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Abstract Superresolution is an image processing technique that estimates an original high-resolution

image from its low-resolution and degraded observations. In superresolution tasks, there have been

problems regarding the computational cost for the estimation of high-dimensional variables. These

problems are now being overcome by the recent development of fast computers and the development

of powerful computational techniques such as variational Bayesian approximation. In this article,

we review a Bayesian treatment of the superresolution problem and present its extensions based on

hierarchical modeling by employing hidden variables.

Key words Bayesian estimation, hidden variables, image superresolution, Markov random fields,

variational estimation.

1 Introduction

Suppose we have T images yt (t = 1, . . . , T ) of sizeMO×NO = PO that all show observations
of the same scene. If the observed images contain different information as compared to each
other, we can attempt to estimate the underlying high-resolution image x of magnified size
MH ×NH = PH, where MH ×NH = rMO × rNO, PH = r2PO, and r is the magnification factor
(Fig. 1). We call this estimation problem superresolution [1–4].∗ A characteristic feature of
the superresolution problem is that we need to estimate registration parameters that define
the relative motions between images. These relative motions enable superresolution; without
them, the information contained in the observations would not increase even if the number of
observations increases. Let θt denote the registration parameters for the tth observation. For
the sake of convenience, we denote D = {yt | t = 1, . . . , T} and θ = {θt | t = 1, . . . , T}. From
the viewpoint of Bayesian statistics, the estimation problem is translated into the computation
of the posterior probability p(x|D,θ), which is derived by the Bayes theorem:

p(x|D,θ) =
p(x)

∏T
t=1 p(yt|x,θt)∫

p(x)
∏T

t=1 p(yt|x,θt) dx
, (1)

where the prior probability p(x) and the likelihood p(yt|x,θt) must be provided in advance.
In this article, we will first review the Bayesian superresolution method proposed by Tipping
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∗This type of superresolution is in particular called multiframe superresolution or reconstruction-based super-
resolution. There is another type of superresolution called example-based superresolution [5], which estimates a
high-resolution image from only one image rather than from multiple images, based on a database developed in
advance. Example-based methods constitute another large class but they are beyond the scope of this article.
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Figure 1 Superresolution is the problem of estimating a high-resolution image from multiple
low-resolution, degraded observations of the same scene.

& Bishop [6] and then describe its extensions based on hierarchical modeling [7–9] with hidden
variables.

The concept of superresolution, making use of multiple images to estimate a high-resolution
image, was first proposed by Tsai & Huang [10]. They assumed a motion model restricted only
to global translation and performed all computations in the Fourier domain. Other methods
for multiframe superresolution include IBP (iterative back projection) methods [11], POCS
(projection onto convex sets) methods [12], and probabilistic methods [13] using MRFs (Markov
random fields) [14,15]. All the abovementioned methods can be considered to be an optimization
problem of a certain cost function subject to certain constraints. We can obtain an appropriate
cost function that has a natural interpretation reflecting our prior knowledge by utilizing the
statistical estimation framework.

In Section 2, we review the mechanism of Bayesian superresolution and describe a basic
Bayesian superresolution method employing single-layer Gaussian distributions. In Section 3,
we introduce a compound Gaussian MRF having an edge layer in addition to the high-resolution
image layer and show that the compound model is superior to the single-layer model. In
Section 4, we present a hierarchical likelihood model in which hidden variables represent possible
occlusions in observed images so that occlusion removal is successfully achieved. In Section 5,
we conclude the article and discuss possible future directions.

2 Bayesian Superresolution

Tipping & Bishop [6] proposed a Bayesian treatment of the superresolution problem where
Bayesian marginalization of hidden (unobservable) variables plays an important role. Bayesian
superresolution has extended the joint MAP (maximum a posteriori) superresolution method
proposed by Hardie et al. [16], who used the naive posterior probability (1) as the cost function
both for the registration parameters and the high-resolution image.

2.1 Mechanism of Bayesian Superresolution

We begin by defining the prior and the likelihood. The prior p(x) represents our a priori
knowledge or expectation of the high-resolution image and it is often selected to be an MRF that
imposes smoothness constraints on the image, reflecting our prior knowledge that neighboring
pixels are likely to have similar values [2, 4]. The prior can be understood as a regularizer of
the superresolution problem, which is definitely ill-posed due to the downscale and irreversible
noise processes. On the other hand, the likelihood p(yt|x,θt) represents the observation process
from the high-resolution image x to an observed image yt. The registration parameters θt

characterize the likelihood. The likelihood is a model of a physical process in the real world



BAYESIAN IMAGE SUPERRESOLUTION AND HIDDEN VARIABLE MODELING 3

and therefore there is less possibility for arguments as compared to the prior.
Since every quantity relevant to the estimation is computed from the prior and the likelihood,

the performance of a superresolution algorithm strongly depends on the choice of prior and
likelihood models. In the standard formulation, the prior and the likelihood are both selected
as Gaussian distributions. As the prior, a simple Gaussian distribution can impose smoothness
constraints over pixel values, and it is known that the Gaussian distribution is not appropriate
for natural images because it overly smoothens edges and hence the estimated images may often
be blurred. This disadvantage is not limited to the superresolution problem; in fact, it is shared
by various image processing problems, and considerable efforts have been devoted to develop
probability distributions that can preserve edges [2, 3, 16–18].

Bayesian superresolution estimates the registration parameters and the high-resolution im-
age based on a prescribed prior and likelihood. Although the design of hierarchical models for
the prior and likelihood using hidden variables is the main focus of this article, we first review
the mechanism of the Bayesian superresolution method without specifying concrete prior and
likelihood models. The registration parameters θ are estimated by maximizing the marginalized
likelihood:

θ̂ = argmax
θ

L(θ), (2)

where the marginalized likelihood L is derived by marginalizing (integrating) out x from the
joint distribution:

L(θ) =

∫
p(x,D|θ) dx =

∫
p(x)p(D|x,θ) dx. =

∫
p(x)

T∏
t=1

p(yt|x,θt) dx. (3)

After obtaining the estimates θ̂ of the registration parameters, the high-resolution image is
estimated by the mean of the posterior distribution (1):

x̂ = E(x) =
∫
xp(x|D, θ̂) dx. (4)

Marginalization is the most important process in Bayesian superresolution; however, at the
same time, it is also the main problem because the integration operation in (3) is not necessarily
tractable for arbitrary prior p(x) or likelihood p(yt|x,θt). Therefore, these distributions are
restricted to those which the integration in (3) is tractable with. Existing Bayesian superresolu-
tion methods [6,19] use single-layer Gaussian distributions because the marginalized likelihood
can be analytically evaluated in such cases. Consequently, their estimation results fail to retain
sharp edges and the estimated high-resolution images tend to be overly blurred. It is difficult
to directly use edge-preserving prior distributions because they cannot be readily marginalized.

2.2 Single-Layer Bayesian Superresolution

In this subsection, the prior and likelihood models are specified to be single-layer Gaussian
distributions, and the properties of the estimators under them are presented. A graphical model
depicting the statistical dependency structure of the single-layer model is shown in Fig. 2(a).

The prior represents the smoothness constraints, and it is given by

p(x) ∝ exp
{
−ρ
2

∑
i∼j

(xi − xj)
2
}
, (5)

where ρ is a precision parameter that determines the strength of the prior belief and i ∼ j
implies “pixels i and j are adjacent,” and summation

∑
i∼j is taken over all pairs of neighboring
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Figure 2 Graphical models for the single-layer, compound, and hierarchical models.

pixels. Let N (i) be the set of the four immediate neighbors of a pixel i on the high-resolution
plane, N (i) = {j | j ∼ i}. Since the exponent of (5) is always nonpositive and a quadratic
function of x, p(x) becomes a Gaussian distribution. Since the distribution (5) only has a
local dependency structure, p(xi|x\i) = p(xi|xN (i)) holds (we denote x\i = {xj | ∀j 6= i} and
xN (i) = {xj | j ∈ N (i)}). Therefore, p(x) is a Gaussian MRF and its potentials are given by
Vij(xi, xj) = (xi − xj)

2; therefore, the complete energy is E(x) =
∑

i∼j Vij(xi, xj). Note that
the squared potential has a shape shown in Fig. 4(a), which has no robustness, i.e., estimation
under this potential will result in overly smoothed images because it strongly penalizes abrupt
changes (edges) in the image, although edges are very important for recognition by the human
visual system [20]. The explicit form of p(x) is given by the following single-layer Gaussian
distribution†:

p(x) = Gauss(x|0, ρ−1A−1) =
|A|1/2

(2π/ρ)PH/2
exp

{
−ρ
2
xTAx

}
, (6)

whereA is a symmetric matrix that is derived as follows. Noting the fact
∑

i∼j =
1
2

∑PH

i=1

∑
j∈N (i),

we obtain

∑
i∼j

(xi − xj)
2 = 2

∑
i∼j

(x2i − xixj) =

PH∑
i=1

x2i
∑

j∈N (i)

1−
PH∑
i=1

∑
j∈N (i)

xixj (7)

=

PH∑
i=1

x2iAii +

PH∑
i=1

PH∑
j=1

xixjAij = xTAx, (8)

where

Aij =


|N (i)| (i = j)

−1 (i ∼ j)

0 (otherwise)

. (9)

This matrix works as a spatial difference filter. Generally, matrices used in the prior have been
selected as high-pass filters such as the difference filter, the Laplacian filter, or filters with wider
spatial ranges [4].

The likelihood is defined according to our assumption of the observation process. We assume
that the original high-resolution image x is (i) geometrically transformed, (ii) blurred with a

†The symbol Gauss(x|µ,Σ) denotes a Gaussian distribution of x whose mean is µ and covariance is Σ, i.e.,
Gauss(x|µ,Σ) = (|2πΣ|)−1/2 exp{− 1

2
(x− µ)TΣ−1(x− µ)}.
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Figure 3 Observation process.

PSF (point spread function), (iii) downscaled, and (iv) corrupted by Gaussian noise (Fig. 3).
This process can be represented by the following equation:

yt =W (θt)x+ εt, εt ∼ Gauss(0, β−1I), (10)

where W (θt) is a non-square matrix responsible for (i)–(iii) and εt is Gaussian noise with
uniform precision (inverse variance) β. The ij element of the observation matrix W is the
contribution from the jth pixel of the high-resolution image to the ith pixel of the observed
low-resolution image, and it is defined by

Wij(θt) =
1

Zi
exp

{
−
d2ij(θt)

2γ2

}
, (11)

where dij is the Euclidean distance between the low-resolution pixel i projected onto the high-
resolution plane and the high-resolution pixel j, γ is the width (standard deviation) parameter
of the Gaussian PSF, and Zi is determined by constraint

∑
j Wij = 1. If we allow translational

and rotational motions, the distance between pixels i and j is given by

dij(st, ψt) = ‖R(ψt)(ri − r̄) + st − rj‖, (12)

where st is the amount of translational motion, ri and rj are position vectors of the pixels i and
j on the high-resolution plane, respectively, R(ψt) is the rotation matrix of ψt radian, and r̄ is
the center of rotation. Under this motion model, the registration parameters are θt = {st, ψt}.
Although we use this three-dimensional motion model in the experiments, we can use a more
general model such as projection transformation, which has eight-dimensional parameters [21].
We sometimes write Wt =W (θt) for the sake of simplicity. The single-layer likelihood is given
by

p(yt|x,θt) = Gauss(yt|W (θt)x, β
−1I) =

1

(2π/β)PO/2
exp

{
−β
2
‖yt −W (θt)x‖2

}
. (13)

The EM (expectation-maximization) algorithm [22, 23] is used to find the registration pa-
rameters that maximize the marginal likelihood. Here, we present a general formulation of the
EM algorithm, which will be revisited later when hidden variables are introduced to the model.
Let τ be hidden (unobservable) variables. In this section, τ = x; however, in later sections,
we expand τ to include additional hidden variables. The EM algorithm can be formulated as
a minimization procedure of the following variational free energy [23,24]

F (q,θ) = −
∫
q(τ ) ln

p(τ ,D|θ)
q(τ )

dτ = −
〈
ln
p(τ ,D|θ)
q(τ )

〉
τ

, (14)
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where q is an arbitrary probability distribution called a trial distribution, and the brackets 〈·〉τ
denote the expectation operator with respect to q. Subscripts such as 〈·〉τ are omitted when
there is no ambiguity. The free energy F is a functional of the function q and also a function
of the parameters θ. Since p(τ ,D|θ) = p(τ |D,θ)p(D|θ), the free energy can be decomposed as

F (q,θ) = − lnL(θ) +DKL(q(τ )‖p(τ |D,θ)). (15)

Here, L is the marginalized likelihood defined by (3), and DKL is the KL (Kullback-Leibler)
divergence between the trial distribution q(τ ) and the true posterior p(τ |D,θ) defined by

DKL(q(τ )‖p(τ |D,θ)) = −
〈
ln
p(τ |D,θ)
q(τ )

〉
. (16)

The KL divergence satisfies DKL(q‖p) ≥ 0 for any q and p and DKL(q‖p) = 0 if and only if q
and p are identical distributions [24, 25]. From (15), we see that minimizing F with respect to
q is equivalent to minimizing DKL. Therefore, the optimal trial distribution q∗ that minimizes
the free energy F coincides with the true posterior and then, DKL = 0. Furthermore, if we
minimize F with respect to θ, it reduces to the minimization of −L, i.e., maximization of L,
and we obtain the parameter estimates θ̂ defined by (2). That is,

θ̂ = argmin
θ

min
q
F (q,θ). (17)

In practice, we employ the coordinate descent optimization of F (q,θ); the variational optimiza-
tion with respect to q is called the E step, and the optimization with respect to θ the M step.
Therefore, we iterate the following two steps until convergence is achieved:

E step: q∗ = argmin
q

F (q,θ), (18)

M step: θ∗ = argmin
θ

F (q,θ). (19)

Under the single-layer Gaussian model specified by (6) and (13), the posterior distribution
of the high-resolution image is computed according to (1), and we obtain

q∗ = p(x|D,θ) = Gauss(x|µ,Σ) = 1

(2π)PH/2|Σ|1/2
exp

{
−1

2
(x− µ)TΣ−1(x− µ)

}
(20)

where

Σ =
(
ρA+ β

T∑
t=1

WT
t Wt

)−1

, (21)

µ = βΣ
( T∑
t=1

WT
t yt

)
. (22)

In the E step, the evaluation of the posterior distribution is reduced to the computation of its
sufficient statistics µ and Σ.

In the M step, the free energy is optimized with respect to θ. Omitting terms independent
of θ, we obtain

F = −
〈
ln
p(x,D|θ)
q(x)

〉
= −

T∑
t=1

〈ln p(yt|x,θt)〉x + const. (23)
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Since − ln p(yt|x,θt) =
β
2 ‖yt −W (θt)x‖2 + const., the optimization problem is reduced to the

minimization of the following expected squared error

T∑
t=1

〈‖yt −W (θt)x‖2〉 =
T∑

t=1

{‖yt−W (θt)µ‖2 + tr(ΣW (θt)
TW (θt))}, (24)

where the first term on the right-hand side is the squared error between the observed images
and the high-resolution image transformed by the observation matrices, and the second term
represents the uncertainty regarding the high-resolution image through its posterior covariance.
The second term is the advantage of marginalization over the MAP method [16], where the cost
function only comprises the squared error term. Tipping & Bishop [6] have shown that due to
the uncertainty term, accurate estimation of the parameters is achieved by avoiding overfitting.

After the EM algorithm converges, we have the estimates for the registration parameters.
At the same time, an estimate x̂ for the high-resolution image is already computed in the E step
as the mean value µ of the posterior distribution (22). From (22), µ is a linear transformation
of the observed images and βΣWT

t is the inverse filtering kernel. This µ also provides the
maximum posterior probability:

x̂ = µ = argmax
x

p(x|D,θ) = argmin
x

(
ρ‖A1/2x‖2 + β

T∑
t=1

‖yt −Wtx‖2
)
. (25)

The first term is the norm of the high-frequency components of x, and the second term is the
squared error in the observation space. Therefore, the estimator x̂ is the result of regularized
least squares estimation with employing the high-frequency components of x as the regularizer.

3 Edge-Preserving Superresolution by Introducing Hidden Variables
to Prior

In this section, we introduce a hierarchical model to a prior, which is called a compound
prior, by employing hidden variables representing edges in the high-resolution image; we show
the advantages of this model in high-resolution image estimation. The likelihood is the same
as that of the Gaussian distribution described in the previous section. A graphical model
for the compound prior model is shown in Fig. 2(b). The introduction of the edge variables
makes exact estimation difficult and thus we utilize the variational EM algorithm to derive a
computationally efficient estimation procedure.

3.1 Compound Prior

We introduce binary hidden variables ηij ∈ {0, 1} representing edges between neighboring
pixels i and j, and denote in total η = {ηij | i ∼ j}. The concept of placing binary variables
between neighboring pixels is the same as the line process proposed by Geman & Geman [26].
The marginalized prior of the high-resolution image x is

p(x) =
∑
η

p(η,x) =
∑
η

p(η)p(x|η), (26)

which is a mixture distribution. It is suggested that the uncertainty regarding edge positions
is considered in a soft way via marginalization with respect to η, rather than hard switching
between ηij = 0 and 1 by making a point estimate of η. Note, however, that the computational
complexity of

∑
η increases exponentially with the number of edge variables.
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The joint prior of the edges η and the high-resolution image x is defined as the Boltzmann
distribution:

p(η,x) =
1

Z
exp

{
−ρ
2
E(η,x)

}
. (27)

The energy function is defined as‡

E(η,x) =
∑
i∼j

(
ηij(xi − xj)

2 + (1− ηij)λ
)
, (28)

where λ is a constant. The lower is the energy, the higher is the probability. When ηij = 1,
the squared error (xi − xj)

2 between neighboring pixels i and j is left, and when ηij = 0,
the constant λ remains. Therefore, the prior probability of x imposes smoothness constraints
between neighboring pixel values xi and xj when ηij = 1, and there is no smoothing when
ηij = 0. For a fixed x but variable η, we observe that if (xi − xj)

2 > λ, ηij = 0 is chosen and
if (xi − xj)

2 < λ, ηij = 1 gives a higher probability. This implies that λ is the threshold for
judging the presence of edge. This distribution also possesses a local dependency structure, i.e.,
it is an MRF, and this type of compound model is called compound Gaussian MRF [15,27,28].
The local potential function of the compound MRF is Vij(ηij , xi, xj) = ηij(xi−xj)2+(1−ηij)λ,
which is called Hampel’s loss function in robust statistics [15], and its shape is shown in Fig. 4(b).
Prior (27) can be equivalently represented as

p(η,x) = Ber(η|ν)Gauss(x|0, (ρAη)
−1). (29)

Here, Ber(η|ν) is the Bernoulli distribution:

Ber(η|ν) =
∏
i∼j

νηij (1− ν)1−ηij , (30)

where ν = sig(λρ/2)
∆
= 1/(1 + exp{−λρ/2}), and the precision matrix is

[Aη]ij =


∑

k∈N (i) ηik (i = j)

−ηij (i ∼ j)

0 (otherwise)

. (31)

As compared to matrix A defined by (9), Aη is dependent on η and therefore the strength of
smoothing is controlled by the edge configuration η. Note that if we assume η = 1 (ηij = 1
for all i ∼ j), this model would coincide with the classical single-layer Gaussian model (5).
Therefore, the compound model is a generalization of the single-layer model.

The exact posterior distribution under the compound prior is a Gaussian mixture

p(x|D,θ) =
∑
η

p(η|D)p(x|η,D,θ) =
∑
η

p(η|D)Gauss(x|µη,Ση), (32)

where the parameters for the conditional posterior are

Ση =
(
ρAη + β

T∑
t=1

WT
t Wt

)−1

, (33)

µη = βΣη

( T∑
t=1

WT
t yt

)
. (34)

‡When η = 0, the distribution becomes improper with respect to x; however, this problem can be avoided
by adding ε‖x‖2 (ε > 0) to E and setting ε to a sufficiently small value.
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Figure 4 Potential functions.

Thus, the exact estimate for the high-resolution image is given by

x̂ExactC =
∑
η

p(η|D)µη. (35)

This is a weighted average of high-resolution image estimates under every possible edge con-
figuration η whose weights are given by its posterior probability p(η|D). This computation is
difficult in practice because the sum

∑
η has a computational complexity that grows exponen-

tially with the number of pixels. Moreover, since the marginalized likelihood L also has an
exponential complexity, it is difficult to obtain exact estimates θ̂ for the parameters. This is an
example of the difficulty in marginalization regarding Bayesian superresolution. Then, we use
the variational approximation method described in the following subsection.

3.2 Variational EM Estimation

In this subsection, we derive a variational EM algorithm for the compound model for efficient
Bayesian superresolution.

In Section 2.2, we presented the general formulation of the EM algorithm under hidden
variables τ . When we use the compound model, the hidden variables are τ = {η,x}. In
the previous subsection, we saw that the optimal trial distribution that minimizes the free
energy is the true posterior distribution; however, it is computationally intractable for the
compound model. This intractability arises because the optimal q is searched in the space of
arbitrary distributions. Then, we restrict the functional form of q to be the following factorized
distribution

q(η,x) =
∏
i∼j

q(ηij)q(x), (36)

and optimize F (q,θ) with respect to q and θ. Since q is optimized in the restricted space, the
exact relation of (17) no longer holds. However, F can be regarded as an upper bound of −L
and the variational EM algorithm can be understood as a bound optimization method.

In the E step, each factor of the trial distribution is variationally optimized. It is known
that the optimal factor can be analytically derived if the other factors are fixed [24, 29], and
the optimal factors are

ln q∗(ηij) = 〈ln p(η,x,D|θ)〉η\ij ,x + const., (37)

ln q∗(x) = 〈ln p(η,x,D|θ)〉η + const., (38)
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where the bracket pairs denote the expectations with respect to q, that is, 〈·〉η\ij,x and 〈·〉η
denote the expectations with respect to q(η\ij ,x) and q(η), respectively. The notation η\ij
is a set of variables η except for ηij . Here, we ignore the term 〈ln|Aη|〉 that appears when
rearranging the right-hand side of (37) since it is empirically known that the effect of this term
is small. The optimal trial distribution can be computed by iterating

q∗(η) = Ber(η|ν̄) =
∏
ij

ν̄
ηij

ij (1− ν̄ij)
1−ηij , (39)

q∗(x) = Gauss(x|µC,ΣC) =
1

(2π)PH/2|ΣC|1/2
exp

{
−1

2
(x− µC)

TΣ−1
C (x− µC)

}
, (40)

where

ν̄ij = sig
(ρ
2
(λ− 〈(xi − xj)

2〉)
)

∆
=

1

1 + exp
{
−ρ
2
(λ− 〈(xi − xj)2〉)

} , (41)

ΣC =
(
ρ〈Aη〉+ β

T∑
t=1

WT
t Wt

)−1

, (42)

µC = βΣC

( T∑
t=1

WT
t yt

)
. (43)

The parameter ν̄ij is the expectation of the edge variable ηij . Equation (41) suggests that soft
identification of the edge existence is achieved, instead of the classical hard switching between
0 and 1; this is done by using the sigmoid function. As we change the precision parameter
ρ of the prior, the gradient of the sigmoid function changes and therefore the edge sensitivity
can be controlled (Fig. 5). The covariance ΣC of x contains the expected matrix 〈Aη〉 whose
elements are given by the edge expectations ν̄. The mean µC is again a linear transformation
of the observed images; however, in this case, the inverse kernel βΣCW

T
t incorporates the

estimated edge pattern ν̄. According to the edge estimate, the strength of the regularization
varies spatially such that the edges are less regularized whereas non-edge regions are more
regularized, so that edge preservation is achieved.

In the M step, we optimize F with respect to θ. We find that the terms dependent on θ are

T∑
t=1

〈‖yt −W (θt)x‖2〉x =

T∑
t=1

{‖yt−W (θt)µC‖2 + tr(ΣCW (θt)
TW (θt))}, (44)
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Figure 6 Images used in the experiments: Cameraman, Lenna, Girl, Beads, and License.

Table 1 Mean ISNRs with standard deviations in 12 experiments for five images.

CGMRF [dB] SGMRF [dB]
Cameraman 4.88± 0.14 4.48± 0.05
Lenna 10.04± 0.23 9.52± 0.17
Girl 7.75± 0.07 7.42± 0.06
Beads 10.11± 0.23 9.58± 0.34
License 7.80± 0.30 7.35± 0.09
Total 8.11± 1.93 7.67± 1.88

which is the expected squared error; this is the same as (24), except that it employs different
ΣC and µC.

The estimate for the high-resolution image is given by the mean µC of the trial distribution:

x̂VarC = µC. (45)

This variational estimate x̂VarC is the regularized least square solution with the regularization
matrix being 〈Aη〉 (see (42)). The expected matrix 〈Aη〉 takes care of the edge probability for
each pixel and the strength of smoothing is controlled by it. In contrast, the exact estimate
x̂ExactC is a weighted average of the conditional means µη, which are regularized least square
solutions whose regularization matrices are Aη (see (33)). Therefore, the difference between the
variational estimate and the exact estimate arises from the manner in which the expectation
is obtained, and then, replacing Aη with 〈Aη〉 is effective in reducing the complexity. On the
other hand, the difference between x̂VarC and x̂ is that the regularization is space variant. That
is, in the single-layer model, the high-pass filtering matrix A is fixed at every pixel; in contrast,
in the variational estimation of the compound model, 〈Aη〉 is different for each pixel and thus
it realizes a pixel-wise smoothing effect.

3.3 Experiments

We conducted experiments to compare the single-layer Gaussian MRF model (SGMRF)
and the compound Gaussian MRF model (CGMRF). The reconstruction errors were measured
based on the PSNR (peak signal-to-noise ratio), defined by

PSNR(x̂) = 10 log10
M2

‖x− x̂‖2/PH
[dB], (46)

where M is the maximum pixel value. The higher is the PSNR, the better is the estimate.
The five images shown in Fig. 6 were used as original images. We generated T = 16 observed

images by synthetically applying geometrical transformation, blurring, downscaling, and noise
corruption. The geometrical transformations consisted of translational and rotational motions,
and the amounts of translation were drawn from a uniform distribution between −2 and 2
pixels and the angles of rotation were drawn from a uniform distribution between −4π/180
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(a) Observed image (1/16) (b) SGMRF’s estimate (c) CGMRF’s estimate

(d) CGMRF: Horizontal edge (e) CGMRF: Vertical edge

Figure 7 Comparison of superresolution of License by SGMRF and our CGMRF.

and 4π/180 radian. A Gaussian PSF with a width of 2 was used as the blurring kernel. The
decimation factor was r = 4. Finally, the SNR of the noise was set at 30 dB. Such a generation
procedure was repeated 12 times for each original image, forming 60 sets of T = 16 observation
images in total. The pixel values were represented as floating point numbers normalized within
[0, 1].

The following are the specifications of the variational EM algorithm: initial values for all the
parameters were set at 0. The scaled conjugate gradient method [30] was used to optimize θ.
The algorithm was terminated at the lth iteration if the following conditions were satisfied:
F l − F l−1 < 10−4, ‖µl − µl−1‖/‖µl−1‖ < 10−4, and ‖θl − θl−1‖/‖θl−1‖ < 10−4, where the
superscripts indicate the iteration step. The following hyperparameters were used: λ = 0.025,
ρ = 30, and β = 4500.

Since the absolute values of PSNR are different for images, we used the PSNR of the mean
image of the observations as the baseline and the improvement from it, ISNR (improvement
in SNR), was computed for the estimated high-resolution images. Table 1 shows the mean
ISNRs with standard deviation for high-resolution images estimated by the single-layer model
(SGMRF) and the compound model (CGMRF). We observe that the compound method was
superior for all the images, and there was an average improvement of more than 0.4 dB. The
estimation results for the License image are shown in Fig. 7. We observe that the extraction
of edges (d), (e) is successfully done, and the image estimation of the compound model (c) is
definitely sharper than that of the single-layer model (b).

4 Superresolution with Occlusion Removal by Introducing Hidden
Variables for Likelihood

In this section, we describe a Bayesian superresolution method [8,9] that assumes occlusions
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in the observations. The single-layer Gaussian MRF is used as the prior; however, hidden
variables indicating occlusions in observations are introduced to the likelihood, making the
likelihood a hierarchical model. A graphical model under the hierarchical likelihood is shown
in Fig. 2(c). The exact computation under this model is again computationally intractable and
we use the variational EM algorithm to derive an efficient superresolution algorithm.

4.1 Hierarchical Likelihood

For an observed image yt, we introduce binary random variables zt that indicate the exis-
tence of occlusions. Since we cannot directly observe zt, they are hidden variables. Whether or
not occlusion is present in the ith pixel of the tth observed image is indicated by zti ∈ {+1,−1}.
If zti = −1, the pixel is occluded, whereas if zti = +1, the pixel is intact. We make the following
assumptions:

1) We regard occluded pixels as a region with large observation noise.

2) Obstacles have a spatial continuity.

3) Obstacles move along time.

We write z = {zt | t = 1, . . . , T}. The marginal likelihood with the introduction of the occlusion
pattern z is given by

p(D|x,φ,θ) =
∑
z

p(z|φ)p(D|x, z,θ), (47)

where φ denotes the amount of occlusion movement and defines the occlusion prior, and the
sum

∑
z is taken over all possible occlusion patterns.

The conditional likelihood is given by

p(yt|x, zt,θt) = Gauss(y|W (θt)x, B(zt)
−1), (48)

where the precision matrix B is a diagonal matrix B(zt) = diag(β1(z1), . . . , βPO(ztPO)) whose
elements are dependent on the occlusion pattern zt. Reflecting Assumption 1), we set the
precision (inverse variance) of the observation noise to

βi(zti) =

{
βH (zti = +1)

βL (zti = −1)
. (49)

Here, we take βH > βL to satisfy the condition that when zti = +1, there is no occlusion (low
noise = high precision), whereas when zti = −1, there is occlusion (low precision).

Assumptions 2) and 3) are represented as the hierarchical prior for the occlusion patterns z.
Assumption 3) is fulfilled by the following Markov property:

p(z|φ) = p(z1)p(z2|z1,φ1) · · · p(zT |zT−1,φT−1), (50)

where the moving parameters for zt are φt. Each prior distribution is given by the Boltzmann
distribution:

p(zt|zt−1,φt−1) =
1

Z
exp{−E(zt, zt−1)}, (51)

where the energy function is defined as

E(zt, zt−1) = −Jself
PO∑
i=1

zti − Jinter
∑
i∼j

ztiztj − Jmovez
T
t z̃t. (52)
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Here, J• are scalar constants, and z̃t is a predicted occlusion pattern at time t that is obtained
by moving the previous pattern zt−1 by a transition matrix G(φt−1), where φt−1 denotes the
amounts of movement. As the matrix G, we use the bilinear interpolator to cope with subpixel
amounts of motion. According to these prior settings, (51) and (52), an occlusion pattern
zt with a lower energy occurs with a higher probability. Here, we observe the effect of each
term of (52). The self-connection coefficient Jself of the first term represents the strength of
the bias; if Jself > 0, zti is likely to be +1, and if Jself < 0, zti is likely to be −1. The inter-
connection coefficient Jinter of the second term defines the degree of correlation within the single
occlusion pattern. When Jinter > 0, zt is likely to take the same values within neighboring pixels,
whereas when Jinter < 0, the values tend to be different. The third term measures the similarity
between zt and z̃t, and the coefficient Jmove represents how close the occlusion pattern zt is
to the predicted pattern z̃t, which is determined by the previous pattern zt−1 and the moving
amounts φt−1. When modeling occlusion patterns, we set Jself > 0 to represent that the area
of reliable (unoccluded) regions is generally larger than that of unreliable (occluded) regions.
From Assumptions 2) and 3), we set Jinter > 0 and Jmove > 0 so as to represent spatial and
temporal continuities.

With the hierarchical likelihood, the posterior distribution for the high-resolution image
becomes

p(x|D,θ,φ) =
∑

z p(z|φ)p(x)p(D|x,θ, z)∫ ∑
z p(z|φ)p(x)p(D|x,θ, z) dx

. (53)

The summation
∑

z is intractable because it should be taken over all configurations of binary
patterns z, whose number increases exponentially with the number of pixels. Thus, we utilize
the variational EM algorithm to obtain a computationally efficient computational procedure.

4.2 Variational EM Estimation

The true posterior distribution p(z,x|D,θ,φ) is approximated by the trial distribution
q(z,x) for the hidden variables, τ = {x, z}. The E step is used to minimize the free en-
ergy F with respect to q and the M step is used to minimize F with respect to θ and φ.
Since the unconstrained optimization of q implies the intractable computation of the true pos-
terior distribution, we introduce the following factorization assumption to the trial distribution
q(z,x):

q(z,x) =

T∏
t=1

PO∏
i=1

q(zti)q(x). (54)

The optimal trial distribution that minimizes the free energy is searched by iterating the
factor-wise optimal solutions

q∗(zti) = Ber(zti|νti) = ν
1
2 (1+zti)
ti (1− νti)

1
2 (1−zti), (55)

q∗(x) = Gauss(x|µH,ΣH) =
1

(2π)PH/2|ΣH|1/2
exp

{
−1

2
(x− µH)

TΣ−1
H (x− µH)

}
. (56)

The occlusion patterns are identified in a soft way since the parameter νti is the probability of
occlusion absence q(zti = +1), which is calculated using the sigmoid function

νti = sig(2λti)
∆
=

1

1 + exp{−2λti}
, (57)
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where

λti = Jself + Jinter
∑

j∈N (i)

〈ztj〉+ Jmove[G(φt−1)(2νt−1 − 1) +G(φt)
T(2νt+1 − 1)]i

+
1

4

(
ln
βH
βL

− (βH − βL)〈e2ti〉
)
. (58)

The first through third terms come from the prior distribution, and each of them respectively
arises from the self-connection, inter-connection, and occlusion movements. In the second term,
the neighboring occlusion probabilities are summed and thus the spatial continuity is enhanced,
as required in Assumption 2. The third term consists of the previous pattern advanced by
G(φt−1) and the pattern at the next step moved back by G(φt)

T, which accommodates As-
sumption 3. The fourth term is determined by the observations such that the baseline ln(βH/βL)
is compared with the following expected squared error at the ith pixel of the ith observed image:

〈e2ti〉 = 〈(yti −wT
tix)

2〉 (59)

= (yti −wT
tiµH)

2 +wT
tiΣHwti, (60)

where wti is the ith row of Wt. The first term in (60) is the reconstruction error on the ith
pixel of the tth image, and the second term is the degree of uncertainty. In practice, we ignore
the second term of (60) because the uncertainty is relatively small, and it is empirically known
that good results can be obtained even by ignoring the second term [8, 9]. Therefore, if the
reconstruction error at a pixel is large, then that pixel is considered to be occluded.

The parameters for q∗(x) are

ΣH =
(
ρA+

T∑
t=1

WT
t 〈B(zt)〉Wt

)−1

, (61)

µH = ΣH

( T∑
t=1

WT
t 〈B(zt)〉yt

)
, (62)

where 〈B(zt)〉 is a diagonal matrix whose elements are given by the expectations

〈βi(zti)〉 = q(zti = +1)βH + q(zti = −1)βL. (63)

We observe that under the hierarchical likelihood model, the inverse kernel that transforms the
observations into the high-resolution image is ΣHW

T
t 〈B(zt)〉. In this kernel, the occlusion prob-

abilities are considered pixel-wise for each observed image so that the importance of occluded
pixels become small, whereas the weights of observations in unoccluded regions are larger.

The optimization of the free energy F with respect to θ is essentially the same as that in
the previous sections and the expectation of the weighted squared error

T∑
t=1

〈‖B1/2(zt)(yt −W (θt)x)‖2〉

=

T∑
t=1

{‖〈B1/2(zt)〉(yt−W (θt)µH)‖2 + tr(ΣHW (θt)
T〈B(zt)〉W (θt))} (64)
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Figure 8 True binary patterns representing occlusions (black: 10 dB noise, white: 40 dB noise).

Figure 9 Estimated occlusion patterns. The colors are in grayscale so that q(zti = +1) = 0
corresponds to black (occluded) and q(zti = +1) = 1 to white (not occluded).

is minimized. When minimizing the free energy F with respect to φ, only the following terms
related to the expected correlations are dependent on φ and they should be considered:

−
T∑

t=2

〈zTt z̃t〉 = −
T∑

t=2

〈zt〉TG(φt−1)〈zt−1〉. (65)

In practice, we restricted the movement to be a uniform motion of fixed φt.
The estimate for the high-resolution image is given by x̂VarH = µH. The difference as

compared to the previous sections is that the noise precision matrix 〈B(zt)〉 has different element
values by taking the expectation with respect to the posterior probability of the occlusion
variables. Due to this modification, the relative strength of regularization becomes different
among pixels so as to reflect the possible presence of occlusion. That is, in pixels with low
precision, pixel values are strongly smoothed by relatively strong regularization, whereas in
pixels with high precision, the observed data are more trusted by relatively weak regularization.

4.3 Experiments

We conducted experiments to observe the effects of the hierarchical likelihood with occlusion
patterns. The Lenna image was used as an original image, and two datasets were synthetically
generated. The procedure used for generating the datasets was almost the same as that de-
scribed in Section 3.3 except that the noise variance was controlled according to the occlusion
patterns zt. In the first dataset, zt were generated independently without considering the move-
ment. In other words, each zt was generated by Gibbs sampling from p(z) with parameters
Jself = 0.01, Jinter = 1, and Jmove = 0 (Fig. 8). The SNR of the noise was set to 10 dB at
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pixels where zti = −1, and 40 dB where zti = +1. In the second dataset, we generated zt by
shifting a single occlusion pattern, as shown in Fig. 12(a). The amount of the shift motion was
an integer common for all the frames, making a uniform motion. The noise strength was 10 dB
for pixels with zti = −1 and 45 dB for pixels with zti = +1. We assumed that the following
parameters are known: noise precisions βH and βL; prior parameters Jself, Jinter, and Jmove; and
registration parameters θ. These parameters were assumed for the sake of simplicity, although,
in theory, they can be estimated from data.

The purpose of the first experiment using the first dataset is to observe the difference between
the single-layer model and the hierarchical model without considering occlusion movements.
The estimated high-resolution images with magnification factor r = 4 are shown in Fig. 10.
The close-up views of the region around the right eye are shown in Fig. 11. The estimation
by the hierarchical likelihood model, shown at the top-right panel of Fig. 10, exhibits the
highest (best) PSNR of 32.45 dB. The hierarchical model effectively changed the strength of
regularization on each pixel based on the estimated occlusion patterns shown in Fig. 9. The
single-layer model assuming the uniform low precision (10 dB noise) over all pixels estimated
an overly smooth image (bottom-left), whose PSNR was 27.80 dB, and the single-layer model’s
estimation assuming uniform 40 dB noise, i.e., high precision over all pixels, completely failed
to reconstruct the high-resolution image (bottom right). The highest PSNR attained by the
single-layer model was 29.51 dB when 21 dB uniform noise was assumed; however, this is still
approximately 3 dB worse than the estimation by the hierarchical model.

Using the second dataset, we compared the hierarchical model that assumes no movement
(Jmove = 0) and the hierarchical model that estimates movement (Jmove 6= 0). When estimating
the movement of occlusions, we assumed a uniform motion, i.e., φt was common for all the
observations, which is the same as the true movement used for generating the dataset. Nelder
and Mead’s simplex method [31] was used to minimize the cost function (65). Fig. 12 shows the
true noise pattern and its estimation results. Due to the assumption of uniform movement, it is
sufficient to show the single occlusion pattern common for all the observations. Fig. 13 shows
the high-resolution images for a magnification factor of r = 4. We observe that the estimation
considering the movement yielded an improvement of approximately 3 dB in this case.

We applied the hierarchical algorithm to a real image sequence. For the sake of simplicity,
we fixed the camera when capturing the images so that there was no need for estimating the
registration parameters. Since there is no relative motion within the observations, enhancing
the resolution is beyond our objectives here and thus we set the magnification factor as r = 1.
The estimated image is shown in Fig. 14 along with one of the observed images, observation
mean, and observation median. The observation mean (c) includes ghosts and is very poor.
The observation median (d) has no ghost but is blurred as compared to the estimation by
the hierarchical method (b). This is because the hierarchical method performed deconvolution
owing to the generative model that includes the blurring process.

5 Conclusion

In this article, we reviewed the Bayesian superresolution method and presented its hierar-
chical extensions by introducing hidden variables into the prior and the likelihood to construct
appropriate hierarchical models. Hidden variables represents edges in the prior and occlusion
patterns in the likelihood. The most significant benefit of hierarchical modeling is the local
adaptability according to the estimation of hidden variables. In other words, in the compound
prior, the strength of smoothing is controlled according to the edge probability dependent on
each pixel pair; if an edge is identified, the sharpness is retained, whereas if no edge is esti-
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True
PSNR Inf

Obs. Mean
PSNR 21.57

Ours
PSNR 32.45

Uniform Low Prec.
PSNR 27.80

Uniform Opt. Prec.
PSNR 29.51

Uniform High Prec.
PSNR 20.41

Figure 10 Comparison of estimation results when the observed images suffer from the noise
patterns shown in Fig. 8.

True
PSNR Inf

Obs. Mean
PSNR 20.85

Ours
PSNR 31.38

Uniform Low Prec.
PSNR 25.57

Uniform Opt. Prec.
PSNR 28.06

Uniform High Prec.
PSNR 21.26

Figure 11 Close-up views of Fig. 10. PSNRs are re-calculated for the shown regions.
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(a) True (b) Without move (c) With move

Figure 12 True and estimated occlusion patterns.

(a) Observation mean: PSNR23.04 (b) Without move: PSNR28.30 (c) With move: PSNR31.25

Figure 13 Estimated images with/without estimating occlusions’ movement.

mated, the neighboring pixels are smoothed. In the hierarchical likelihood, each observation
pixel is judged if it is occluded or not, and high-precision pixels are effectively used to estimate
high-resolution images, whereas low-precision pixels are fickled out.

The key proposal of the Bayesian superresolution method reviewed in this article is the
marginalization of the unknown high-resolution image; however, it is also possible to marginalize
the registration parameters [21]. In this case, the selection of the prior for the registration
parameters would be the most important point to capture the temporal dynamics.

Another way to improve the superresolution methods is to introduce further hierarchical
priors on the hidden variables. The hierarchical priors for η and z used in this study were so
simple that there was a weak clustering effect. Assuming the spatial regularity of the hidden
variables would result in better estimation with more accurately identified edge or occlusion
probabilities. We can avoid determining the hyperparameters manually by further introducing
hierarchical priors and estimating them by means of Bayesian estimation.
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