
Jrl Syst Sci & Complexity (2008) 21: 172–183

DISCOVERY OF LATENT STRUCTURES:
EXPERIENCE WITH THE COIL CHALLENGE 2000

DATA SET∗

Nevin L. ZHANG · Yi WANG · Tao CHEN

Received: 13 August 2007 / Revised: 10 October 2007
c©2008 Springer Science + Business Media, Inc.

Abstract The authors present a case study to demonstrate the possibility of discovering complex

and interesting latent structures using hierarchical latent class (HLC) models. A similar effort was

made earlier by Zhang (2002), but that study involved only small applications with 4 or 5 observed

variables and no more than 2 latent variables due to the lack of efficient learning algorithms. Significant

progress has been made since then on algorithmic research, and it is now possible to learn HLC models

with dozens of observed variables. This allows us to demonstrate the benefits of HLC models more

convincingly than before. The authors have successfully analyzed the CoIL Challenge 2000 data set

using HLC models. The model obtained consists of 22 latent variables, and its structure is intuitively

appealing. It is exciting to know that such a large and meaningful latent structure can be automatically

inferred from data.

Key words Bayesian networks, case study, latent structure discovery, learning.

1 Introduction

Hierarchical latent class (HLC) models[1−2] are tree-structured Bayesian networks where
variables at leaf nodes are observed and are hence called manifest variables, while variables
at internal nodes are hidden and are hence called latent variables. All variables are assumed
discrete. HLC models generalize latent class (LC) models[3] and were first identified as a
potentially useful class of Bayesian networks (BNs) by Pearl[4].

HLC models can be used for latent structure discovery. Often, observed variables are corre-
lated because they are influenced by some common hidden causes. HLC models can be seen as
hypotheses about how latent causes influence observed variables and how they are correlated
among themselves. Then, finding an HLC model that fits a data set amounts to finding a latent
structure that explains the data well.

In general, graphical models with latent variables are of interest in many fields, including
statistics[5], bioinformatics[6], and computer science[7]. When working with such a model, most
researchers assume that the model structure is known. There has been relatively little work
on inferring latent structures from data. One exception is the research on the linear latent
variable graphs (LLVGs)[8]. The task there is to infer, from data, a two-layered Bayesian
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network where nodes on the upper level are latent while those on the lower level are observed.
In LLVGs, all the variables are continuous, and each variable depends linearly on its parents
via a regression equation. Another exception is phylogenetic tree reconstruction, which takes
DNA sequences of current day species as input and infers a phylogenetic tree that exhibits
the ancestral relationships among those species. The introduction of HLC models provides one
addition to this small collection of tools for latent structure discovery.∗

The CoIL Challenge 2000 data set[9] contains information on customers of a Dutch insurance
company. The data set consists of 86 variables, around half of which are about ownerships of
various insurance products. Ownership variables for different products are correlated. One who
pays a high premium on one type of insurance is more likely, than those who do not, to also
purchase other types of insurance in the same category. Intuitively, such correlations are due
to people’s (latent) attitudes toward risks. The more risk-aversion one is toward a category
of risks, the more likely he is to purchase insurance products in that category. Therefore, the
CoIL Challenge 2000 data set is a good testbed for latent structure discovery methods.

We have analyzed the CoIL Challenge 2000 data set using HLC models. The structure of
the model obtained is given in Section 5. As the reader will see, there are 42 manifest variables
and 22 latent variables, and the structure is intuitively appealing. Latent structure discovery
is very difficult. It is hence exciting to know that we are able to discover such a complex
and meaningful structure. Latent structures of similar sizes have been constructed before in
phylogenetic tree reconstruction, but phylogenetic trees are much more restrictive than HLC
models.

In addition to being a tool for latent structure discovery, HLC models can also be used for
cluster analysis. In this role, they alleviate disadvantages of LC models as models for discrete
data clustering. An LC model consists of one latent variable, namely the class variable, and
a number of observed feature variables. It assumes that the feature variables are mutually
independent given the class variable. A serious problem with the use of LC models, known
as local dependence, is that this assumption is often violated. If one does not deal with local
dependence explicitly, one implicitly attributes it to the latent variable. In practice, this results
in spurious clusters, and degenerates the accuracy of classification[10]. In Section 6, we will
show that HLC models do produce more meaningful clusters for the CoIL Challenge 2000 data
set than LC models.

HLC models can also be used simply for probabilistic modeling. They possess two nice prop-
erties for this purpose. First, they have low inferential complexity due to their tree structures.
Second, they can model complex dependencies among the observed variables. In Section 7, the
reader will see the implications of the second property on prediction and classification accuracy
in the context of the CoIL Challenge 2000 data.

We begin with a review of HLC models in Section 2 and discuss the learning of HLC models
in Section 3. A description of the CoIL Challenge 2000 data set is then given in Section 4.

2 Hierarchical Latent Class Models

Figure 1 shows an example HLC model (left diagram). A latent class (LC) model is an HLC
model where there is only one latent node. We usually write an HLC model as a pair M=(m, θ),
where the second component θ is the collection of parameters, and the first component m
consists of the model structure and the cardinalities of latent variables. Here, the cardinality

∗The probabilistic models of phylogenetic trees[6] can be viewed as special HLC models where 1) each latent
node has exactly two children; 2) all variables have four states, namely A, C, G, and T; and 3) the conditional
probability table of each variable has only one parameter, i.e., the length of the incoming edge.
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Figure 1 An example HLC model and the corresponding unrooted HLC model.
The Xi’s are latent variables and the Yj ’s are manifest variables.

of a variable is the number of its possible values. We will sometimes refer to m also as an HLC
model.

Two HLC models M=(m, θ) and M ′=(m′, θ′) are marginally equivalent if they share the
same manifest variables Y1, Y2, · · · , Yn and

P (Y1, Y2, · · · , Yn|m, θ) = P (Y1, Y2, · · · , Yn|m′, θ′). (1)

An HLC model m includes another model m′ if for any parameter value θ′ of m′, there exists a
parameter value θ of m such that (m, θ) and (m′, θ′) are marginally equivalent. In this case, m
can represent any distribution over the manifest variables that m′ can represent. If m includes
m′ and vice versa, we say that m and m′ are marginally equivalent. Marginally equivalent
models are equivalent if they have the same number of independent parameters. One cannot
distinguish between equivalent models using penalized likelihood scores.

Let X1 be the root of an HLC model m. Suppose that X2 is a child of X1 and it is also a
latent node. Define another HLC model m′ by reversing the edge X1→X2. Then X2 becomes
the root of m′. This operation is hence called root walking: the root has walked from X1 to X2.
Root walking leads to equivalent models[2]. This implies that it is impossible to determine edge
orientations from data. We can learn only unrooted HLC models, which are HLC models with
all directions on the edges dropped. Figure 1 also shows an example unrooted HLC model. An
unrooted HLC model represents a class of equivalent HLC models. Members of the class are
obtained by rooting the model at various nodes. Semantically it is a Markov random field on
an undirected tree. The leaf nodes are observed while the internal nodes are latent. Marginal
equivalence and equivalence can be defined for unrooted HLC models in the same way as for
rooted models. From now on when we speak of HLC models we always mean unrooted HLC
models unless it is explicitly stated otherwise.

Let |X | stand for the cardinality of a variable X . For a latent variable Z in an HLC model,
enumerate its neighbors as X1, X2, · · · , Xk. An HLC model is regular if for any latent variable
Z, |Z| ≤ ∏k

i=1 |Xi|/ max
i=1,2,···,k

|Xi|, and when Z has only two neighbors, strict inequality holds

and one of the neighbors must be a latent node.
Given an irregular model m, there exists a regular model that is marginally equivalent to m

and has fewer independent parameters[2]. The process of obtaining the regular model is called
regularization. It is evident that if penalized likelihood scores are used for model selection, the
regularized model is always preferred over m itself.

3 Learning HLC Models

Assume that there is a data set D on a given set of manifest variables. How can we
induce from D an HLC model? This question can be divided into two sub-questions. First,
among all the possible models which one is the best? This is the model selection problem.
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Zhang[1,2] empirically examined several criteria, namely the BIC score[11], the AIC score[12],
the Cheeseman-Stutz score[13], and holdout-likelihood[14]. The BIC score turns out to be the
most appropriate one for the task. The BIC score of an HLC model m is given by

BIC(m|D) = log P (D|m, θ∗) − d(m)
2

log N,

where D is the data set, θ∗ is the maximum likelihood estimate of the model parameters, d(m)
is the number of independent parameters, and N is the sample size. Note that this definition of
the BIC score is used in the machine learning community, while researchers in social sciences
usually use its negation.

The BIC score is a large sample approximation of the marginal likelihood P (D|m) derived in
a setting where all variables are observed. Geiger et al.[15] have re-done the derivation for latent
variable models and arrived at another scoring function called the BICe score. The BICe score is
the same as the BIC score except that the standard dimension d(m) is replaced by the effective
dimension of the model. Theoretically, BICe is advantageous over BIC. Why BIC is still used for
scoring HLC models? There are three reasons. First, despite recent decomposition results[16],
effective model dimensions remain difficult to compute. Second, there is no substantial empirical
evidence showing that BICe is advantageous over BIC in practice. Third, our experiences with
about one dozen data sets suggest that one can find good models with BIC.

The second sub-question is how to find the model with the highest BIC score in the space
of all possible models. Three search-based algorithms have been proposed for this task, namely
Double Hill-Climbing (DHC)[1,2], Single Hill-Climbing (SHC)[17], and Heuristic Single Hill-
Climbing (HSHC)[17]. All those algorithms aim at finding the model with the highest BIC
score.

In the following, we distinguish between HLC models and HLC model structures. In an
HLC model, cardinalities of latent variables are specified. In an HLC model structure, they are
not. DHC is the first search-based algorithm for learning HLC models. It searches in the space
of HLC model structures. It starts with the structure with only one latent node. At each step,
it first generates a number of candidate model structures by modifying the current structure
using three search operators, namely node introduction, node deletion, and node relocation.
It then optimizes the cardinalities of the latent variables in each of the candidate structures,
resulting in candidate models. Finally, it evaluates the candidate models and uses the structure
of the best one to seed the next search step. The search terminates when the model score
stops increasing. To optimize the cardinalities of the latent variables in a model structure, the
algorithm employs another hill-climbing routine. That is why it is called double hill-climbing.

SHC is the second search-based algorithm for learning HLC models. It searches in the space
of HLC models. It has five search operators, namely node introduction (NI), node deletion
(ND), node relocation (NR), state introduction (SI), and state deletion (SD). Although sharing
the same names as the operators of DHC, the first three operators of SHC are different from
the DHC operators. Their outputs are HLC models rather than HLC model structures. This
means that cardinalities of latent variables were considered when designing those operators,
while this was not the case with DHC. SHC does not have a separate routine to optimize the
cardinalities of latent variables. It optimizes them together with the model structure. This is
why SHC has the SI and SD operators.

SHC starts with the simplest HLC model and searches in two phases. In Phase 1, it hill
climbs with the NI, NR, and SI operators. When model score ceases to improve, it moves to
Phase 2 and continues search with the other two operators, ND and SD. If the model score is
improved in Phase 2, the process repeats itself. Otherwise the algorithm terminates.
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SHC is more efficient than DHC. However, it is still computationally very expensive, mainly
because it needs to evaluate and hence runs the expectation-maximization (EM) algorithm on
each of the candidate models. HSHC alleviates the situation by incorporating the technique
of structural EM[18]. The idea is to complete the data using the current model and evaluate
the candidate models using the completed data and hence avoiding EM. The main technical
issue here is that the candidate models produced by NI, SI, and SD involve some different
latent variables than the current model. Consequently, it is not straightforward to evaluate the
candidate models using the completed data. The problem was solved using several heuristics.

4 The CoIL Challenge 2000 Data Set

The training set of the CoIL Challenge 2000 data set consists of 5,822 customer records.
Each record consists of 86 attributes, containing socio-demographic information (Attributes
1–43) and insurance product ownerships (Attributes 44–86). The socio-demographic data are
derived from zip codes. In previous analysis, these variables were found more or less useless. In
our analysis, we included only three of them, namely Attributes 4 (average age), 5 (customer
main type), and 43 (purchasing power class). All the product ownership attributes were included
in the analysis.

The data was preprocessed as follows: First, similar attribute values were merged so that
there are at least 30 records for each value. In the resulting data set, there are fewer than
10 records where Attributes 50, 60, 71, and 81 take “nonzero” values. Those attributes were
excluded from further analysis. The final data set consists of 42 attributes, each with 2 to 9
values.

We analyzed the data using a Java implementation of the HSHC algorithm. HSHC has one
algorithmic parameter K. We tried four values for K, namely 1, 5, 10, and 20. The experiments
were run on a Pentium 4 PC with a clock rate of 2.26 GHz. The running times and the BIC
scores of the resulting models are shown in Table 1. The best model was found in the case of
K = 10. We denote the model by M∗. The structure of the model is shown in Figure 2†.

Table 1

K 1 5 10 20

Time (hrs) 51 99 121 169

BIC −52, 522 −51, 625 −51, 465 −51, 592

5 Latent Structure Discovery

Did HSHC discover interesting latent structures? The answer is positive. We will show this
by examining different aspects of the model M∗. First of all, the data set contains two variables
for each type of insurance. For bicycle insurance, for instance, there are “contribution to bicycle
insurance policies (v62)” and “number of bicycle insurance policies (v83)”. HSHC introduced
a latent variable for each such pair. The latent variable introduced for v62 and v83 is h11,
which can be interpreted as “attitude toward bicycle risks”. Similarly, h10 can be interpreted
as “attitude toward motorcycle risks”, h9 as “attitude toward moped risks”, and so on.

Consider the manifest variables on the right hand side of h12. Except “social security”,
all the other variables are related to heavy private vehicles. HSHC concluded that they are

†Note that what HSHC obtains is an unrooted HLC model. The structure of the model is visually shown as
a rooted tree in Figure 2 partially for readability and partially due to the discussions of the following section.



LATENT STRUCTURE DISCOVERY: A CASE STUDY ON COIL 2000 DATA 177

h0(5)

h3(2)

v55: Contr. life

v76: Num. life

h4(2)
v57: Contr. family accidents

v78: Num. family accidents

h5(2)
v56: Contr. private accident

v77: Num. private accident

h6(2)

v44: Contr. private 3rd party

v65: Num. private 3rd party

h7(2)
v63: Contr. property

v84: Num. property

h8(4)

h9(2)
v54: Contr. moped

v75: Num. moped

h10(2)
v70: Num. motorcycle

v49: Contr. motorcycle

h11(2)
v83: Num. bicycle

v62: Contr. bicycle

h12(3)

v47: Contr. car

v68: Num. car

v86: Num. mobile home

h13(2)
v64: Contr. social security

v85: Num. social security

h14(2)
v61: Contr. boat

v82: Num. boat

v59: Contr. fire

v80: Num. fire

h1(2)

v45: Contr. 3rd party (firm)

v66: Num. 3rd party (firm)

h2(2)
v48: Contr. delivery van

v69: Num. delivery van

h15(2)

h22(2)

v46: Contr. 3rd party (agriculture)

v67: Num. 3rd party (agriculture)

h17(2)
v58: Contr. disability

v79: Num. disability

h18(2)
v72: Num. trailer

v51: Contr. trailer

h19(2)
v53: Contr. agricultural machines

v74: Num. agricultural machines

h20(3)
v73: Num. tractor

v52: Contr. tractor

h21(9)

v05: Customer main type

v43: Purchasing power class

v04: Avg age

Figure 2 The structure of the best model M∗ found for the CoIL data. The
number next to a latent variable is the cardinality of that variable.
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influenced by one common latent variable. This is clearly reasonable and h12 can be interpreted
as “attitude toward heavy private vehicle risks”. Except “social security”, all the manifest
variables on the right hand side of h8 are related to private vehicles. HSHC concluded that
they are influenced by one common latent variable. This is reasonable and h8 can be interpreted
as “attitude toward private vehicle risks”.

All the manifest variables on the right hand side of h15, except “disability”, are agriculture-
related; while the manifest variables on the right hand side of h1 are firm-related. It is therefore
reasonable for HSHC to conclude that those two groups of variables are respectively influenced
by two latent variables h1 and h15, which can be interpreted as “attitude toward firm risks”
and “attitude toward agriculture risks” respectively.

It is interesting to note that, although delivery vans and tractors are vehicles, HSHC did not
conclude that they are influenced by h8. HSHC reached the correct conclusion that the decisions
to buy insurance for tractors, for delivery vans, or for other private vehicles are influenced by
different latent factors.

The manifest variables on the right hand side of h3 intuitively belong to the same category;
those on the right hand side of h6 are also closely related to each other. It is therefore reasonable
for HSHC to conclude that those two groups of variables are respectively influenced by latent
variables h3 and h6.

The three socio-demographic variables (v04, v05, and v43) are connected to latent variable
h21. Hence h21 can be viewed as a venue for summarizing information contained in those three
variables. Latent variable h0 can be interpreted as “general attitude toward risks”. Under
this interpretation, the links between h0 and its neighbors are all intuitively reasonable: One’s
general attitude toward risks should be related to one’s socio-demographic status (h21), and
should influence one’s attitudes toward specific risks (h8, h1, h15, etc).

There are also aspects of model M∗ that do not match our intuition well. For example, since
there is a latent variable (h12) for heavy private vehicles on the right hand side of h8, we would
naturally expect a latent variable for light private vehicles. However, there is no such variable.
On the right hand of h3, we would expect a latent variable specifically for life insurance. Again,
there is no such variable. The placement of the latent variables (h13 and h17) about social
security and disability is also questionable. With an eye on improvements, we have considered
a number of alterations to M∗. However, none resulted in models better than M∗ in terms of
BIC score.

Some mismatches are partially due to the limitations of HLC models. Disability is a concern
in both agriculture and firms. We would naturally expect h17 (attitude toward disability risks)
to be connected to both h1 (attitude toward firm risks) and h15 (attitude toward agriculture
risks). However, that would create a cycle, which is not allowed in HLC models. Hence, there
is a need to study generalizations of HLC models in the future.

6 Cluster Analysis

Each latent variable in an HLC model corresponds to one way to cluster data. There-
fore, when learning an HLC model, one is actually performing multidimensional clustering. In
contrast, latent class analysis results in one single clustering.

The latent variable h0 in model M∗ has 5 states and it is interpreted as “general attitude
toward risks”. This means that HSHC has identified 5 clusters in the CoIL Challenge 2000
data according to customer’s general attitude toward risks. The class-conditional probability
distributions of those clusters are shown as bar diagrams in Figure 3.

In the bar diagrams, each bar is labeled with a manifest variable. The bar depicts the
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(a) h0 = s0
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(c) h0 = s2
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(d) h0 = s3
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Figure 3 The class-conditional probability distributions of the 5 clusters
pertaining to h0. The sizes of the clusters are 0.46, 0.14, 0.13,
0.22, and 0.05, respectively.
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distribution of that variable (in a cluster). Different segments in the bar correspond to different
values of the variable. The darker the color is, the “higher” the value is. White color indicates
the “lowest value” or “no”. The white segment is always on top and indistinguishable from the
background. Heights of the segments represent probabilities of the corresponding values.

The clusters pertaining to h0 are meaningful. We see that h0=s0 is the only cluster with
no fire insurance (v59, v80), while h0=s4 is the only cluster with non-zero probability of owning
agriculture-related insurance (v46, v67, v52, etc). Cluster h0=s1 stands out as the cluster with
the lowest probability of owning car insurance (v47, v68). Clusters h0=s2 and h0=s3 have much
higher probability of owning third-party private insurance (v44, v65) than the other clusters.
Between these two clusters, the purchasing power (v43) of cluster h0=s2 is significantly lower
than that of cluster h0=s3 and, probably as a consequence, the former cluster also has much
lower probability of owning car insurance (v47, v68) than the latter.

In contrast, latent class analysis resulted in 10 clusters. Overall, those clusters are less
meaningful than the clusters pertaining to h0. For example, there are 3, instead of 1, clusters
with no fire insurance; and there are 5, instead of 2, clusters with high probability of owing
third-party private insurance.

Figure 4 shows the clusters pertaining to h8 (attitude toward private vehicle risks) and h12

(attitude toward heavy private vehicle risks). Those clusters are also meaningful. Among the
h8 clusters, h8=s2 is the only one with moped insurance (v54, v75). The other three h8 clusters
have different probabilities of owning car insurance (v47, v68). Among the h12 clusters, h12=s0

has no insurance on heavy private vehicles, while the other two clusters have. Cluster h12=s2

also has some probability of owning mobile home (v86) insurance.

7 Probabilistic Modeling

We have so far mentioned two probabilistic models for the CoIL Challenge 2000 data, namely
the HLC model M∗ and the latent class model produced during latent class analysis. In this
section, we will denote M∗ as MHLC and the latent class model as MLC. For the sake of
comparison, we have also used the greedy equivalence search algorithm[19] to obtain a Bayesian
network model that does not contain latent variables. This model will be denoted as MGES.
The structure of MGES is shown in Figure 5. In general, we refer to Bayesian networks that do
not contain latent variables as observed BN models.

The structure of MHLC is clearly more meaningful than those of MLC and MGES. The
structure of MLC is too simplistic to be informative. The relationships encoded in MGES are
not as interpretable as those encoded in MHLC.

How well do the models fit the data? Before answering this question, we note that HLC
models and observed BN models both have their pros and cons when it comes to represent
interactions among manifest variables. The advantage of HLC models over observed BN models
is that they can model high-order interactions. In MHLC, latent variable h12 models some of
the interactions among the heavy private vehicle variables; h8 models some of the interactions
among the private vehicle variables; while h0 models some of the interactions among all manifest
variables. On the other hand, observed BN models are better than HLC models in modeling
details of variable interactions. In MGES, the conditional probability distributions P (v59|v44)
and P (v67|v59, v44) contain all information about the interactions among the three variables
v44, v59, and v67.

As shown in Table 2, the logscore of MHLC on training data is slightly higher than that
of MGES. On the other hand, MGES is less complex than MHLC, and its BIC score is higher
than that of MHLC. Here the complexity of a model is measured by the number of independent
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(a) h8 = s0
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(b) h8 = s1
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(c) h8 = s2
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(d) h8 = s3
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(e) h12 = s0
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(f) h12 = s1
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(g) h12 = s2

Figure 4 The clusters pertaining to h8 and h12

parameters. In CoIL Challenge 2000, there is a test set of 4,000 records. The logscore of MHLC

on the test data is higher than that of MGES and the difference is larger than that on the
training data. In other words, MHLC is better than MGES when it comes to predicting the test
data. It is also clear that both MHLC and MGES significantly outperform MLC.

Table 2

Model Logscore Complexity BIC Logscore (test data)

MLC −62328 739 −65532 −43248

MGES −49792 284 −51023 −34627

MHLC −49688 410 −51465 −34282

Because HLC models capture high-order variable interactions, MHLC should perform better
than MGES in classification tasks. Out of the 4,000 customers in the CoIL Challenge 2000 test
data, 238 own mobile home policies (v86). The classification task is to identify a subset of 800
customers that contains as many mobile home policy owners as possible. As we can see from
Table 3, MHLC does perform significantly better than MGES.

The classification performance of MHLC ranks at Number 5 among the 43 entries to the
CoIL Challenge 2000 contest, and it is not far from the performance of the best entry. This is
impressive considering that no attempt was made to minimize classification error when learning
MHLC. In terms of model interpretability, MHLC would rank Number 1 because all the other
entries focus on classification accuracy rather than data modeling.
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Figure 5 Bayesian network model without latent variables

Table 3

Model/Method # of Mobile Home Policy Holders Identified Hit Ratio

Random 42 17.6%

MGES 83 34.9%

MLC 105 44.1%

MHLC 110 46.2%

CoIL 2000 Best 121 50.8%

In an HLC model, one can also compute probability distributions of latent variables. In
MHLC, one can calculate, for a given customer, the posterior distributions of h8 (attitude
toward private vehicle risks), h1 (attitude toward firm risks), h15 (attitude toward agriculture
risks), and so on. Collectively, those distributions can be used as a profile for the customer.
Such profiling may have interesting applications.

8 Conclusions

Through the analysis of the CoIL Challenge 2000 data set, we have demonstrated that it is
possible to infer complex and meaningful latent structures from data using HLC models. This
indicates that HLC models are a viable tool for latent structure discovery, and calls for further
study on HLC models and further explorations of their application potentials. One immediate
future work is to relax the limitation identified in Section 5, namely, one manifest node cannot
be connected to more than one latent node.

We have also demonstrated the usefulness of HLC models in cluster analysis and proba-
bilistic modeling. As a tool for cluster analysis, they produce more meaningful clusters than
latent class models and they allow multi-way clustering at the same time. As a tool for prob-
abilistic modeling, they can model high-order interactions among variables and hence lead to
better prediction and classification performance than observed BN models. They also facilitate
unsupervised profiling.
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