
files). However we are not aware where the unigaritppn begins. However segments that
are located in higher places (i.e. are locatedwmay from the 2% segment) have larger
chance to be part of the unique block (and becafighat can be good candidate for a
signature). Specifically in figure 2, the"78egment is more likely to be part of the unique

partition than the 60segment. We formulate the last intuition in thiofwing proposition.

Proposition 2: Assuming the executable consists of two contigysausitions of common
and unique code, then the expected squared dista#nae unique segment to the closet
known common segment is grater than the expectearsd distance of a common segment

to the closet known common segment.

Proof:

16

Without loss of generality the common code is ledan the first n segments and the unique
code is located in the remaining m segments. Ausgpgment located in position b (b>n)

and a common segment is located in position a (a<=n

The location of the closet known common segmedtsgibuted according tsome unknown

discrete distribution:
Pr (ocation=i)= 4 ;ZH:,BI =1
i1
The expected squared distance from location talebaare:
SD,, o= E[(location- 32}: % Iocatioﬁ]—z af locatigr ?
SDhnique = E[(location- t)z}: % Iocatioh]—z bE locatigr °
Thus:

SDigue™ SPommor= (b= 3(B locatiop+ b p>0

17

Segment 25

known to
be common
Common
< Seamen6C
< Seamen7C
Unique

Figure 2: Illustrating the motivation of the distance estimator

18

5) Entropy: In addition the new estimators presented abovealg@ use entropy measure

which has known to be useful for selecting effextignatures [26].

6) Bits: the total number of files (or file groups) thanhtain the signature.

Measures 1- 6 were calculated for the CFL. Meas2iigsd 6 were calculated for the CTL.

The signature generation process can thereforarhenarized as follows:

1) Generate signature candidatesof length L by splitting the examined malware

executable to segments of equal length L.
2) Calculate the following measuregfor each signature candidate):

Spread (based on CFL), Freg/Spread (based on Gkk)(Based on CFL), Entropy (you
should define it with all others), Freq (based arL¥; Bits (based on CTL). This stage is

done using the data structures created in the sétgp.
3) Mark each candidate appearing in the CFL (bits>0)

Only signatures that do not have any incident wiadlreheir comprising 3-Grams appear

in a file within the CFL repository are considergdble candidates

4) Trim candidates appearing in the CFL (CFL-bits>0) or appearinghe CTL. Note
that we trim candidates that appear in the CTL bee@ommon functions of malcode are

also not good candidates for identifying a certaalware.

5) Rank remaining candidates (marked during stage 3) Y distance from CFL:

19

6)

7)

The n candidates with the highest physical digtafrom the CFL/CTL areas (as
calculated from the 3-gram-relative-position-witliile matrix) are selected. Our
assumption is that a high distance of a signataredidate from the closest chunk of
common code within the executable indicates an afeaode which represents the

malware more uniquely.

Rank remaining candidates using CFL-Freq / CFL-Sprad:

Out of the n candidates selected in phase 5, midates with the lowest CFL-Freq /CFL-

Spread ratios are selected.

Rank remaining candidates based on entropy:

Out of the m candidates selected in phase 6, tsgmature candidates with the highest
degree of entropy are ranked as best and final dustomary to assume that a signature
candidate with a higher degree of entropy is lésslyl to be associated with areas
common to different executables (i.e., constamst with repeating characters) and is

therefore a more unique identifier of the malware.

8) Select actual signature:

Out of the w remaining candidatése one with the highest entropy is selected as the
actual signature

Table 1 provides a pseudo-code specification ofatfeeementioned signature selection

process.

20

Proposition 3: The computational complexity of the algorithm inbleal is O(CRL{ CL-2))
where CR denote the number of requested candidate€L is the candidate length

Proof:

The computational complexity of the algorithm inblea 1 is computed as follows: the
GenerateSignatureCandidates complexitQ(€R , th¢ complexity of the first loop (lines 3-
13) is O(CRI(CL- 2)), the complexity of the second loop (lines 15-19)Q(CR), the
complexity of the third loop (lines 21-26) isO(CR,)the complexity of
Candidates.SortBY_DistanceFromCFLGR[log(CR , the complexity of the fourth loop on
lines 29-30 is O(CR)(worth case when N=0), the complexity of the fiéthd sixth loop in
lines 32-34 and 37-39 is als®(CR , and the complexity of Candidates.SortBY_Entropy i

CRIlog(CR). Thus the overall complexity ®(CRI(CL- 2))

21

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

Candidates=GenerateSignatureCandidates(Maleware, GtesiRbquired,CandLen);

ForEach Candidate in Candidates do
{
Candidate.CFLspread = CFL.CalcSpread (Candidate);
Candidate.CFLNormProb = CFL.Average3gramProb (Candid&andidate. CFLspread;
Candidate.CFL_bits = CFL.Count_Files_With_All_3gr@andidate)
Candidate.Entropy = Entropy(Candidate.string);
Candidate.InCFL = (Candidate.CFL_bits > 0);

Candidate.CTL_bits = CTL.Count_Files_With_All_3gré&Bandidate)
Candidate.InCTL = (Candidate.CTL_bits > T);
}

ForEach Candidate in Candidates do
{
If Candidate.InCFL then continue; // disregard
Candidate.DistanceFromCFL = DistanceFrom(Candidasepf€andidates);

}

ForEach Candidate in Candidates do
{
If Candidate.InCFL or
Candidate.InCTL then
Candidates.delete(Candidate);

}

Candidates.SortBY_DistanceFromCFL();
For i=Candidates.count downto N+1 do
Candidates.delete(i);

Candidates.SortBY_CFLNormProb();
For i=Candidates.count downto M+1 do

Candidates.delete(i);

Candidates.SortBY_Entropy();

For i=Candidates.count downto 2 do
Candidates.delete(i);

Signature = Candidates[1];

22

Table 1: Pseudo-Code of signature selection process

4. EVALUATION

4.1 Examining the effectiveness of Auto-Sign

The evaluation described in this section comprifes set of experiments we conducted to
test the effectiveness of Auto-Sign. The experimledesign was aimed at assessing the
impact of various independent variables on theityaf the signature which is characterized

by the number of false positive appearances ofrzasire in a set of clean (benign) files. The
independent variables used by this study are tbpoption of CFL versus test files and the

size of a signature (32, 64, 128 bytes).

The first task in the evaluation (Figure 4) is sgs@mble two repositories: one comprising
benign and the other comprising malicious (threx@cutables. The benign repository is
randomly split 10 times into training- and testsgs. A distinct CFL is constructed 10 times
for each of these sampled training sets where itee &f the training set is increased in a
linear fashion during each of these 10 iteratiombe threat repository, on the other hand, is
held fixed during the evaluation and therefore@id is constructed once before being used
by the signature generation algorithm.

In each such configuration we generated three gigemwith lengths of 32, 64, 128 bytes
for all 849 malware files. The false positive coohthe best signatures generated by Auto-
sign was calculated by performing a cross-validatibthe selected signature against the test
set.

The repository of benign files included 5494 fiish lengths ranging from 3Kb to 8MB.
The repository of malware instances comprised 8ffdds with lengths ranging from 6Kb to
4.25MB (11 executables where above 1 MB and 20va&al390KB). The distribution of
malware file types is depicted in Figure 5. Genegatthe signatures for the malware

repository took 5.7 seconds using one 3Ghz Penpitovessor. Figure 6 depict a sample of

23

Auto-Sign's output with a list of files, their sigpres and the indices calculated for these
signatures.

Table 2 depicts the average false positive cowntsmbnotonically increasing proportions
of the CFL in the following two configurations: 33#%aining set (CFL with CTL)/67%
testing set; and 50% training (CFL with CTL)/50%tteg set. Table 3 compares the average
false positive counts for 25% training-75% testsgg once with the CTL and once without.
For each such configuration we used a 10 crossyaldiation over the 849 files for the 3
signature lengths.

The results indicate the fact that even a large ©Flup to 50% of the clean files
repository cannot compensate for short signatufé32 Bytes. The size of the signature is
optimal at 64 Bytes as the improvement from 64 28 Bytes is not substantial. Moreover,
the important factor with regards to the CFL setetts the "proximity" of the common code
to the code generated by coding platforms. Thevident from the fact that in the case of the
25-75%, removing the files of the CTL hampers thecision of the signatures and increases
the amount of false positives. Moreover, the resaliso indicate that there no point
increasing the CFL beyond some optimal thresholittecthe CFL represents a critical mass of the
common code (in the case of choosing a 25% CFLamhd approximately 7.5% of the clean
repository), adding files to the CFL does not yiaity marginal decrease in the false positive rates
candidates.

Finally, we also generated signatures for the mawasing random selection and
entropy-maximization for the various signature kasg Under the entropy-maximization
approach, the signature was picked from an areainnvibe malware which has the highest
entropy score. This was done in order to minimike tikelihood of the signature's
appearance in benign executables which would yretflient false-positive detections.

Table 4, depicts the number of malware files wheigaature was found in the benign

repository of 5494 files. The results indicate thila@ entropy maximization technique is

24

superior to random selection in all signature laagtowever both techniques are far from

being feasible for meeting the quality of the CKid @&specially CFL+CTL performance.

Collect repository of Collect 849
5494 benign Win32 abundant malware
executables. instances

A 4

Generate CTL

A 4
/ Randomly split clean repository
into 2 sets: a) "training" file setf
b) Test file set.

A 4

- Build CFL from training
10 * < file set
10* v
- :
CFL sets < 3* Generate signature for |
849 * Signatur each threat
Lengths
Malware < il
Cross validate signatures

K N _ against Test file set

A 4

Calculate Average False
Positive

Figure 4: The Auto-Sign Evaluation Plan

25

Worm , 43, 5%

P2P, 43, 5%

Flooder, 43,
5% Worm Emails,
. 209, 25%
Denial of

Senice , 53,

6%
Email Flooder,
57, 7%
Exploits , 69,
8%
Virus , 232,
Trojan , 100, 27%

12%

Figure 5: Distribution of Malware Types

Thieat | TriHist | EvalBuid |

]F:\F signEthreats\DoS Win32.D aath, vir _J Size:

GenerateSignatures

Offset | Offset 2z | FiIeCounLl Bitz ‘ Entropy | Probab | Density | Digtance | ThitBits 1 ThitProb | Signature | FileName ~
ODODOCEC 26 o u] 0E151 000 11 34 1 27511948 N¥HET Y MM signimalwarehE mailworm Win32 Paroc. & wir
0006023~ 65 1]] 06224 000 9 24 1 31035.24 LTt 1 M:AF sigrimnabwareD o5 Win32. Lansue, 200, vir
OOO0E0SE 62 il 0 05733 2199798 26 19 1 30134111 LIF . MN:AF signivmalwarehE mailwform Wwin32 Poo. vir
DOOFFDA0 81 o 5] 07070 000 1 34 1 1415 - Sj:0%a MM signtmalwareibojan-dropperB2.vir
00003F47 48 1] 0 0E005 000 18 153 1 044252958 1l M:AF sigrimnalwareE mail-aform \win32.5 abia, vi
0oo0gss1 27 1] 0 05637 0.00 2 14 1 E9.63 12==10... N:AF signmalwareE mailwiorm Win32 wWideman, 8135, a.vir
000 7IES 43 1]] 06471 83973 7 34 1 2008318 Bl M:AF sigrimalwareFlooder Win32 WD, vi
oooal4eE 22 1]] 05876 2859064 25 53 1 340339.26 1e.<21741 M:AF sigrimnalwarehinus \win32 Kriz. 3863 vir
0000253 20 o 0] 06619 142741 17 44 1 9263.97 1 M:AF sigrimalwarehirus Wind2 Matyas 644 vir
00045F20 79 1]] 06054 125682 10 24 1 22436.81 10— <L MN:MF signtmnalwareEmail-Flooder \Win32 MaiMuke. vi
000SFI2C 81 il] 0533 147715 9 19 1 32827.29 2. F MN:AF signivmalwareE mail-Flooder \win32. Charlie. 10.vir
ooooicaa 25 o o 07461 000 1 74 2 5153 mnipnng M:AF signimalwarehE mailvworm Win32 Heywa bvir
ODOZEECO 43 1] 0 06177 13748 14 29 1 42062.68 Pgl310.. MNF signtmnahwareWinus wWin32 HLLO. MWL vit
000me3n 57 1] 0 0E150 000 1 117 1 549387 42 MAILENE... NAF signmalwareinus Win32. Eval bovir
00026CDO BS o 1] 06503 103829 5 34 2 12662 82 I 15w M:AF signimalwarehD oS Win32 W arClone. vit
00004434 20 1]] 06042 3304333 17 53 1 288639.29 DUATsAE". NAF signhmalwarehyins wWin32 \weird. c.vir
00004DEE 48 1) 0 05726 1263.84 14 ! 1 9092.79 pE M:AF signtmalwarehyinus Win32 HLLP. Lasza. 40960, vir
0oo07ys0e 34 1]] 07128 000 1 233 1 361 1325hT Ee MM signbmalwareinus Win32.ZMist. vir
000ZDFED &7 il] 0e028 57712 4 44 1 311455 IEsaE-<C.. NAF signmabwareFlooder Win32. Delf i vir
000BF&BS 73 o o 06128 1491.23 24 44 1 1841232 IF2 <M TV M:AF signimalwarehE mail-Flooder \Win32.5 abatage. 15, bovir
0000F40e 46 1] 1] 06147 93351 158 144 1 10263.58 [o M:AF sigrimalwareirus \win32 Disles, vir
0ooi0F7e 33 1] 0 0E071 90258 16 14 1 082044 111 M:AF signivmalwarehtrojan-dropper308.wir
000ZE180 31 o 1] 06276 2799.02 14 459 2 3413416 I M:AF sigrimalwarehD o5 Win32 Lansue: c.vir
O00ZAEFZ 22 1]] 06195 3238543 20 24 1 31706565 TRl MAF signtahwareyinus Win32. Kriz. 3740, vir
000326E17 33 1) 0 06276 1028.57 12 84 1 18135.89 ILI7TA5W. MoAF signmalwareFlooder. wWin32. Delfk. vir
O00ODEVBE 24 1]] 06053 000 27 43 1 3434503 L2 MAF sigrimnalwarehEmail \Woorm \Win32 S onic. 27 vir
0000E740 59 1]] 0EB372 74881 12 14 1 4895.03 F0.Ju< ... MANF signimalwarehE sploit wWin32 S 0Lexp. e vir
00Ol B4FC 32 o o 06624 151387 10 29 1 17552.34 10Tl M:AF sigrimalwarehyirus Wind2 HLLW S oftSix. b vir
OOOZEOIC 44 1] 1] 0&128 B8RO 17 eiz] 1 4431729 BEEREI™.. N:MF signtnalwarehEmail Flooder \Win32 Aslike. . vir
0000&DFD 73 1] 0 0E211 182236 13 eiz] 1 19564.35 EDIONY... N:AF signimalwarehEmailAw/orm win32 Blebla. a wir
00o0062C4 73 o o 05912 83914 20 14 1 15940.05 l<EN - M:AF sigrimalwarehirus Wind2 HLLW O zapex. bovir
000O3C1E 47 1] 5] 0EB053 000 10 113 1 10361.87 l<12:+R M:AF signimalwarehviruswin32. Cropto.b.wir
00003243 43 1] 1] 06272 4EE1 15 19 1 21771.00 2. MN:AF signimalwarehpZp-worm32. wir
0000B2CO BS o o 0E3E 74451 19 149 i) 37515.71 I, Zoli212... MAF siognbmalwarehWirue Win32 HLLW . Showaame. a.wir
O00BEF25 64 1] 1] 06157 18320 14 24 1 49248.53 WBW KEN... M:AF sigrmalwareE mail-Flooder \win32.DMail 01 wir
oooo49az2 32 o o 05624 BBEES8 26 144 1 E1568.24 mua: M:AF signimalwarehp2p-worm 78 vir
00005730 55 1] 1] 05703 2936808 23 14 3 33783679 NPhibE M:AF sigrimalwareE mail Woorm Wind2. S owsat. Fwin
0ooos1ap &1 1] 0 0Es18 237632 7 4 2 7394.35 Wr_<D$2.. NAF signmalwarehD oS Win32 GhostDog, vir
00o1E348 43 o o 06414 1011.98 28 B9 1 19228 68 it hi? M:AF sigrimalwarehyinus Wind2 Aurn. 1155 vir
0oooDz23c E8 a o 05431 2032651 29 45 1 310880.60 I<Emligcl.. MAF signbmalwarehtrojan-dropperdd. vir i
000OFBAC 32 1] 0 06328 389535 22 29 2 4499666 WPstg2 o NAF signimalware'E mailtworm.win32. Longbe. vir ~
£ | >

Figure 6: Sample of Signature Data with Indices

26

50%-50% 33%-67%
with CTL with CTL
32Byte 64Byte 128Byte 32Byte 64Byte 128Byte
CFL=5% 32 0 0 CFL=3.3% 54 9 10
CFL=10% 28 1 0 CFL=6.6% 31 1 1
CFL=15% 19 0 0 CFL=9.9% 25 1 0
CFL=20% 17 0 0 CFL=13.2% 30 0 0
CFL=25% 21 0 0 CFL=16.5% 25 0 0
CFL=30% 20 0 0 CFL=19.8% 22 0 0
CFL=35% 22 0 0 CFL=23.1% 22 0 0
CFL=40% 26 0 0 CFL=26.4% 19 0 0
CFL=45% 23 0 0 CFL=29.7% 17 0 0
CFL=50% 25 0 0 CFL=33% 21 0 0
Table 2: False positive counts as a function ofGké& size
25%- 25%-75%
75% without
with CTL CTL
32Byte | 64Byte 128Byte 32Byte 64Byte 128Byte

CFL=2.5% 43 10 7 CFL=2.5% 58 20 10
CFL=5% 43 6 5 CFL=5% 55 14 10
CFL=7.5% 46 10 9 CFL=7.5% 52 11 10
CFL=10% 34 0 0 CFL=10% 39 2 2
CFL=125% 25 0 0 CFL=12.5% 36 1 1
CFL=15% 24 0 0 CFL=15% 32 2 1
CFL=175% 35 0 0 CFL=17.5% 40 2 1
CFL=20% 35 0 0 CFL=20% 38 1 1
CFL=225% 25 0 0 CFL=22.5% 36 3 2
CFL=25% 27 0 0 CFL=25% 32 2 1

Table 3: False positive counts as function of thé Size - with/without CTL

Random Entropy
32Bytes 64Bytes 128Bytes 32Bytes 64Bytes 128Byt
297 249 227 197 124 91

27

Table 4: False Positive Counts: Random vs. Entidpyimization

(D

4.2 Are the estimators’ good indicators for the sigature efficiency?

Our method filters the signature candidate lisebploying different estimators in a cascade
manner. In order to obtain a good signature (il@clvdoes not appear in the benign file) ,
the estimators need to be informative discrimingiaf the signature might appear or not in

a benign file. In this section we examine how iatiie the estimators are.

For this purpose we performed the following expemtn We randomly sampled 2,000 64
bytes signatures from various malcode and calaliidieir estimators. Then we search the
signature on a benign corpus to obtain the fattafsignature appears in benign files

Table 5 summarizes the results of t-test of twogarassuming unequal variances which
compares the estimators values in case that thatsig appeared in the benign corpus or
not. The results are very encouraging. For alhestiors the null hypothesis are rejected with
a =5%. Thus the proposed estimators are good indic&toyzredicting if a signature would

appear in benign files.

Estimator Mean value of theMean value of the p-value on Conclusion
estimator for estimator for two-tail
signatures that | signatures that did
appeared in not appear in
benign corpus benign corpus
Entropy 0.55+0.008833 | 0.32+0.075756 | 4.05E-37 Significant
Ratio 1493.06+2441 3728.99+3306 1.7E-25 Significant
Distance 13.28+£24.22 0.586+ 3.62E-82 Significant
3.963629
Number of 1695 305
observations

Table 5: Results of t-test of two-sample assumimggual variances

28

4.3 Are the estimators’ statistically independence?

In addition to the fact that estimators shouldrmiaative for choosing the best signature. We
would like that the estimators will be diverse e tvay they rank signatures. Otherwise there
IS no point in using multiple estimators. This regment is similar to the diversity
requirement in mixture-of-experts techniques i24] and specifically in malware detection
[34]. These methods are very effective, mainly ttulhe phenomenon that various types of
models have different ““inductive biases". It Blaswn that such diversity can be used to
increase the predictive performance of the systerarder to examine the diverseness of the
estimators we used the data described in the prewection and check whether the

estimators are statistically independent usingsgjuiare test.

Unfortunately, the results indicate that the estorgare statistically dependent with

a =5%. However, Auto-Sign does not simply weight thestngators. Instead, it uses itin a
cascade manner: first it uses distance estimagor ttie ratio estimator and finally the entropy
estimator. Thus, it is more reasonable to exantiaestatistics dependence which reflects this
cascading procedure. Assuming that each estimiétesthalf of the candidates to the next
cascade, we examine the statistic dependence betsgdmator’s values for the chosen
(unfiltered) candidates and the corresponding wabi¢he subsequent estimator. The results
that are presented in Table 7, indicate that thmators are statistically independent with

a =5% when they are used in a cascade manner.

29

Test p-value Conclusion

Distance vs. Entropy 0.037 Statistically dependent
Ratio vs. Entropy 1.53636E-52 Statistically depende
Ratio vs. Distance 0.005 Statistically dependent

Table 6: Results of chi-square test for independent

Test p-value Conclusion
Distance vs. Ratio 0.363 Statistically independent
Ratio vs. Entropy 0.070 Statistically independent

Table 7: Results of chi-square test for independémcascade manner

5. CONCLUSION

This paper proposes a new approach for automatierggon of signatures for malware
executable of all sizes with an intention to bedulsg high-speed malware filtering devices.
We consider the fact that large executables argposed of substantial amounts of code that
originates from the underlying standard developnpatforms and is thus replicated across
various instances of both benign and malware deeeldy these platforms. In order to
minimize the risk of false positive classificatiai benign executables as malware, we

propose and evaluate a method to discard signaamdidates that contain such replicated

chunks of code.

The empirical findings presented in section 4 supihe viability of the general approach

proposed by this research and suggest that elimghaignature candidates belonging to

30

common code segments has a more profound effexsbrncting the level of false positives
than increasing the length of a signature. N-grdmsever, are not the only measure which
can be used to realize the general approach pgs@ditb-Sign and alternative ones can be

used as a substitute for representing signatuees gegment prefix/suffix, hash values etc.)

The main benefit of the proposed method is thah#bles analysis at the binary level and
does not require a semantic interpretation of aottefunction blocks using techniques such
as code markers, disassembly, state-machinestagcb@nefit means that the methodology is
generic and is not affected by changes in CPUtoodiction of new development platforms.

Nevertheless. enterprises which would like reafiméo-Sign in generating signatures for
high-throughput network security appliances need fabow a more exhaustive and
systematic methodology for building their CFL reppmy. Considering the global variety of
development platforms and the mobility of threatsilitated by the Internet, ensuring the
external validity of this study relies substangiatin reaching a critical mass of CFL files
which represents abundant development platformgh&umore, it often doesot suffice for
a signature to be available—deploy&gdnatures must be managed, distributed and ugept
to-date by security administrators [16].

We plan to repeat the evaluation Auto-Sign on gdaiscale with much more malware
files and CFLs generated for different developmamtironments. We also plan to evaluate
additional methods for trimming, ranking and chaogsithe best signature out of the
collection of candidates. In addition, in order fiather strengthen the signatures and
minimize the risks of false positives we proposeuse "composite signatures” which are
generated by using two or more distinct signatiwegach malware. This activity addresses
the biggest challenge of Auto-Sign which is thedh&ereduce to zero the amount of false

positives before being deployed for generating aigres in high-speed malware filtering

31

devices. In the future we plan to use Auto-Sigrgémerate multiple signatures in order to

increase the resistance against black box anagsiescribed in [26].

Acknowledgments
The authors gratefully thank the action editors @imel anonymous reviewers whose

constructive comments significantly helped in impng the quality and accuracy of this

paper.

6. REFERENCES

[1] D. Brumley, J. Newsome, D. Song, H. Wang, @&dJha. Towards automatic generation of

vulnerability-based signatures. Broc. of the 2006 IEEE Symposium on Security amnehBy,2006.

[2] M. Christodorescu, S. Jha, S. Seshia, D. Samg, R. E. BryantSemantics-aware malware

detection, INEEE Symposium on Security and Priv&skland, California, May 2005.

[3] S. P. Chung, A.K. Mok. Allergy attack againsit@matic signature generatidRecent Advances in
Intrusion Detection61-80, 2006
[4] T. H. Cormen, C. E. Leiserson, R. L. Rivestd&h Steinlntroduction to AlgorithmsMIT Press,

2001

[5] DefensePro, Radwarkttp://www.radware.com/

[6] D.S. Hirschberg, 1977. Algorithms for the Lasj Common Subsequence Probl@nACM24, 4

(Oct. 1977), 664-675.

[7] HA. Kim. and B. Karp, Autograph: Toward autored, distributed worm Signature detection, in

Proceedings of the 13th Usenix Security Symposagauoufity 2004)San Diego, CA, August, 2004.

[8] C. Kreibich, and J. Crowcroft. Honeycomb: dreg intrusion detection signatures using

honeypotsSIGCOMM Comput. Commun. R&d, 1 (Jan. 2004), 51-56.

32

[9] C. E. Lawrence, S. F. Altschul, M. S. Boguski,S. Liu, A. F. Neuwald, and J. C. Wootton.
Detecting subtle sequence signals: A Gibbs samiragegy for multiple alignmentScience vol.

262, 208-214, Oct. 1993.

[10] C. E. Lawrence and A. A. Reilly. An Expectati Maximization (EM) algorithm for the
identification and characterization of common sitesinaligned biopolymer sequenc®ROTEINS:

Structure, Function and Genetjcg 41-51, 1990.

[11] R. Lemos, Counting the Cost of Slamm@NET news.comhttp//news.com.com/2100-1001-

982955.html, Jan. 2003.

[12] D. Moore, C, Shannon, G., Voelker., S. and/age. Internet Quarantine: Requirements for

containing self-Propagating code. In ProceedindEBE INFOCOMZ2003 (Mar. 2003).

[13] J. Newsome, B. Karp, D. Song, Polygraph: Autinally generating signatures for polymorphic

worms,2005 IEEE Symposium on Security and Privacy (S&P'Qip. 226-241
[14] P. Szor,The Art of Computer Virus Research and DefeAsklison-Wesley, 2005.
[15] N. Provos. A virtual honeypot frameworkech. Rep. CITI Technical Report 03@enter for

Information Technology Integration, University ofiddigan, Ann Arbor, Michigan, USA, , Oct.

20083.

[16] K. Rieck, P.Laskov, Language models for détecof unknown attacks in network traffic,

Journal in Computer Virology2(4), 243- 256, 2007.

[17] S. Singh, C. Eitan, G. Varghese, and S. §avaAutomated worm fingerprinting. I6th

Symposium on Operating Systems Design and Impletieen(OSDI),December 2004.

[18] Y. Tang, S. Chen, Defending against Intenvetms: A signature-based approachPiroc. of

IEEE INFOCOM'05,Miami, Florida, USA, May 2005.

[19] K. Wang and S. J. Stolfo. Anomalous payloaddi network intrusion detection. Recent

Advance in Intrusion Detection (RAIC3ep 2004.

33

[20] H. Wang, S. Jha and V. Ganapathy. NetSpyo/uattic Generation of Spyware Signatures for
NIDS Proceedings of the 22nd Annual Computer Securitgliéggions Conference (ACSAC'06),

2006

[21] V. Yegneswaran, J. T. Giffin, P. Barford, aBdJha. An architecture for generating semantics-

aware signatures, 4th USENIX Security Symposiugaltimore, Maryland, August 2005.

[22] Y. Elovici, A., Shabtai, R., Moskovitch, G.,alian, C., Glezer Applying Machine Learning
Techniques for Detection of Malicious Code in Netkvorraffic', The 30" Annual German
Conference on Artificial Intelligence (KI-2007gpringer, LNCS Vol. 4667, 44-50, Osnabrlick,

Germany, September 10-13, 2007.

[23] T. Abou-Assaleh, N. Cercone, V. KeSelj, R.¢tan, "NGram Based Detection of New
Malicious Code," 28th Annual International Computer Software and lAgapions
Conference Workshops and Fast Abstracts (COMPSAQ@P441-42, 2004,

[24] Goldberg, L. A., Goldberg, P.W., Phillips, &. & Sorkin, G., “Constructing Computer
virus phylogenies”Journal of Algorithms26(1), pp.188-208.

[25] Md Enamul Karim, Andrew Walenstein, Arun Lakia “Malware Phylogeny Using
Maximal tPatterns” EICAR 2005 Conference: Best Paper Proceedi@085, 167-174.

[26] Filiol, E., “Malware Pattern Scanning Schenscure Against Black-box AnalysisJpurnal in

Computer Virology2(1), pp. 35-50, 2006.

[27] Benjamin Morin, Ludovic Mé, “Intrusion deteoti and virology: an analysis of differences,

similarities and complementarinesdgurnal in Computer Virology3(1), pp.39-49, 2007.

[28] Filiol E. and Josse S. “A Statistical Modelr f¥iral Detection Undecidability” Journal in

Computer Virology3 (2), 65-74, 2007.

[29] Filiol E. and Raynal F. Malicioux, “Maliciou€ryptography ... reloaded and also malicious

statistics”, CanSecWest 2008, Vancouver, 26--28M8a08.

34

[30] Le Cam, L. (1960). An approximation theorent fdoisson binomial distribution, Pacific J.

Math., 10, 1181-1197.

[31] Ederer, F., and N. Mantel. 1974. Confidenaoaité on the ratio of two Poisson variables. Am. J.

Epidemiol. 100:165-167.

[32] C. D. Lai, G. R. Wood, C. G. Qiao, The Meartté Inverse of a Punctured Normal Distribution

and Its Application, Biometrical Journal, Volume K8ue 4, Pages 420 - 429, 2004

[33] L. Rokach, Collective Agreement-based Prunoigensembles, Computational Statistics and

Data Analysis (to appear).

[34] E. Menahem, A. Shabtai, L. Rokach, Y. Elovienproving malware detection by applying

multi-inducer ensemble, Computational Statistiod Bata Analysis (to appear).

35

