Skip to main content
Log in

Automated derivation of the conservation laws for nonlinear differential-difference equations

  • Published:
Journal of Systems Science and Complexity Aims and scope Submit manuscript

Abstract

Based on Wu’s elimination method and “divide-and-conquer” strategy, the undetermined coefficient algorithm to construct polynomial form conservation laws for nonlinear differential-difference equations (DDEs) is improved. Furthermore, a Maple package named CLawDDEs, which can entirely automatically derive polynomial form conservation laws of nonlinear DDEs is presented. The effectiveness of CLawDDEs is demonstrated by application to different kinds of examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Eklund, Symbolic computation of conserved densities and fluxes for nonlinear system of differential-difference equations, Master of Science Thesis, Department of Mathematical and Computer Sciences, Colorado School of Mines, Golden, Colorado, 2003.

    Google Scholar 

  2. W. Hereman, P. J. Adams, H. L. Eklund, M. S. Hickman, and B. M. Herbst, Direct Methods and Symbolic Software for Conservation Laws of Nonlinear Equations, Advances in Nonlinear Waves and Symbolic Computation (ed. by Z. Yan), Nova Science Publishers, New York, 2008.

    Google Scholar 

  3. R. X. Yao and Z. B. Li, CONSLAW: A Maple package to construct the conservation laws for nonlinear evolution equations, Appl. Math. Comput., 2006, 173: 616–635.

    Article  MathSciNet  MATH  Google Scholar 

  4. M. J. Ablowitz and P. A. Clarkson, Soliton, Nonlinear Evolution Equations and Inverse Scattering, London Mathematical Society Lecture Note Series 149, Cambridge University Press, Cambridge, 1991.

    Book  Google Scholar 

  5. I. M. Anderson, Introduction to the variational bicomplex, Contemp. Math., AMS, Providence, Rhode Island, 1992, 132: 51–73.

    Google Scholar 

  6. I. M. Anderson, The Variational Bicomplex, Department of Mathematics, Utah State University, Logan, Utah, 2004.

    Google Scholar 

  7. I. S. Krasil’shchik and A. M. Vinogradov, Symmetries and Conservation Laws for Differential Equations of Mathematical Physics, AMS, Providence, Rhode Island, 1998.

    Google Scholar 

  8. P. J. Olver, Applications of Lie Groups to Differential Equations, 2nd edition, Graduate Texts in Mathematics 107, Springer Verlag, New York, 1993.

    Book  MATH  Google Scholar 

  9. S. C. Anco and G. Bluman, Direct construction method for conservation laws of partial differential equations. Part I: Examples of conservation law classifications, Europ. J. Appl. Math, 2002, 13: 545–566.

    MathSciNet  MATH  Google Scholar 

  10. S. C. Anco and G. Bluman, Direct construction method for conservation laws of partial differential equations: Part II: General treatment, Europ. J. Appl. Math, 2002, 13: 567–585.

    MathSciNet  MATH  Google Scholar 

  11. G. W. Bluman and S. C. Anco, Symmetry and Integration Methods for Differential Equations, Applied Mathematical Sciences 154, Springer-Verlag, Berlin, 2002.

    MATH  Google Scholar 

  12. A. F. Cheviakov, GeM software package for computation of symmetries and conservation laws of differential equations, Comp. Phys. Comm., 2007, 176: 48–61.

    Article  MathSciNet  MATH  Google Scholar 

  13. A. B. Shabat and R. I. Yamilov, Symmetries of the nonlinear chains, Leningrad Math. J., 1991, 2: 377–400.

    MathSciNet  MATH  Google Scholar 

  14. V. E. Adler, S. I. Svinolupov, and R. I. Yamilov, Multi-component Volterra and Toda type integrable equations, Phys. Lett. A, 1999, 254: 24–36.

    Article  MathSciNet  MATH  Google Scholar 

  15. D. J. Zhang and D. Y. Chen, The conservation laws of some discrete soliton systems, Chaos, Solitons & Fractals, 2002, 14: 573–579.

    Article  MathSciNet  MATH  Google Scholar 

  16. T. Wolf, A. Brand, and M. Mohammadzadeh, Computer algebra algorithms and routines for the computation of conservation laws and fixing of gauge in differential expressions, J. Symb. Comp., 1999, 27: 221–238.

    Article  MathSciNet  MATH  Google Scholar 

  17. Ü. Göktas, W. H Hereman, and G. Erdmann, Computation of conserved densities for systems of nonlinear differential-difference equations, Phys. Lett. A, 1997, 236: 30–38.

    Article  MathSciNet  MATH  Google Scholar 

  18. W. T. Wu, The Basic Principle of Mechanical Geometry Theorem Proving, Science Press, Beijing, 1984.

    Google Scholar 

  19. W. T. Wu, Mathematics Mechanization, Science Press-Kluwer Academic Publishers, Beijing-Dordrecht-Boston-London, 2000.

    MATH  Google Scholar 

  20. W. T. Wu, On the foundation of algebraic differential geometry, Syst. Sci. Math Sci., 1989, 2(4): 289–312.

    MATH  Google Scholar 

  21. C. L. Temuer and Y. S. Bai, A new algorithmic theory for determining and classifying classical and non-classical symmetries of partial differential equations, Science China Press, 2010, 4: 331–348.

    Google Scholar 

  22. C. L. Temuer and J. Pang, An algorithm for the complete symmetry classification of differential equations based on Wu’s method, J. Eng. Math, 2010, 66: 181–199.

    Article  MathSciNet  MATH  Google Scholar 

  23. Z. H. Yang and Y. C. Hon, A generalized coth-function method for exact solution of differentialdifference equation, Chaos, Solitons & Fractals, 2007, 33: 1694–1702.

    Article  MathSciNet  MATH  Google Scholar 

  24. M. Toda, Theory of Nonlinear Lattices, Springer-Verlag, Berlin, 1981.

    Book  MATH  Google Scholar 

  25. T. R. Taha, A differential-difference equation for a KdV-MKdV equation, Maths. Comput. in Simul, 1993, 35: 509–512.

    Article  MathSciNet  MATH  Google Scholar 

  26. A. Ramani, B. Grammaticos, and K.M. Tamizhmani, An integrability test for differential-difference systems, Phys. A, 1992, 25: L883–L886.

    Article  MathSciNet  MATH  Google Scholar 

  27. M. J. Ablowitz and J. F. Ladik, A nonlinear difference scheme and inverse scattering, Stud. Appl. Math, 1976, 55: 213–229.

    MathSciNet  Google Scholar 

  28. X. L. Yong, X. Zeng, Z. Y. Zhang, and Y. F. Chen, Symbolic computation of Jacobi elliptic function solutions to nonlinear differential-difference equations, Computers and Mathematics with Applications, 2009, 57: 1107–1114.

    Article  MathSciNet  MATH  Google Scholar 

  29. M. Wadati, Transformation theories for nonlinear discrete systems, Prog. Theor. Phys. Suppl., 1976, 59: 36–63.

    Article  Google Scholar 

  30. R. Hirota and M. Iwao, Time-Discretization of Soliton Equations//SIDE III-symmetries and integrability of difference equations, CRM Proceedings & Lecture Notes, 2000, 25.

  31. D. Baldwin, Ü. Göktas, and W. Hereman, Symbolic computation of hyperbolic tangent solutions for nonlinear differential-difference equations, Comput. Phys. Comm., 2004, 162: 203–217.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiaofeng Zhu.

Additional information

This research was supported by the National Natural Science Foundation of China under Grant Nos. 10771072 and 11071274.

This paper was recommended for publication by Editor Ziming LI.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, J., Liu, Y. Automated derivation of the conservation laws for nonlinear differential-difference equations. J Syst Sci Complex 25, 1234–1248 (2012). https://doi.org/10.1007/s11424-012-9297-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11424-012-9297-z

Key words

Navigation