Skip to main content
Log in

Optimal multi-asset investment with no-shorting constraint under mean-variance criterion for an insurer

  • Published:
Journal of Systems Science and Complexity Aims and scope Submit manuscript

Abstract

This paper considers the optimal investment strategy for an insurer under the criterion of mean-variance. The risk process is a compound Poisson process and the insurer can invest in a risk-free asset and multiple risky assets. This paper obtains the optimal investment policy using the stochastic linear quadratic (LQ) control theory with no-shorting constraint. Then the efficient strategy (optimal investment strategy) and efficient frontier are derived explicitly by a verification theorem with the viscosity solution of Hamilton-Jacobi-Bellman (HJB) equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Browne, Optimal investment policies for a firm with a random risk process: Exponential utility and minimizing the probability of ruin, Math. Oper. Res., 1995, 20: 937–957.

    Article  MATH  MathSciNet  Google Scholar 

  2. C. Hipp and M. Plum, Optimal investment for insurers, Insurance: Math. Econ., 2000, 27: 215–228.

    Article  MATH  MathSciNet  Google Scholar 

  3. J. Gaier, P. Grandits, and W. Schachermayer, Asymptotic ruin probabilities and optimal investment, Ann. Appl. Probab., 2003, 13: 1054–1076.

    Article  MATH  MathSciNet  Google Scholar 

  4. C. Hipp and H. Schmidli, Asymptotics of ruin probabilities for controlled risk processes in the small claims case, Scand. Actuar. J., 2004, 5: 321–335.

    Article  MathSciNet  Google Scholar 

  5. H. L. Yang and L. H. Zhang, Optimal investment for insurer with jump-diffusion risk process, Insurance: Math. Econ., 2005, 37: 615–634.

    Article  MATH  Google Scholar 

  6. N. Wang, Optimal investment for an insurer with exponential utility preference, Insurance: Math. Econ., 2007, 40: 77–84.

    Article  MATH  Google Scholar 

  7. Z. Wang, J. Xia, and L. Zhang, Optimal investment for insurer with jump-diffusion risk process, Insurance: Math. Econ., 2007, 40: 322–334.

    Article  MATH  MathSciNet  Google Scholar 

  8. H. Markowitz, Portfolio selection, J. Finance, 1952, 7: 77–91.

    Article  Google Scholar 

  9. R. C. Merton, An analytical derivation of the efficient portfolio frontier, J. Financial and Economics Anal., 1972, 7: 1851–1872.

    Article  Google Scholar 

  10. X. Y. Zhou and D. Li, Continuous-time mean-variance portfolio selection: A stochastic LQ framework, Appl. Math. Optim., 2000, 42: 19–33.

    Article  MATH  MathSciNet  Google Scholar 

  11. X. Li, X. Y. Zhou, and A. E. B. Lim, Dynamic mean-variance portfolio selection with no-shorting constraints, SIAM J. Contr. Optim., 2002, 40: 1540–1555.

    Article  MATH  MathSciNet  Google Scholar 

  12. X. Y. Zhou and G. Yin, Markowitz mean-variance portfolio selection with regime switching: A continuous time model, SIAM J. Control Optim., 2003, 42: 1466–1482.

    Article  MATH  MathSciNet  Google Scholar 

  13. P. Chen, H. Yang, and G. Yin, Markowitz’s mean-variance asset-liability management with regime switching: A continuous-time model, Insurance: Math. Econ., 2008, 43(3): 456–465.

    Article  MATH  MathSciNet  Google Scholar 

  14. X. Y. Zhou, J. Yong, and X. Li, Stochastic verification theorems within the framework of viscosity solutions, SIAM J. Control Optim., 1997, 35: 243–253.

    Article  MATH  MathSciNet  Google Scholar 

  15. T. Choulli, M. Taksar, and X. Y. Zhou, An optimal diffusion model of a company with constraints on risk control, SIAM J. Control Optim., 2003, 41: 1946–1979.

    Article  MATH  MathSciNet  Google Scholar 

  16. D. G. Luenberger, Optimization by Vector Space Methods, Wiley, New York, 1968.

    Google Scholar 

  17. G. L. Xu and S. E. Shreve, A duality method for optimal consumption and investment under short-selling prohibition II: Constant market coefficients, Ann. Appl. Probab., 1992, 2: 314–328.

    Article  MATH  MathSciNet  Google Scholar 

  18. W. H. Fleming and H. M. Soner, Controlled Markov Processes and Viscosity Solutions, Springer-Verlag, New York, 1993.

    MATH  Google Scholar 

  19. L. Bai and H. Zhang, Dynamic mean-variance problem with constrained risk control for the insurers, Math. Methods Oper. Res., 2008, 68: 181–205.

    Article  MATH  MathSciNet  Google Scholar 

  20. T. R. Bielecki, H. Jin, S. R. Pliskaz, et al., Continuous-time mean-variance portfolio selection with bankruptcy prohibition, Math. Finance, 2005, 15: 213–244.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junna Bi.

Additional information

This research is supported by the National Natural Science Foundation of China under Grant No. 10871102 and Specialized Research Fund for the Doctoral Program of Higher Education under Grant No. 20090031110001.

This paper was recommended for publication by Editor Shouyang WANG.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bi, J., Guo, J. & Bai, L. Optimal multi-asset investment with no-shorting constraint under mean-variance criterion for an insurer. J Syst Sci Complex 24, 291–307 (2011). https://doi.org/10.1007/s11424-011-8014-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11424-011-8014-7

Key words

Navigation