Skip to main content
Log in

Recognition of Structure Similarities in Proteins

  • Published:
Journal of Systems Science and Complexity Aims and scope Submit manuscript

Abstract

Protein fold structure is more conserved than its amino acid sequence and closely associated with biological function, so calculating the similarity of protein structures is a fundamental problem in structural biology and plays a key role in protein fold classification, fold function inference, and protein structure prediction. Large progress has been made in recent years in this field and many methods for considering structural similarity have been proposed, including methods for protein structure comparison, retrieval of protein structures from databases, and ligand binding site comparison. Most of those methods can be available on the World Wide Web, but evaluation of all the methods is still a hard problem. This paper summarizes some popular methods and latest methods for structure similarities, including structure alignment, protein structure retrieval, and ligand binding site alignment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Koehl, Protein structure similarities, Curr. Opin. Struct. Biol. 2001, 11(3): 348–353.

    Article  Google Scholar 

  2. A. G. Murzin, S. E. Brenner, T. Hubbard, and C. Chothia, SCOP: A structural classification of proteins database for the investigation of sequences and structures, J. Mol. Biol., 1995, 247(4): 536–540.

    Google Scholar 

  3. I. Eidhammer, I. Jonassen, and W. R. Taylor, Structure Comparison and Structure Patterns, J. Comput. Biol., 2000, 7(5): 685–716.

    Article  Google Scholar 

  4. Z. Aung and K. L. Tan, Rapid retrieval of protein structures from databases, Drug Discov Today, 2007, 12(17–18): 732–739.

    Article  Google Scholar 

  5. I. N. Shindyalov and P. E. Bourne, An alternative view of protein fold space, Proteins, 2000, 38(3): 247–260.

    Article  Google Scholar 

  6. I. Friedberg and A. Godzik, Connecting the protein structure universe by using sparse recurring fragments, Structure, 2005, 13(8): 1213–1224.

    Article  Google Scholar 

  7. Z. Zhang and M. G. Grigorov, Similarity networks of protein binding sites, Proteins: Structure, Function, and Bioinformatics, 2006, 62(2): 470–478.

    Article  Google Scholar 

  8. Z. P. Liu, L. Y. Wu, Y. Wang, et al., Predicting gene ontology functions from protein’s regional surface structures, BMC Bioinformatics, 2007, 8: 475.

    Article  Google Scholar 

  9. K. Park and D. Kim, Binding similarity network of ligand, Proteins, 2008, 71(2): 960–971.

    Article  Google Scholar 

  10. L. Xie and P. E. Bourne, Detecting evolutionary relationships across existing fold space, using sequence order-independent profile-profile alignments, in Proc. Natl. Acad. Sci., 2008, 105(14): 5441–5446.

    Article  Google Scholar 

  11. R. Kolodny, D. Petrey, and B. Honig, Protein structure comparison: implications for the nature of ‘fold space’, and structure and function prediction, Current Opinion in Structural Biology, 2006, 16(3): 393–398.

    Article  Google Scholar 

  12. R. Kolodny and N. Linial, Approximate protein structural alignment in polynomial time, in Proc. Natl. Acad. Sci., 2004, 101(33): 12201–12206

    Article  Google Scholar 

  13. L. Holm and C. Sander, Protein structure comparison by alignment of distance matrices, J. Mol. Biol., 1993, 233(1): 123–138.

    Article  Google Scholar 

  14. I. N. Shindyalov and P. E. Bourne, Protein structure alignment by incremental combinatorial extension (CE) of the optimal path, Protein Eng., 1998, 11(9): 739–747.

    Article  Google Scholar 

  15. Y. Chen and G. M. Crippen, A novel approach to structural alignment using realistic structural and environmental information, Protein Sci., 2005, 14(12): 2935–2946.

    Article  Google Scholar 

  16. S. Subbiah, D. V. Laurents, and M. Levitt, Structural similarity of DNA-binding domains of bacteriophage repressors and the globin core, Curr. Biol., 1993, 3(3): 141–148.

    Article  Google Scholar 

  17. S. Bhattacharya, C. Bhattacharyya, and N. R. Chandra, Comparison of protein structures by growing neighborhood alignments, BMC Bioinformatics, 2007, 8: 77.

    Article  Google Scholar 

  18. Z. Aung and K. L. Tan, MatAlign: precise protein structure comparison by matrix alignment, J. Bioinform. Comput. Biol., 2006, 4(6): 1197–1216.

    Article  Google Scholar 

  19. E. Krissinel and K. Henrick, Common subgraph isomorphism detection by backtracking search, Software Practice and Experience, 2004, 34(6): 591–607.

    Article  Google Scholar 

  20. S. Umeyama, An eigendecomposition approach to weighted graph matching problems, IEEE Trans. Pattern Anal. Mach. Intell., 1988, 10(5): 695–703.

    Article  MATH  Google Scholar 

  21. L. Chen, L. Y. Wu, Y. Wang, et al., Revealing divergent evolution, identifying circular permutations and detecting active-sites by protein structure comparison, BMC Structural Biology, 2006, 6: 18.

    Article  Google Scholar 

  22. L. Martínez, R. Andreani, and J. M. Martínez, Convergent algorithms for protein structural alignment, BMC Bioinformatics, 2007, 8: 306.

    Article  Google Scholar 

  23. D. J. Jacobs, A. J. Rader, L. A. Kuhn, and M. F. Thorpe, Protein flexibility predictions using graph theory, Proteins Structure Function and Genetics, 2001, 44(2): 150–165.

    Article  Google Scholar 

  24. Y. Ye and A. Godzik, Flexible structure alignment by chaining aligned fragment pairs allowing twists, Bioinformatics, 2003, 19(9): 246–255.

    Article  Google Scholar 

  25. O. Bachar, D. Fischer, R. Nussinov, and H. Wolfson, A computer vision based technique for 3-D sequence-independent structural comparison of proteins, Protein Engineering Design and Selection, 1993, 6(3): 279–287.

    Article  Google Scholar 

  26. B. Kolbeck, P. May, T. Schmidt-Goenner, et al., Connectivity independent protein-structure alignment: A hierarchical approach, BMC Bioinformatics, 2006, 7: 510.

    Article  Google Scholar 

  27. J. Dundas, T. A. Binkowski, B. DasGupta, and J. Liang, Topology independent protein structural alignment, BMC Bioinformatics, 2007, 8: 388.

    Article  Google Scholar 

  28. L. H. Greene, T. E. Lewis, S. Addou, et al., The CATH domain structure database: new protocols and classification levels give a more comprehensive resource for exploring evolution, Nucleic Acids Research, 2007, 35(Database issue): 291–297.

    Article  Google Scholar 

  29. R. Kolodny, P. Koehl, and M. Levitt, Comprehensive evaluation of protein structure alignment methods: scoring by geometric measures, J. Mol. Biol., 2005, 346(4): 1173–1188.

    Article  Google Scholar 

  30. C. A. Orengo and W. R. Taylor, SSAP: Sequential structure alignment program for protein structure comparison, Methods Enzymol, 1996, 266: 617–635.

    Article  Google Scholar 

  31. G. Mayr, F. S. Domingues, and P. Lackner, Comparative analysis of protein structure alignments, BMC Structural Biology, 2007, 7: 50.

    Article  Google Scholar 

  32. C. Guda, S. Lu, E. D. Scheeff, et al., CE-MC: A multiple protein structure alignment server, Nucleic Acids Research, 2004, 32(Web Server Issue): W100.

    Article  Google Scholar 

  33. M. Menke, B. Berger, and L. Cowen, Matt: Local flexibility aids protein multiple structure alignment, PLoS. Comput. Biol., 2008, 4(1): e10.

    Article  MathSciNet  Google Scholar 

  34. Y. Ye and A. Godzik, Multiple flexible structure alignment using partial order graphs, Bioinformatics, 2005, 21(10): 2362–2369.

    Article  Google Scholar 

  35. F. Birzele, J. E. Gewehr, G. Csaba, and R. Zimmer, Vorolign–fast structural alignment using Voronoi contacts, Bioinformatics, 2007, 23(2): e205–e211.

    Article  Google Scholar 

  36. M. Shatsky, R. Nussinov, and H. J. Wolfson, A method for simultaneous alignment of multiple protein structures, Proteins Structure Function and Bioinformatics, 2004, 56(1): 143–156.

    Article  Google Scholar 

  37. E. Krissinel and K. Henrick, Secondary-structure matching, a new tool for fast protein structure alignment in three dimensions, Acta Crystallogr D Biol. Crystallogr, 2004, 60(1): 2256–2268.

    Article  Google Scholar 

  38. D. Frishman and P. Argos, Knowledge-based protein secondary structure assignment, Proteins, 1995, 23(4): 566–579.

    Article  Google Scholar 

  39. J. F. Gibrat, T. Madej, and S. H. Bryant, Surprising similarities in structure comparison, Curr. Opin. Struct. Biol., 1996, 6(3): 377–385.

    Article  Google Scholar 

  40. H. M. Grindley, P. J. Artymiuk, D. W. Rice, and P. Willett, Identification of tertiary structure resemblance in proteins using a maximal common subgraph isomorphism algorithm, J. Mol. Biol., 1993, 229(3): 707–721.

    Article  Google Scholar 

  41. I. Koch and T. Lengauer, Detection of distant structural similarities in a set of proteins using a fast graph-based method, in Proc. Int. Conf. Intell. Syst. Mol. Biol., 1997, 5: 167–178.

    Google Scholar 

  42. N. Weskamp, D. Kuhn, E. Hüllermeier, and G. Klebe, Efficient similarity search in protein structure databases by k-clique hashing, Bioinformatics, 2004, 20(10): 1522–1526.

    Article  Google Scholar 

  43. J. M. Yang and C. H. Tung, Protein structure database search and evolutionary classification, Nucl. Acids, Res., 2006, 34(13): 3646–3659.

    Article  Google Scholar 

  44. X. Liu, Y. P. Zhao, and W. M. Zheng, CLEMAPS: Multiple alignment of protein structures based on conformational letters, Proteins, 2007, 71(2): 728–736.

    Article  Google Scholar 

  45. W. C. Lo and P. C. Lyu, CPSARST: An efficient circular permutation search tool applied to the detection of novel protein structural relationships, Genome Biology, 2008, 9(1): R11.

    Article  Google Scholar 

  46. J. Zhu and Z. Weng, FAST: A novel protein structure alignment algorithm, Proteins, 2005, 58(3): 618–627.

    Article  Google Scholar 

  47. A. S. Konagurthu, P. J. Stuckey, and A. M. Lesk, Structural search and retrieval using a tableau representation of protein folding patterns, Bioinformatics, 2008, 24(5): 645–651.

    Article  Google Scholar 

  48. T. A. Binkowski, L. Adamian, and J. Liang, Inferring functional relationships of proteins from local sequence and spatial surface patterns, J. Mol. Biol., 2003, 332(2): 505–526.

    Article  Google Scholar 

  49. L. Xie and P. E. Bourne, A robust and eficient algorithm for the shape description of protein structures and its application in predicting ligand binding sites, BMC Bioinformatics, 2007, 8(Suppl 4): S9.

    Article  Google Scholar 

  50. T. Kawabata and K. Nishikawa, Protein structure comparison using the Markov transition model of evolution, Proteins, 2000, 41(1): 108–122.

    Article  Google Scholar 

  51. N. Leibowitz, R. Nussinov, and H. J. Wolfson, MUSTA–A general, efficient, automated method for multiple structure alignment and detection of common motifs: application to proteins, J. Comput. Biol., 2001, 8(2): 93–121.

    Article  Google Scholar 

  52. O. Dror, H. Benyamini, R. Nussinov, and H. Wolfson, MASS: Multiple structural alignment by secondary structures, Bioinformatics, 2003, 19(suppl 1): i95–i104.

    Article  Google Scholar 

  53. E. Zotenko, D. P. O’Leary, and T. M. Przytycka, Secondary structure spatial conformation footprint: A novel method for fast protein structure comparison and classification, BMC Structural Biology, 2006, 6: 12.

    Article  Google Scholar 

  54. S. Bhattacharya, C. Bhattacharyya, and N. R. Chandra, Projections for fast protein structure retrieval, BMC Bioinformatics, 2006, 7(Suppl 5): S5.

    Article  Google Scholar 

  55. A. Shulman-Peleg, R. Nussinov, and H. J. Wolfson, Recognition of functional sites in protein structures, J. Mol. Biol., 2004, 339(3): 607–633.

    Article  Google Scholar 

  56. B. Y. Chen, V. Y. Fofanov, D. M. Kristensen, et al., Algorithms for structural comparison and statistical analysis of 3d protein motifs, Biocomputing 2005: Proceedings of the Pacific Symposium, 2005, 334–345.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin WANG.

Additional information

This research is supported by the National Natural Science Foundation of China under Key Research Grant No. 10631070, and JSPS and NSFC under JSPS-NSFC Collaboration Project under Grant No. 10711140116.

Rights and permissions

Reprints and permissions

About this article

Cite this article

WANG, L., QIU, Y., WANG, J. et al. Recognition of Structure Similarities in Proteins. J Syst Sci Complex 21, 665–675 (2008). https://doi.org/10.1007/s11424-008-9143-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11424-008-9143-5

Key words

Navigation