Skip to main content
Log in

Distributed Kalman filtering fusion with packet loss or intermittent communications from local estimators to fusion center

  • Published:
Journal of Systems Science and Complexity Aims and scope Submit manuscript

Abstract

This paper considers the distributed Kalman filtering fusion with passive packet loss or initiative intermittent communications from local estimators to fusion center while the process noise does exist. When the local estimates are not lost too much, the authors propose an optimal distributed fusion algorithm which is equivalent to the corresponding centralized Kalman filtering fusion with complete communications even if the process noise does exist. When this condition is not satisfied, based on the above global optimality result and sensor data compression, the authors propose a suboptimal distributed fusion algorithm. Numerical examples show that this suboptimal algorithm still works well and significantly better than the standard distributed Kalman filtering fusion subject to packet loss even if the process noise power is quite large.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. C. Y. Chong, K. C. Chang, and S. Mori, Distributed tracking in distributed sensor networks, in Proceedings of American Control Conference, Seattle, WA, 1986.

  2. C. Y. Chong, S. Mori, and K. C. Chang, Distributed Multitarget Multisensor Tracking, Artech House, Norwood, MA, 1990.

    Google Scholar 

  3. H. R. Hashmipour, S. Roy, and A. J. Laub, Decentralized structures for parallel Kalman filtering, IEEE Trans. Automatic Control, 1988, 33(1): 88–93.

    Article  Google Scholar 

  4. Y. M. Zhu, Z. S. You, J. Zhao, K. S. Zhang, and X. R. Li, The optimality for the distributed Kalman filter with feedback, Automatica, 2001, 37(9): 1489–1493.

    Article  MATH  Google Scholar 

  5. E. B. Song, Y. M. Zhu, J. Zhou, and Z. S. You, Optimal Kalman filtering fusion with crosscorrelated sensor noises, Automatica, 2007, 43(8): 1450–1456.

    Article  MathSciNet  MATH  Google Scholar 

  6. L. Schenato, Optimal sensor fusion for distributed sensors subject to random delay and packet loss, Proceedings of 46th IEEE Conference on Decision and Control, New Orleans, 2007.

  7. B. Sinopoli, L. Schenato, M. Franceschetti, K. Poolla, M. Jordan, and S. Sastry, Kalman filtering with intermittent observations, IEEE Trans. Automatic Control, 2004, 49(9): 1453–1464.

    Article  MathSciNet  Google Scholar 

  8. J. Wolfe and J. Speyer, A low-power filtering scheme for distributed sensor networks, Proceeding of IEEE Conference on Decision and Control, Maui, Hawaii, 2003.

  9. A. Chiuso and L. Schenato, Information fusion strategies from distributed filters in packet-drop networks, Proceeding of IEEE Conference on Decision and Control, Cancun, Mexico, 2008.

  10. M. Liggins, C. Y. Chong, I. Kadar, M. G. Alford, V. Vannicola, and S. Thomopoulos, Distributed fusion architectures and algorithms for target tracking, Proceedings of the IEEE, 1997, 85(1): 95–107.

    Article  Google Scholar 

  11. G. C. Goodwin and R. Payne, Dynamic System Identification: Experimental Design and Data Analysis, Academic Press, New York, 1977.

    MATH  Google Scholar 

  12. S. Haykin, Adaptive Filter Theory, Prentice-Hall, Englewood Cliffs, NJ, 1996.

    Google Scholar 

  13. L. Ljung, System Identification: Theory for the User, Prentice Hall, Englewood Cliffs, NJ, 1987.

    MATH  Google Scholar 

  14. Y. Bar-Shalom, Multitarget-Multisensor Tracking: Advanced Applications, Artech House, Norwood, MA, 1990.

    Google Scholar 

  15. I. D. Schizas, G. B. Giannakis, and Z. Q. Luo, Distributed estimation using reduced-dimensionality sensor observations, IEEE Trans. Signal Processing, 2007, 55(8): 4285–4299.

    Article  MathSciNet  Google Scholar 

  16. E. B. Song, Y. M. Zhu, and J. Zhou, Sensors’ optimal dimensionality compression matrix in estimation fusion, Automatica, 2005, 41(12): 2131–2139.

    Article  MathSciNet  MATH  Google Scholar 

  17. C. K. Chui and G. Chen, Kalman Filtering with Real-Time Applications, Springer-Verlag, Berlin, German, 1987.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingting Luo.

Additional information

This research is supported by the National Natural Science Foundation of China under Grant Nos. 60934009, 60901037 and 61004138.

This paper was recommended for publication by Editor Jifeng ZHANG.

In this paper, we call the estimate is globally optimal means that the estimate result is equal to the linear minimum mean square error estimate using all sensor measurements from up to now. Otherwise, we call the estimate is suboptimal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, Y., Zhu, Y., Shen, X. et al. Distributed Kalman filtering fusion with packet loss or intermittent communications from local estimators to fusion center. J Syst Sci Complex 25, 463–485 (2012). https://doi.org/10.1007/s11424-012-0275-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11424-012-0275-2

Key words

Navigation