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Effective networks for real-time distributed processing
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The problem of real-time processing is one of the most challenging current issues in computer
sciences. Because of the large amount of data to be treated in a limited period of time, parallel and
distributed systems are required, whose performance depends on a series of factors including the
interconnectivity of the processing elements, the application model and the communication protocol.
Given their flexibility for representing and modeling natural and human-made systems (such as the
Internet and WWW), complex networks have become a primary choice in many research areas.
The current work presents how the concepts and methods of complex networks can be used to
develop realistic models and simulations of distributed real-time system while taking into account
two representative interconnection models: uniformly random and scale free (Barabási-Albert),
including the presence of background traffic of messages. The interesting obtained results include
the identification of the uniformly random interconnectivity scheme as being largely more efficient
than the scale-free counterpart.

PACS numbers: 89.75.-k, 89.20-Ff

I. INTRODUCTION

We live in a world governed by action. From the am-
ple motion of our planet to the intricacies of Brownian
agitation, the universe is pervaded by an endless flow
of changes to which our lives are no exception. While
little can originate from stillness, movement imposes a
continuing challenge to our senses. An immediate and
important implication of movement is causality, one of
the most essential elements in animal survival and also
the key element in scientific investigation. In order to
cope with such demands, animals evolved an intricate
neuronal ‘hardware’ capable of analyzing moving images
at a high resolution and rate appropriate to enable an
immediate response, i.e. enough so as to favor their sur-
vival and reproduction. Such a type of reaction by dy-
namical systems is technically known as real-time (e.g.,
[1]). Despite the several advances in computing tech-
nology achieved along the last decades, we still lag well
behind biological system as far as real-time processing
and recognition is concerned. One of the possible ways
to learn how to develop automated systems for effec-
tive, real-time processing is to look at the organization
of biological systems for inspiration. Another possibility
is to model and simulate such systems in order to try
to identify particularly effective architectures and algo-
rithms. One of the fundamental organizational principles
of biological processing of information regards the inher-
ent concurrency and parallelism characterizing those sys-
tems. Because neurons are relatively slow in processing
and transmitting information (e.g., [2]), high speed can
only be achieved by carefully interconnecting neurons so
as to form groups or modules working in parallel. Indeed,
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the brain is currently known to be organized according
to interconnected modules [3] resembling a distributed
computer system. In addition to the inherent features of
the modules and involved neuronal cells, one particular
feature of such modular processing systems concerns the
specific way in which the several components are inter-

connected.

The interconnections between processing elements in
a distributed system can be natural and effectively rep-
resented in terms of complex networks (e.g., [4, 5, 6]),
where each processor is associated to a node while the
interconnections between these nodes are expressed as
edges. Through such a simple analogy, it is possible to
bridge the gap between research in real-time distributed
systems and the exciting concepts, tools and results from
the area of complex networks. Although the origin of the
latter area can be traced back to random graphs (e.g.,
[7]), and despite their immediate relationship with graph
theory, the term complex network has been used to ex-
press the emphasis placed on graphs which exhibit com-
plex structured connectivity.[19]

Thanks to technological advances in neuroanatomy
and physiology, a more comprehensive vision of neu-
ronal interconnections underlying the nervous systems of
several animals is progressively emerging. At the mi-
croscopic — cellular — level, recent investigations have
suggested that neurons are interconnected through small
world and even scale free networks [8]. The macroscopic
organization of cortical areas [3] also seems to be orga-
nized according to this principle [9].

This article presents the application of complex net-
works as the means for investigating the effect of al-
ternative connectivity schemes, namely uniformly ran-
dom (i.e. Erdős and Rényi — ER) and scale free (i.e.
Barabási-Albert — BA) network models, on the overall
performance of a real-time distributed processing system.
While the ER model represents the natural reference sys-
tem for connectivity, being almost universally considered

http://arxiv.org/abs/physics/0612134v2
mailto:gonzalo@ifsc.usp.br
mailto:luciano@ifsc.usp.br


2

as the null hypothesis in complex network studies, the
BA model is particularly representative of natural — in-
cluding neuronal information processing systems [8] —
and human-made systems such as the Internet and the
WWW [4]. ER networks exhibit a characteristic node de-
gree (i.e. the number of connections of each node of the
network), in the sense that their overall connectivity can
be well characterized in terms of the mean node degree.
Contrariwise, BA networks exhibit a power law distribu-
tion of node degrees, which favors a heterogeneous con-
nectivity, as well as the appearance of hubs (e.g., [4, 5]).
In addition to their particular importance in modeling
natural and human-made systems, BA networks provide
an interesting model for the Internet and, consequently,
grid computing systems — an important current trend
in distributed computing [10] which provides a good deal
of the motivation for the present work. In addition, the
consideration of the BA model allows us to investigate
the effect of the presence of hubs in parallel and grid
systems — as implied by the Internet connectivity [11]
— on the overall performance, as a counterpart to the
otherwise almost regular connectivity ensured by the ER
model making it similar to uniform parallel systems such
as those involving mesh or hypercube interconnectivity.
However, unlike those architectures, ER (and BA) net-
works are small-world.

The application model simulated here while consid-
ering these two interconnecting models involves a mas-
ter node which distributes tasks, namely a stream of
frames to be processed, among processing elements in
other nodes acting as clients according to their availabil-
ity. This assumes that both the source and destination of
the frames are at the same site. The processing protocol
considers a communication model involving routers con-
necting the clients to the master, as typically found in
practice. Therefore, the overall modeling and simulation
approaches adopted in this work include many realistic
elements common to a real distributed processing system.

A previous work [12] studied the effect of intercon-
nection topology in the performance of a grid comput-
ing application. The application considered in that work
involved the processing of a number of not interacting
tasks, with no real-time requirements. The lack of real-
time constraints reduces the importance of traffic fluctua-
tions enabling the use of average communication times for
performance evaluation. Correspondingly, [12] does not
include traffic effects. Under the real-time constraints of
the application studied in the present work, varying de-
lays induced by traffic play a major role, and application-
independent traffic is thus included in the simulations.
Another reason for inclusion of traffic is that the network
topology strongly influences packet transit times under
traffic, as reported in many works (e.g., [13, 14, 15, 16]).

The current article starts by presenting the adopted
network, application and communication models, and fol-
lows by presenting and discussing the obtained results.

II. MODELS

The model used for the simulations comprises three
components: a network model, a model for the commu-
nication between the collaborating computers, and an
application model. These models are described below.

A. Network Models

When studying complex networks, the interest can be
focused on their topologies, i.e. their structural proper-
ties, or on some dynamical processes taking place in the
network. In this work, we use complex networks to de-
scribe the interconnection topology of a collection of com-
puters participating in a collaborative real-time compu-
tation. As such, our main focus is on the dynamical
processes of data communication and computations in
the computers interconnected through the network. In
this work, two widely used network models are consid-
ered: the Erdős-Rényi (ER) random network model with
fixed number of edges [17] and the Barabási-Albert (BA)
scale-free model [18].
ER networks are constructed by consideringN isolated

nodes (i.e. the network starts with no edges) and then
adding edges one by one between uniformly chosen pairs
of nodes (avoiding duplicate connections of nodes and
self connections); the addition of edges is repeated a pre-
specified number L of times. N and L are the parameters
of the ER model and the average degree is given by:

〈k〉 =
2L

N
. (1)

BA networks are constructed starting with m0 nodes
and adding new nodes one by one. When a new node
is inserted, m ≤ m0 edges are added from this node to
one of the previously existing nodes. The nodes to be
linked are chosen following the preferential attachment

rule [18]. The process is repeated until de desired number
of nodes N is reached. In the simulations presented in
this work, the initial network was fixed with m0 = 2m+1
fully connected nodes. The parameters of the model are
thus N and m. Considering that for each new node m
new edges are added and that the initial network already
has m edges for each node, the total number of edges is
L = mN , and therefore

〈k〉 = 2m. (2)

B. Application Model

This work analyzes the influence of the network topol-
ogy on real-time collaborative computation. The com-
putation considered here is defined as follows: A special
node in the network, called the master, is responsible for
reading a stream of input data and writing a stream of
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output data. The data arrives at the master in pack-
ets, here called frames in an analogy to real-time video
processing, at regular intervals and the result of their
processing must be output at the same interval.
For each input frame, an output frame is produced af-

ter the realization of a certain amount of computation
(the computational load required for each frame). In
this work, the load is considered equal for all frames.
The computation is not done by the master. Instead, a
collection of clients book their willingness to participate
in the computation; when a new input frame arrives, the
master chooses one available client and sends the frame
to it for processing. After receiving and processing the
input frame, the client sends the output frame back to
the master; when the output frame arrives at the master,
the client that processed the frame is again registered as
ready to receive a new frame.
After arrival (or generation) at the master, each frame

must be sent to a client, processed and sent back to the
master. As communication delays in the network are
unpredictable, the order of arrival of the resulting frames
at the master is not guaranteed to correspond to the order
in which they were originally delivered. To avoid output
of the frames out-of-order and also enable waiting for
the transmission and processing of the frames, a frame
buffer must be maintained by the master, where arriving
frames are stored in the correct order. The production of
the output must then be delayed for some time, i.e. the
output of frames must start some time after the arrival
of the first frame. When a frame must be output, if it
has not yet arrived it must be dropped with resulting
quality loss. It is therefore important to allow sufficient
time for the frames to arrive, but additional time given to
frame processing then implies in increased latency in the
production of the output. The time between the arrival
of the first frame and the start of the output (which is also
the time each frame will have available to be processed
and returned to the master) is henceforth quantified in
terms of the number of frame intervals.

C. Communication Model

After a network is generated according to a given
model and set of parameters, its nodes are considered the
routers of a computer network. The computers partici-
pating in the collaborative work are hosts connected to
one of the routers. The master is connected to a router
randomly selected with uniform probability. Not all of
the network participates in the computation. The num-
ber of participating clients is a parameter of the sim-
ulation. Each client is associated with a router selected
with uniform probability, but a limitation is imposed that
each host (master or client) is associated with a different
router. Only routers from the largest connected compo-
nent of the network are selected.
As the network is assumed not to be exclusively dedi-

cated to the frames computation, external traffic is sim-

ulated on the network by the generation of packets be-
tween random pairs of routers.
After insertion in the network, the packets are routed

from node to node. The routers follow a “shortest path”
routing strategy: each router sends a packet to a neigh-
boring router that strictly decreases the number of steps
remaining to reach the destination; if more than one
neighbor satisfies this condition, one of them is chosen at
random. While a router is routing and sending a packet
to a neighbor, it cannot handle other packets. Packets
arriving during this operation are queued in arrival order
to be processed later; the routers are assumed to have
unbounded queuing capacity.
The time for processing and communication at each

step on the network is considered independent of the
packet and router, although the delivery time for dif-
ferent packets might differ due to queuing. If the traffic
in the network is low, the queues are empty or short, and
the time taken for a packet to reach the destination is
proportional to the topological distance between source
and destination. As the traffic increases, congestion en-
sues [13, 15, 16], and the delivery time grows to many
times that of the uncongested network.

D. Parameters

Here the model parameters and their values for the
simulation results described below are presented.
Both network models are characterized by two param-

eters: the number of nodes N and the number of edges
(for the ER model) or number of edges added for each
new node (for the BA model). Henceforth the latter pa-
rameters are represented by the average node degree 〈k〉,
that can be computed from the model parameters by us-
ing equations (1) and (2).
The computation dynamics is described by the compu-

tational load for the processing of each frame, the interval
between frames and the number of frames to wait before
starting the output. Considering that all clients are taken
as identical (no difference in processing power), the com-
putational load can be given as the computational time T
of the processing task. The time interval between frames
will be represented by τ and the number of frames to
buffer by B. The output latency is therefore Bτ.
The time taken for a packet to traverse a step in the

network from a node to one of its neighbors, h, is the
same for each packet and router. As only the relation
between the times are of importance, the time scale is
chosen such that h = 1, the values of T and τ being
expressed in these units. The random traffic generation
in the network is assumed to be a Poisson process with
inter-arrival times given by an exponential distribution
with average 1/(Nλ); the factor N is introduced to make
the amount of traffic proportional to the size of the net-
work; λ is the per-node packet generation frequency (in
units compatible with h = 1).
The remaining parameter is simply the number of
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TABLE I: Model parameters and their values. Time and fre-
quency parameter “normalized” units (see text); output start
interval in number of frame intervals.

Parameter Meaning Values

N Number of nodes 1000

〈k〉 Average node degree 2, 6, 10

T Frame computation time 100

τ Frame interval 5

B Output start interval 10–50

λ Packet generation frequency 0.001–0.02

C Number of clients 100

clients C ≤ N − 1. The parameters are listed in Table I,
together with their range of values used in the simula-
tions discussed below.

III. RESULTS AND DISCUSSION

A computation is successful if all output frames are
returned from the clients and arrive at the master before
they need for output. If a frame arrives too late for out-
put, that frame is dropped, and the quality of the output
is consequently reduced. Frames that arrive in time are
here called completed. The number of completed frames
is chosen as quality measure of the computation. In the
simulations, a total of 1000 frames needs to be computed.
Figure 1 shows the number of completed frames as a

function of network traffic and the output latency, for
ER and BA networks of 1000 nodes, with 〈k〉 = 2, 6, 10.
The other simulation parameters are: 100 clients, frame
interval of 5, frame processing time of 100. The results
shown are averages of 100 simulations, each with a dif-
ferent network generated according to the corresponding
model and different traffic patterns.
Consider first the case of the Erdős-Rényi network with

〈k〉 = 10 (Fig. 1(e)). This plot shows a sharp transi-
tion on the number of completed frames for a latency
of about 20 frame intervals. This transition is expected:
with T = 100 and τ = 5, at least T/τ = 20 frame in-
tervals must elapse before results start to arrive at the
master. The fact that the transition is sharp, close to
this lower limit, and independent of traffic in the studied
region shows that an Erdős-Rényi topology with 〈k〉 = 10
is efficient for this application, that is, it introduces small
delays. For 〈k〉 = 6 (Fig. 1(c)), the results are similar,
but the transition is not so sharp and a larger latency
is needed to reach the plateau of all frames completed.
In the case of 〈k〉 = 2 (Fig. 1(a)), another effect ap-
pears: a reduction on the number of completed frames
occurs when the traffic is increased. The larger value
of B needed and the drop in the number of completed

frames with increased traffic for reduced values of 〈k〉 are
due to the reduction in the connectivity of the network:
Few edges connecting the nodes result in increased aver-
age distances from the master to the clients; this affects
the time taken to deliver the frames and complete their
calculations, resulting in the need for an increase in the
frame buffer and therefore larger latency. Also, the pres-
ence of fewer edges means that fewer alternative paths
are available between the nodes, rising the sensitivity of
the network to increased traffic.

For the Barabási-Albert networks, Figs. 1(b), (d), (f),
the results show a much stronger influence of traffic. For
〈k〉 = 6 and 〈k〉 = 10 a continuous drop of the number
of completed frames is noticed as the amount of traffic
grows. For high traffic values, even large buffers are not
able to guarantee the completion of a sufficient amount
of frames. For 〈k〉 = 2 the number of completed frames
is small even for reduced amounts of traffic.

In order to better understand these results, Figure 2
plots the average packet transmission delay for the same
situations as presented in Figure 1. The delay is com-
puted as the time taken from the delivery of a packet at
the source to the arrival at the destination. As shortest
path routing is used and the time taken at each step (hop)
is unitary, the average delay should equal the average dis-
tance between nodes under reduced traffic. This can be
seen for the ER networks with 〈k〉 = 6 and 〈k〉 = 10
(Figs. 2(c),(e)), where the graphs are flat with a delay
value about the value of the average distances. A dif-
ferent behavior is seen for ER networks with 〈k〉 = 2
(Fig. 2(a)). At a packet generation frequency of about
λ = 0.01, the delay starts to grow linearly with the
amount of traffic. This is due to the onset of conges-
tion in the network: some nodes start receiving packets
far more frequently than they can handle, leading to in-
creased queuing times of the packets in the nodes. After
congestion, the average delays grow fast to many orders
of magnitude of the average distance. Figure 2(f) shows
that congestion occurs for the BA network with 〈k〉 = 10
for a similar value of λ = 0.01, but note that the in-
crease in delay is steeper after that point. For 〈k〉 = 6,
BA networks display congestion at lower traffics (about
λ = 0.005) and even steeper increases of delay. The prob-
lem is accentuated for 〈k〉 = 2 (Fig. 2(b)), where conges-
tion occurs even for small amounts of traffic.

The reason for this greater sensitivity of the Barabási-
Albert networks to traffic in comparison with the Erdős-
Rényi counterparts can be easily understood. In fact,
the preferential attachment rule of BA networks induces
the creation of nodes with a high degree (hubs). Due
to their high connectivity, these hubs appear in many of
the shortest paths of the network. Although hubs are
created, the number of hubs is always small, and most of
the nodes have small connectivity and take part in just a
few shortest paths. Therefore, a few nodes of the network
become responsible for routing almost all of the traffic,
resulting in large packet queues and congestion in these
nodes. The lower the total connectivity of the network,
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FIG. 1: Number of completed frames for a total of 1000 frames as a function of network traffic and number of buffered frames,
for ER networks (left column) and BA networks (right column). Model parameters are N = 1000, T = 100, τ = 5, and C = 100.

the more pronounced is this problem, as fewer links imply
fewer alternative shortest paths. ER networks, on the
other hand, distribute the connectivity homogeneously
between all nodes, thus generating a better distribution
of shortest paths among the nodes of the network.

To assess the influence of the computational load as-
sociated with each frame (parameter T ), Figure 3 shows
the number of completed frames as a function of traf-
fic and frame processing time. For ER networks with
〈k〉 = 6 and 〈k〉 = 10, where no congestion occurs, two
plateaux, one with all frames completed and the other
with no frames completed, with a sharp transition be-

tween T = 140 and T = 150, are clearly seen. For the
other cases, where traffic is important, a gradual decay
of the number of completed frames is seen for increased
traffic, as already seen in Figure 1, but there is also a
gradual decrease of the number of completed frames as
the frame computation time increases (before the transi-
tion to the no completion plateau). The higher the traffic,
the steeper is the decrease of the number of completed
frames with frame completion time.

The above results can be understood by the following
reasoning. After the generation of a frame f , it must
be delivered to a client, processed, and sent back to the
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FIG. 2: Average delay for the delivery of packets in the network (time taken by the packets from source to destination) as a
function of network traffic. All packets in the network are included in the average (not only packets that transport frames).
Model parameters are N = 1000, T = 100, B = 30, τ = 5, and C = 100.

master. Total processing time for f , P (f) is given by

P (f) = w(f) + tmc(f) + tcm(f ′) + T (3)

where w(f) if the time f waits for a ready client, tmc(f)
is the travel time of f from master to client, and tcm(f ′)
is the travel time from client to master of the frame gen-
erated by the processing of f . Travel times tmc(f) and
tcm(f ′) are generally different (although the topological
distance is the same in both directions) due to possibly

different traffic conditions at the two transit periods. The
condition for the completion in time of f is that P (f) is
less then the accepted latency Bτ , giving

w(f) + tmc(f) + tcm(f ′) + T ≤ Bτ. (4)

This condition must be satisfied by most frames. Under
low traffic conditions, tmc(f) ≈ tcm(f ′) is close to the
topological distance between master and client and small
due to the small world property of the network models
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FIG. 3: Number of completed frames from a total of 1000 frames as a function of network traffic and frame computation time,
for ER networks (left column) and BA networks (right column). Model parameters are N = 1000, B = 30, τ = 5, and C = 100.

used, and the buffer used can be small, implying small
latencies. Under heavy traffic, transit times can be very
large (see Fig. 2), resulting in the need of high values of
B and therefore large latencies; also, even with large B,
the fluctuations in traffic are high, and many frames will
be lost. This renders the distributed system useless for
the application.

When a client returns the result of a computation to
the master, it is automatically registered as able to re-
ceive a new packet. Therefore, it is reasonable to suppose
that clients that communicate faster with the master will
receive a larger number of frames to compute and as a

result the delays associated with the communication of
frames can be smaller than the network averages. Also,
as nearby clients tend to communicate faster with the
master, the average distances (number of hops) traveled
by frames can be lower than for the other packets. Fig-
ures. 4(a) and (b) show the distribution of packets with
given per-hop delays (i.e., the ratio of the packet delay to
the number of hops traversed by the packet) for the two
considered network models and three different traffic con-
ditions. It can be seen that under heavy traffic, specially
for the Barabási-Albert model (which is more sensitive to
traffic), the frames are subjected to smaller delays than
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the other packets, but differences are substantial only for
a small number of packets with prohibitively large de-
lays, resulting in no advantage for the computation. The
distribution of the number of hops traveled by all packet
and the frames, for the two network models, are shown
in Figures 4(c) and (d). They show that the clients ef-
fectively participating in the computation are uniformly
distributed among the network nodes, with a perceptible
change in distribution only for high traffic condition in
the Barabási-Albert network model; in this latter case,
effectively operating clients are positioned closer to the
master node, implying that farther client nodes are re-
ceiving a smaller number of frames to be computed; again
no advantage comes to the application being processed,
as the difference occurs only in a traffic condition where
the number of droped frames is too high.

IV. CONCLUDING REMARKS

Combined with the availability of ever increasing
amounts of data, the continuing advances scientific simu-
lations have imposed serious demands for real-time pro-
cessing. A natural means to cope with such a pressure is
to develop and apply distributed systems, including the
possibility of learning from biological systems and the
application of Internet-based grid computing. Because of
the high cost in implementing such solutions, it becomes
essential to have access to realistic and effective modeling
and simulation methodologies. The current work has de-
scribed how concepts and methods from the modern area
of complex networks research can be effectively applied
in order to model and simulate with a good level of re-
alism distributed systems for real-time processing, with
emphasis focused on grid computing structures with con-
nectivity underlined by the Internet. At the same time,
because the BA model reflects some important connectiv-
ity features found in neuronal processing systems, the de-
velopment and evaluation of such complex network mod-

els for real-time processing bear potential implications
also for understanding biological processing.
Given its compatibility with some Internet topological

features, and also because of its potential compatibility
with neuronal processing systems, the Barabási-Albert
complex network model has been selected in order to de-
fine the overall connectivity of the distributed real-time
processing system. The Erdős-Rényi complex network
model was also considered as a null hypothesis charac-
terized by a high uniformity of node degree. Realistic
models were assumed for the application and communi-
cation dynamics, including the effect of background mes-
sage traffic, while the overall performance was quantified
in terms of the total number of processed frames with
respect to varying traffic intensity, buffer size and frame
processing time. The obtained results included the iden-
tification of critical parameter configurations which are
closely related to the model parameters and overall con-
nectivity. Of special interest is the clear superiority of
ER networks over BA networks. This is a result of the
better handling of traffic by ER networks, as a conse-
quence of the better distribution of connectivity between
the nodes.
Possible future works include the consideration of other

complex network models and applications, as well as
inclusion of variability in the computing power of the
clients, in the processing requirements of different frames
and in the communication times between nodes. It is
also of particular interest to study the effect of different
routing algorithms and packet queuing strategies at the
routers.
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FIG. 4: Communication properties of frames (Frames) as compared to all packets (Global) in the network: per hop delays (a)
and (b) and number of hops (c) and (d), for the Erdős-Rényi (a) and (c) and Barabási-Albert (b) and (d) network models.
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