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Abstract This paper provides an extended input-occupancy-output analysis of wastewater discharge

coefficients, as well as backward and forward linkages of Chinese multi-regional industrial sectors in

2007. The results show that the direct and total industrial wastewater discharge coefficients of most of

the provincial industrial sectors in China’s Eastern region are lower than those of the whole country.

Both backward and forward linkages of fixed-asset occupancy in industrial sectors in China’s Central

and Western regions are strong. The dissimilarity of cross-sectional data of the relevant industrial

wastewater discharge coefficients and linkages in multi-regional input-output analysis becomes bigger

as regions are divided more extensively.

Key words Backward linkage, forward linkage, industrial wastewater discharge, input-occupancy-

output analysis.

1 Introduction

As an integral part of water resources management, wastewater discharge has attracted
worldwide attention. This attention is largely due to the scarcity of freshwater resources and
heightened environmental concerns[1−3]. Meanwhile, economic considerations are also becoming
increasingly important amid the introduction of market-based mechanisms in water resources
management. Discharged wastewater from municipalities and industries has been an additional
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environmental burden to the water supply in many parts of the world, especially in areas
where water resources are scarce but population and economic growth is rapid[4]. The situation
in China is a typical case in point. Today, total Chinese wastewater discharges are increasing
considerably with China’s economic development. From 2000 to 2012, the wastewater discharge
increased from 41.5 billion tons to 68.4 billion tons. Industrial wastewater and domestic sewage
are the main two emitting sources. Though industrial wastewater had less discharge than
domestic sewage from 2000 to 2012, domestic sewage has a large number of organic compounds
which generally do not contain poison, while industrial wastewater has complex constituents and
often contains heavy metals such as arsenic and cadmium that are difficult to degrade. Soil that
has been contaminated by the heavy metals in industrial wastewater discharge is very difficult
to remediate solely by cutting off the pollution source because this type of contamination is not
completely reversible. Because industrial wastewater has many characteristics, such as a wide,
complex variety of constituents, high chemical oxygen demand and toxins, the environment
may be very seriously polluted and destroyed in the absence of effective pollutant reduction
measures[5,6]. In the 20th century, the Minamata disease event and the Itai-itai disease event
in Japan were two of the eight public environmental events in the world that were caused by
pollution from industrial wastewater discharges. The majority of studies thus far have focused
on the technical treatment[7,8] and the forecasting[9−11] of industrial wastewater discharge.
A statement on the Chinese Ministry of Environmental Protection website declares that the
authorities of 30 provinces, autonomous regions and municipalities are required to complete 242
projects on industrial wastewater discharge reduction in 2014[12]. Therefore, seen from both
environmental sustainability protection and public health standpoints, it makes sense to devote
more attention to industrial wastewater discharge than domestic sewage discharge. From 1991
to 2007, Chinese industrial wastewater discharge was not closely related to total industrial
output growth, as shown in Figure 1.

Figure 1 Gross amount of industrial wastewater discharge and total industrial

output value in China from 1991 to 2007 (Tang, et al.[13])

The above graph demonstrates that, by and large, the total industrial output value in China
increased significantly from 1991 to 2007, while the gross amount of industrial wastewater dis-
charge did not rise during the same period. This is an interesting phenomenon, and indicates
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that the direct discharge amount of one output unit declined in China from 1991 to 2007. Ac-
cording to Chinese spatial distribution statistics, Jiangsu, Guangdong and Zhejiang were the
top three discharging provinces of Chinese industrial wastewater in 2007. The discharge pro-
portions for these three provinces in China are 10.9%, 10.0% and 8.2%, respectively. In the last
decade, the environment has become an increasingly prominent global issue whose significance
is perhaps trumped only by its complexity. The study of the environmental pollution issue is
generally understood as the study of an economic structure. Time and again, insight into which
emissions pollute the environment and their impacts has been proven to be of prime impor-
tance to economic analysis and policy. Pollution is a by-product of regular economic activities.
For example, the discharge of polluted water into streams and lakes is directly linked to the
level of output of steel, paper, textile and other water-using industries[14]. The factors affecting
industrial wastewater discharge primarily include the economic scale, economic structure and
level of development of treatment technologies[13,15]. Due to the uneven economic development
that China has experienced, the economic scale, economic structure and level of development of
treatment technologies are different in each province in China[16,17]. At the same time, as men-
tioned previously, industrial wastewater that is a by-product of industrial products does little
to reduce the total discharges during Chinese economic growth. The regional economic differ-
ences in the above-mentioned aspects are often ignored if we only compare provincial industrial
wastewater discharge amounts. Thus, comparing different provincial industrial wastewater dis-
charges per unit of economic output is a reasonable approach in terms of synthesizing economic
and environmental benefits; therefore, taking the discharge coefficient as an evaluation index is
an inevitable consequence. Some important discharge coefficients contribute to recognizing the
key sectors that influence industrial wastewater discharge[18].

From an environmental economics perspective, research methods primarily include input-
output analysis, regression analysis, and so on. The advantage of Input-Output (IO) analysis
is that it can easily reflect the complicated linkages in national economic structure, including
explicit direct linkages and implicit indirect linkages. Input-output analysis can describe and
explain the level of each sector in a given national economy in terms of its relationships to cor-
responding levels of activity in all of the other sectors, and even the spatial patterns of the econ-
omy may be described and explained by a complex multi-regional input-output approach[13].
With the development of globalization, multi-regional economic activities are becoming more
frequent, and polluting events are more likely to occur in multiple regions. Input-output tables
reflect the interdependence between factor inputs and outputs in production.

We have noted that to ensure smooth production, the production process inevitably needs to
take into account other resources, such as the land, water resources, mineral resources, human
capital, and available workshops and equipment. These resources have two characteristics.
Firstly, they are different from raw materials, such as timber, electricity, fertilizer, and so on,
in that they will not be regarded as being consumed in the production process. However,
these resources are slowly consumed during production, meaning that the current input will
not be completely consumed immediately and will be depreciated and lost gradually in the
span of a few years. Secondly, the traditional input-output model, which was defined in an
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input-occupancy-output model set up by Chen in the 1980s[19], ignored occupancies of stocks,
such as the occupancy of the land and factory buildings. All of the elements in the input-
output table deal with economic flow, but economic stocks (such as fixed assets and lands) are
often ignored despite their importance in economic development. Because the normal input-
output model did not include an economic stock section, Chen, et al.[20,21] introduced the
occupancy of economic stock and proposed the Input-Occupancy-Output (IOO) table and the
Input-Occupancy-Output (IOO) model.

There are only economic flow coefficients of all of the sectors in the complicated linkages of
traditional IO analysis, while economic stock coefficients are also introduced in all of the sectors
in the complicated linkages of IOO analysis. Certainly, the IO model is an appropriate mathe-
matical tool for addressing the problem of industrial structure, especially when associated with
environmental protection[13,22]. For Chinese environmental protection problems, characteristics
such as the imports intermediate input, the occupancy and the regional disparity need to be
reflected in the IO analysis. The occupancy is the foundation of input in modern production.
The occupancy includes stocks such as labor force and fixed assets, and the input includes flow
such as investment and export[23]. To improve production levels, more experienced labor forces
and advanced equipment must be applied, meaning that the occupied materials are inflows
for production. The occupancy in the IO model is usually applied to a signal region (such as
the national scale), but the question remains at to how it is applied at the multi-region scale.
Therefore, this paper proposes an extended, multi-regional IOO model to reflect the occupancy
characteristics of Chinese environmental problems on a multi-region scale.

This paper aims to propose an extended, multi-regional IOO model to reflect these charac-
teristics of Chinese environmental problems. In this model, we assume that regional imports
are non-competitive and that regional exports are integrated, that is, different export types are
not differentiated. The remainder of this paper is structured as follows: Relevant literature is
reviewed in Section 2. An extended multi-regional IOO model including fixed assets occupancies
for each sector of the economy and the main data of empirical analysis is proposed in Section 3.
The direct and total discharge coefficients of industrial wastewater, as well as the backward and
forward linkages of industrial sectors’ fixed-asset occupancies, are detailed in Section 4, and in
Section 5, we summarize this paper’s purpose and present our conclusions.

2 Literature Review

Although many studies have been carried out on wastewater issues, including hydrological
and physical studies, studies regarding economic factors as the demand-side driving forces of
water problems are few and far between[24−26]. In addition, the majority of the previous studies
have focused on the application of IO analyses to treatment of wastewater. IO analysis was set
up by Leontief in the 1930s. This analysis extended the interregional IO model and the multi-
regional IO model in the 1950s[27,28]. Because the traditional IO model ignored the occupancies
of stocks (such as the occupancy of the land and factory buildings), an IOO model was set
up by Chen in the 1980s[19]. One of the earliest studies that considered wastewater treatment
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was performed by Victor[29], whose work evaluates the impact of Canadian economic activity
using an IO analysis. With respect to water-related environmental issues, research conducted
by Harris and Rea [30]was based on the use of IO tables to estimate the value of water resources
in the U.S. Duchin developed the framework of the Environmental Input-Output (EIO) model
based on Leontief’s EIO model[31]. Duarte, et al.[32] evaluated the internal effect and the
induced effect of water consumption with an IO analysis in Spain. Velazquez proposed an IO
model of water consumption and applied it to estimate Spain’s consumption[33]. Lin proposed
a hybrid IO model designed to analyze both the generation and treatment of wastewater in the
metropolis of Tokyo[34].

For Chinese environmental protection issues, characteristics such as the imported intermedi-
ate input, the occupancy and the regional disparity have to be reflected in an IO analysis.Ni et
al. studied the local available treatment capacity and investment costs using a multi-objective
analysis model based on an IO table in China[35]. Hubacek and Sun[36] extended the IO ta-
bles to forecast water consumption in China. Okadera, et al.[37] estimated the demand for
water and the water pollution generated in Chongqing using a regional IO table. Guan and
Hubacek[38] considered the discharged wastewater based on the standard IO model. Two im-
portant papers on water IOO analysis were published by Chen, et al., focusing on different river
basins in China[39,40]. In addition to the literature on IOO analysis, the methodological issues
involved in IO technology, such as aggregation issues[41,42], imports assumptions[43], exports
assumptions[44,45], and inter-regional feedback effects[46], have been discussed in recent publica-
tions. Zhang, et al.[47] published a recent water study using China’s provincial data from 2002
and 2007.

Dietzenbacher, et al.[44] was the first study to examine the impacts of separating processing
exports from exports on China’s embodied emissions. Su, et al.[45] measured China’s emissions
embodied in its exports and analyzed the possible impacts of the results using a multi-regional
IO model. By comparing the differences in results between different sectors, Su, et al.[41]

explored sector aggregation issues and concluded that different sector divisions could affect the
accuracy of the results obtained in each sector. The advantages of using the multi-regional IO
data are as follows: 1) To show the results at a detailed regional level and reduce the impacts
of spatial aggregation[42] and 2) to account for inter-regional feedback effects[46]. However, the
aforementioned studies are all based on uniform production structure, which fails to consider
the occupancy of fixed assets.

The current paper, which focuses on Chinese industrial wastewater discharge, is most rel-
evant to two previous papers regarding utilization of China’s water resources[40,47], but there
are some differences between them. Firstly, the paper by Chen, et al.[40] used single regional
IOO data, and the paper by Zhang, et al.[47] used Chinese provincial IO data from 2002 and
2007, which are also single regional IO data. The division of China into nine river basins was
based on natural water systems in the paper by Chen, et al.[40], while the division of China into
four major economic plates (Western, Eastern, Northwestern and Central China) in this paper
is based on the administrative provinces proposed by the Development Research Center of the
State Council. Therefore, this paper applies multi-regional IOO data.
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Secondly, the papers by Chen, et al.[40] and Zhang, et al.[47] focus on water input per unit of
economic output from the perspective of natural resource utilization, while this paper focuses
on industrial wastewater discharge of per unit of economic output from the perspective of
environmental pollution emissions. In addition, the industrial sector obviously has more fixed-
asset occupations, such as machinery and buildings, than other sectors do. Presumably, the
industrial sector has more polluting emissions than other sectors do, and the polluting emissions
caused by the depreciation of these occupations cannot be ignored. Hence, taking industrial
wastewater discharge as an example is representative in environmental IOO analysis.

3 Data and Methodology

3.1 Data

The data in this study were obtained primarily from an IO table of 30 sectors of 30 provinces,
autonomous regions and municipalities in mainland China for the year 2007, which was com-
piled by researchers at the Institute of Geographic Sciences and Natural Resources Research of
the Chinese Academy of Sciences and the National Statistics Bureau of China[48]. In this non-
competitive imports IO table we aggregate the 30 Chinese administrative areas into 4 regions, as
follows: The Eastern region (including Beijing, Tianjin, Hebei, Shandong, Shanghai, Jiangsu,
Zhejiang, Fujian, Guangdong and Hainan), the Central region (including Shanxi, Shaanxi,
Henan, Inner Mongolia, Hubei, Hunan, Jiangxi and Anhui), the Western region (including
Yunnan, Guizhou, Sichuan, Chongqing, Guangxi, Gansu, Qinghai, Ningxia and Xinjiang) and
the Northeastern region (including Liaoning, Jilin and Heilongjiang). Furthermore, we aggre-
gate these 30 administrative areas into one country. By doing so, we obtain three types of
IOO data: Multi-regional IOO data for 30 administrative areas, multi-regional IOO data for 4
regions and single-regional IOO data for the entire country.

We pay more attention to spatial differences in these cross-sectional data. Due to lack of
industrial wastewater discharge data from some provincial-specific industrial branch sectors,
we aggregate the 30 sectors into 6 sectors in all three types of IOO data. These 6 sectors’
numbers and names are depicted as follows: 1, agriculture; 2, industry; 3, construction; 4,
transport and warehousing; 5, wholesale and retail trade; and 6, other social services. The
relevant data regarding Chinese provincial industrial wastewater discharge amounts and fixed-
asset investments are from China Statistic Yearbook 2008[49]. We aggregated China’s fixed-
asset investments in 2006 and 2007 based on China’s fuel ethanol IOO table from 2005[50], and
obtained China’s 6-sector occupancy table in fixed-asset year 2007, in which the sectoral division
is the same as that performed for the aforementioned three types of IOO data. We divided
China’s occupancy table of fixed assets in 2007 into the 30-provincial, 6-sector occupancy table
according to the 6-sector provincial structural proportion of fixed-asset investments in 2007,
and then it was merged and compiled into the above three types of IOO data.
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3.2 Methodology

3.2.1 Direct and Total Industrial Wastewater Discharge Coefficient

To compare different regional industrial wastewater discharge levels, the first step was to
derive the Direct Industrial Wastewater Discharge Coefficient (DIWDC) for single regions and
multi-regions. The DIWDC can be expressed as Equations (1) and (2), respectively:

E = [ej], ej = wj/xj , single − region; (1)

Eq = [eq
j ], eq

j = wq
j/xq

j , multi − region; (2)

where E (or Eq) is the vector of DIWDCs (measured in ton/103 Yuan in this study), ej (or eq
j)

is the DIWDC of sector j (of region q), calculated by dividing wj (or wq
j ), the direct industrial

wastewater discharge amount of sector j by xj (or xq
j), the total output of sector j (in monetary

terms). The IO analysis of the total Industrial Wastewater Discharge Coefficient (IO-TIWDC)
fj (or f q

j ) of a single region (multi-region) indicates the total industrial wastewater discharge
amount in sector j (of region q) throughout the whole production chain, and single-region and
multi-region IO-TIWDCs can be derived from Equations (3) and (4), respectively:

F = [fj], fj = ej + eej = ej +
∑

i

fiaij , single − region; (3)

F q = [f q
j ], f q

j = eq
j + eeq

j = eq
j +

∑

p

∑

i

fp
i apq

ij , multi − region; (4)

F (or F q) is the vector of IO-TIWDCs, fj (or f q
j ) is the IO-TIWDC of sector j (of region q),

which gives the amount of industrial wastewater discharge for the production of one unit of
final demand of sector j (of region q). This does not only include direct discharge ej (or eq

j) but
also includes indirect discharge eej (or eeq

j). The element of direct input to the matrix is aij (or
apq

ij ), which indicates the direct consumption amount of sector i (of region p) required to meet
one unit of total output of sector j (of region q). Equations (3) and (4) reflect the interdepen-
dence between factor inputs and outputs in the production chain, resulting in total industrial
wastewater discharge. However, the calculation of total industrial wastewater discharge does
not include any section resulting from the depreciation of fixed assets. Chen proposed IOO
analysis to correct this omission[20]. For single-region input-output analysis, the IOO-TIWDC
can be expressed as Equation (5):

F̃ = [f̃j ], f̃j = ej +
∑

i

f̃iaij +
∑

i

f̃iridij , single − region; (5)

where F̃ is the new vector of IOO-TIWDCs, is the IOO-TIWDC of sector j, which gives the
amount of industrial wastewater discharge for the production of one unit of final demand of sec-
tor j including the depreciation of fixed-asset occupancy of sector j, and ri is the depreciation
rate of sector i. The variable dij represents the direct fixed-asset occupation amount of sector
i to meet one unit of total output in sector j. When Equations (3) and (5) are compared, is
obviously greater than fj due to the introduction of an additional discharge with the deprecia-
tion of fixed-asset occupancy. IOO analysis is usually applied for single regions, such as at the
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national scale. Similar to the above Equations, multi-regional IOO-TIWDC can be expressed
as Equation (6):

F̃ q = [f̃ q
j ], f̃ q

j = eq
j +

∑

p

∑

i

f̃p
i apq

ij +
∑

p

∑

i

f̃p
i rp

i dpq
ij , multi − region; (6)

Equation (6) indicates multi-regional IOO-TIWDC, including implicit discharge with the
depreciation of fixed-asset occupancy among multiple regions[51]. From the above Equations
(1)–(6), it is clear that DIWDCs turn into IOO-TIWDCs through all sorts of linkages in aij

(or apq
ij ) and dij (or dpq

ij ). In input-output analysis, there are important linkages, including
the backward linkage and the forward linkage, based on the Leontief inverse coefficients[52].
In later literature, some scholars differentiated the backward linkage from the forward linkage.
They proposed that the forward linkage should be based on Ghosh inverse coefficients[23]. The
depreciation of fixed-asset occupancy is important for the IOO-TIWDC, and therefore it must
be included in the industrial linkage expressed as Equations (5) and (6).

3.2.2 Backward Linkage and Forward Linkage of Fixed-asset Occupancy

For n sectors in a single region, the backward linkage and the forward linkage of fixed-asset
occupancy can be expressed as Equation (7)[23]:

BLj =
∑n

i=1

∑n
s=1 disusj

1
n

∑n
i=1

∑n
s=1

∑n
j=1 disusj

; FLi =

∑n
s=1

∑n
j=1 vijdjs

1
n

∑n
i=1

∑n
s=1

∑n
j=1 vijdjs

, single − region; (7)

BLj is called the backward linkage coefficient of fixed-assets in the sector ‘j’, that is to say,
the extent of all the sectors’ fixed-asset demands caused by an additional unit of final product in
the sector ‘j’. uij is the Leontief inverse matrix coefficient, and FLi is called the forward linkage
coefficient of fixed assets in the sector ‘i’, that is to say, the extent of all the sectors’ fixed-asset
supply caused by an additional unit of primary input in the sector ‘i’. vij is the Ghosh inverse
matrix coefficient. A value of BLj > 1 indicates that a unit change in final demand in sector
j would create an above-average increase in activity in the economy; similarly, if FLi > 1, it
indicates that a unit change in all sectors’ primary input would create an above-average increase
in sector i. When multiple regions are considered, supposing that there are m regions and each
region has n sectors, the backward linkage and the forward linkage of fixed-asset occupancy are
classified for single-regions and inter-regions. They are expressed as follows:

BLz
j =

∑m
t=1

∑m
k=1

∑n
i=1

∑n
s=1 dtk

isukz
sj

1
m×n

∑m
z=1

∑n
j=1

∑m
t=1

∑m
k=1

∑n
i=1

∑n
s=1 dtk

isukz
sj

;

(8)

FLt
i =

∑m
k=1

∑m
z=1

∑n
s=1

∑n
j=1 vtk

ij dkz
js

1
m×n

∑m
z=1

∑n
i=1

∑m
k=1

∑m
t=1

∑n
s=1

∑n
j=1 vtk

ij dkz
js

, single − region; (9)
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and

BL
tz(t�=z)
j =

∑m
k=1

∑n
i=1

∑n
s=1 dtk

isukz
sj

1
n

∑n
j=1

∑m
k=1

∑n
i=1

∑n
s=1 dtk

isukz
sj

;

(10)

FL
tz(t�=z)
i =

∑m
k=1

∑n
s=1

∑n
j=1 vtk

ij dkz
js

1
n

∑n
i=1

∑m
k=1

∑n
s=1

∑n
j=1 vtk

ij dkz
js

, inter − region; (11)

Here BLz
j represents the extent of all the sectors’ fixed-asset demands in all of the regions

caused by an additional unit of final product in the sector ‘j’ in region ‘z’, called the backward
linkage coefficient of fixed assets in the sector ‘j’ in region ‘z’. In addition, FLt

i means the
extent of all the sectors’ fixed-asset supplies in all of the regions caused by an additional unit
of primary input product in the sector ‘i’ in region ‘t’, called the forward linkage coefficient
of fixed assets of the sector ‘i’ in region ‘t’. If BLz

j > 1, the backward linkage of fixed assets
in sector ‘j’ in region ‘z’ is strong, otherwise it is weak. In addition, if FLt

i > 1, the forward
linkage of fixed assets in sector ‘i’ in region ‘t’ is strong, otherwise it is weak. BLtz

j represents
the extent of all the sectors’ fixed-asset demands in region ‘t’ caused by an additional unit of
final product in the sector ‘j’ in region ‘z’, called the backward linkage coefficient of fixed assets
between region ‘t’ and region ‘z’. The variable FLtz

i indicates the extent of all the sectors’
fixed-asset supplies in region ‘z’ caused by an additional unit of primary input product in the
sector ‘i’ in region ‘t’, called the forward linkage coefficient of fixed assets between region ‘z’
and region ‘t’. If BLtz

j > 1, the backward linkage of fixed assets in region ‘t’ resulting from
sector ‘j’ of region ‘z’ is strong, otherwise it is weak. If FLtz

i > 1, the forward linkage of sector
‘i’ in region ‘t’ resulting in fixed assets in region ‘z’ is strong, otherwise it is weak.

3.2.3 The Dissimilarity of Coefficients and Linkages

The dissimilarity of the same type of coefficients and linkages for the different regional
classification levels presents the regional differences. There are more similarities for these regions
if they have fewer regional differences. Uniform policy-making or divergent policy-making in
many regions must be based on whether there are large regional differences. The coefficient
of variation and the Gini coefficient are used to measure the dissimilarity between different
regions. They are expressed as follows, respectively:

C =
S

V
, (12)

where C is the coefficient of variation, S is the standard deviation of samples, and V is the
mean of the samples. If C is large, the dissimilarity is also large. Likewise, if C is small, the
dissimilarity is small. The latter can be written as:

G =

∑n
i=1

∑n
j=1 |yj − yi|

2n
∑n

i=1 yi
, (13)

where G is the Gini coefficient, yi is the observation of samples, and n is number of samples. If
G is large, the dissimilarity is also large, and the opposite is also true.
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4 Results

4.1 Wastewater Discharge Coefficients of Chinese Multi-regional Industrial Sec-
tors

The three types of IOO data show (Figure 2) that the DIWDC of the industrial sector of
China was 0.51 ton/103 Yuan in 2007. The DIWDCs of the industrial sector in the Eastern
region, Central region, Western region and Northeastern region were 0.39, 0.65, 1.14 and 0.49
ton/103 Yuan in 2007, respectively. The DIWDCs of the industrial sectors in both the Central
region and Western region were higher than that of the whole country, while the situation for
the Eastern region and Northeastern region was just the opposite. In the Eastern region, the
DIWDCs in the industrial sectors of Fujian (0.91 ton/103 Yuan) and Hainan (0.52 ton/103

Yuan) were higher than that of the whole country; in the Central region, the DIWDCs of the
industrial sectors of Shaanxi (0.71 ton/103 Yuan), Hubei (0.80 ton/103 Yuan), Hunan (0.96
ton/103 Yuan), Jiangxi (0.89 ton/103 Yuan) and Anhui (0.75 ton/103 Yuan) were higher than
that of the whole country; in the Western region, the DIWDCs of the industrial sectors of
Yunnan (0.73 ton/103 Yuan), Sichuan (0.94 ton/103 Yuan), Chongqing (1.12 ton/103 Yuan),
Guangxi (2.71 ton/103 Yuan), Qinghai (0.77 ton/103 Yuan), Ningxia (1.66 ton/103 Yuan)
and Xinjiang (0.56 ton/103 Yuan) were higher than that of the whole country; and in the
Northeastern region, the DIWDCs of the industrial sectors of Jilin (0.56 ton/103 Yuan) were
higher than that of the whole country.

Because of no industrial linkage and spatial association involved, the DIWDCs of the in-
dustrial sectors of Chinese provinces only depended on two variables, the direct industrial
wastewater discharge amount and the total output of the sector. Though the total discharge
amount in the Eastern region was much more than that of any of the other three regions, it was
the total industrial output value that was much greater than in any of the other three regions.
This means that the discharge amount per unit of gross industrial output value is lower for the
Eastern region. To be specific, the proportion of industrial wastewater discharge in the Eastern
region amounts to 49.8% of the value for whole country, which is 2.1 times that of the Central
region, 2.6 times that of the Western region and 7.1 times that of the Northeastern region.
By contrast, the proportion of the total output of the industrial sector in the Eastern region
amounts to 65.4% of the value for the whole country, which is 3.5 times that of the Central
region, 7.5 times that of the Western region and 9.1 times that of the Northeastern region.
The provinces with high DIWDCs should focus on upgrading production technology to reduce
direct industrial wastewater discharge.

When industrial linkages and spatial associations for the total discharge amount of a single
region is considered, the indirect discharge amounts resulting from other sectors and other
regions should be considered as well. Thus, it is necessary to calculate TIWDCs using IO
analysis or IOO analysis.
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Figure 2 The DIWDCs of the industrial sectors of Chinese provinces (Unit: ton/103 Yuan)

Figure 3 The IO-TIWDCs of the industrial sectors of Chinese provinces (Unit: ton/103 Yuan)

When traditional IO analysis was used (Figure 3), the IO-TIWDCs of the industrial sector
in the Central region (1.29 ton/103 Yuan) and the Western region (2.07 ton/103 Yuan) were also
both higher than that of the whole country (1.08 ton/103 Yuan). Furthermore, Hunan (1.81
ton/103 Yuan), Jiangxi (1.75 ton/103 Yuan) and Hubei (1.45 ton/103 Yuan) were the top three
provincial regions with respect to IO-TIWDCs in the industrial sector of the Central region,
and Guangxi (4.62 ton/103 Yuan), Ningxia (2.83 ton/103 Yuan) and Chongqing (2.31 ton/103

Yuan) were the top three provincial regions with respect to IO-TIWDCs in the industrial sector
of the Western region. The orders of the IO-TIWDCs for the top three provincial regions were
identical to that of the DIWDCs in both the Central region and Western region. As for the
Eastern region, Beijing (0.35 ton/103 Yuan) was ranked as the lowest, and Heilongjiang (1.15
ton/103 Yuan) was ranked as the lowest in the Northeastern region.

As for the IOO analysis of the TIWDC with fixed-asset occupancy, the IOO-TIWDCs were
higher than the IO-TIWDCs for the industrial sectors in all of the provinces (Figure 4). In the
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four regions of China, only the IOO-TIWDC of industrial sector in the Eastern region (1.00
ton/103 Yuan) was lower than that of the whole country (1.20 ton/103 Yuan). The empirical
results reveal that, if the IO-TIWDC in one regional industrial sector is higher than that of the
whole country, the same is also true for its IOO-TIWDC.

Figure 4 The IOO-TIWDCs of the industrial sectors of Chinese provinces (Unit: ton/103 Yuan)

Similar to the provincial IO-TIWDC in the Eastern region, which exceeded that of the whole
country, IOO-TIWDCs in Fujian (1.86 ton/103 Yuan), Zhejiang (1.26 ton/103 Yuan) and Hebei
(1.23 ton/103 Yuan) industrial sectors were all higher than that of the whole country. In the
Central region, only IOO-TIWDCs in the Inner Mongolia (0.77 ton/103 Yuan), Shanxi (1.06
ton/103 Yuan) and Henan (1.19 ton/103 Yuan) industrial sectors were lower than that of the
whole country. In addition, only the Guizhou (0.98 ton/103 Yuan) and Xinjiang (1.19 ton/103

Yuan) industrial sectors in the Western region had IOO-TIWDCs that were lower than that of
the whole country, as with Heilongjiang (1.11 ton/103 Yuan) in the Northeastern region.

Figure 5 The ratio of DIWDC to IOO-TIWDCs in industrial sectors of Chinese provinces (Unit: %)
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When regional DIWDCs and their respective IOO-TIWDCs were compared in the four
Chinese regions, the ratio of DIWDC to IOO-TIWDC in the Eastern region is the lowest
(38.6%), followed by the Northeastern region (40.6%), Central region (44.8%), and Western
region (47.5%). Obviously, this type of ratio is much lower, meaning that this regional in-
dustrial sector had a much closer linkage with other sectors and other regions, resulting in
higher amounts of indirect industrial wastewater discharge. In the Eastern region (Figure 5),
Beijing (23.2%), Shanghai (33.1%), Tianjin (30.2%), Shandong (32.0%), Zhejiang (37.6%) and
Hebei (38.5%) had lower ratios than that of the Eastern region, meaning that these provincial
industrial linkages and spatial associations were stronger. Hainan had a higher DIWDC but
a lower IOO-TIWDC, indicating that Hainan had weaker industrial linkages and spatial as-
sociations than the other provinces, while Beijing had stronger industrial linkages and spatial
associations than the other provinces. Similarly, Shanxi (41.7%) had stronger industrial link-
ages and spatial associations than the other provinces in the Central region, Gansu (31.1%) had
stronger industrial linkages and spatial associations than the other provinces in the Western
region and Liaoning (40.4%) had stronger industrial linkages and spatial associations than the
other provinces in the Northeastern region. In the provinces that have strong industrial linkages
and spatial associations focus should be placed on related provincial high discharge sectors to
reduce indirect industrial wastewater discharge. However, the industrial linkages and spatial
associations resulting from fixed-asset occupancy in the industrial sectors are not as simple
as those in single regions because they include inter-regional backward linkages and forward
linkages. These linkages will be touched upon in the following subsections.

4.2 Multi-Regional Backward Linkage and Forward Linkage of Fixed-Asset Occu-
pancy in Industrial Sectors

According to Equation (8), single-regional backward (and forward) linkages of fixed-asset
occupancy in the industrial sectors of China, the Eastern region, the Central region, the Western
region and the Northeastern region are 0.94 (and 0.97), 0.72 (and 0.68), 1.01 (and 1.11), 1.29
(and 1.41) and 0.98 (and 1.17), respectively. As for provincial regional backward (and forward)
linkages of fixed-asset occupancy in the industrial sectors, only 9 provinces had single-regional
backward and forward linkages that were both larger than 1. They are Shandong 1.81 (and 1.90),
Inner Mongolia 1.09 (and 1.36), Shaanxi 1.16 (and 1.44), Anhui 1.95 (and 2.07), Chongqing
1.14 (and 1.17), Gansu 4.04 (and 4.51), Qinghai 1.78 (and 2.20), Xinjiang 1.21 (and 2.16) and
Jilin 1.04 (and 1.24). Most of the 9 provincial regions are located in the Chinese Central region
and the Western region.

The results of Equation (9) represent the inter-regional backward and forward linkages of
fixed-asset occupancy in the Chinese industrial sectors in the Eastern region, Central region,
Western region and Northeastern region and are shown in table 1. Regardless of inter-regional
backward or forward linkages, the Eastern region shows strong linkages with the other three of
China’s four regions. For example, the Eastern region-Central region bilateral regional backward
and forward linkages are 1.23 and 1.40, respectively, and the Central region-Eastern region inter-
regional backward and forward linkages are 1.36 and 1.58, respectively. The case was the same
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for the bilateral regional linkages with the other two regions. The results were the same for the
bilateral regional linkages in the Central region and Northeastern region. These results show
that the Eastern region has close economic relationships with the Central region, Western region
and Northeastern region. In fact, most provinces in the Eastern region are more developed than
those in the other three regions. Additionally, most of the Central and Northeastern provincial
regions have high industrial proportions, thus reinforcing their bilateral regional linkages.

Table 1 The backward and forward linkages of fixed-asset occupancy

in the inter-regional industrial sectors

The backward linkage Status The forward linkage Status

Eastern region-Central region 1.23 > 1 strong 1.40 > 1 strong

Eastern region-Western region 1.11 > 1 strong 1.44 > 1 strong

Eastern region-Northeast region 1.15 > 1 strong 1.66 > 1 strong

Central region-Eastern region 1.36 > 1 strong 1.58 > 1 strong

Central region-Western region 1.15 > 1 strong 0.96 < 1 weak

Central region-Northeast region 1.20 > 1 strong 1.79 > 1 strong

Western region-Eastern region 1.35 > 1 strong 1.69 > 1 strong

Western region-Central region 1.22 > 1 strong 1.50 > 1 strong

Western region-Northeast region 1.06 > 1 strong 1.67 > 1 strong

Northeast region-Eastern region 1.14 > 1 strong 1.71 > 1 strong

Northeast region-Central region 1.19 > 1 strong 1.76 > 1 strong

Northeast region-Western region 0.95 < 1 weak 1.79 > 1 strong

4.3 The Dissimilarity of Coefficients and Linkages of Different Levels of Regional
Classification

This study focuses on multi-regional DIWDC, IO-TIWDC, and IOO-TIWDC in China and
their single-regional backward and single-regional forward linkages of fixed-asset occupancy in
a single region, 4 regions and 30 regions based on the aforementioned three types of IOO data.
Different spatial aggregation effects are based on different levels of regional classification[42], but
DIWDC, IO-TIWDC, IOO-TIWDC, Single-Regional Backward Linkage (SRBL) and Single-
Regional Forward Linkage (SRFL) are relative ratio values, and cannot be added directly.
These three different classifications of the regional sectors are 6 fixed sectors, and the whole
characters of these relative ratio values are expressed in Table 2 based on Equations (10) and
(11).
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Table 2 The dissimilarity of coefficients and linkages of different levels of regional classification

Different region Total sector’s number Coefficient of variation Gini coefficient

DIWDC 1 region 6 2.4495 0.8333

4 regions 24 2.5249 0.8709

30 regions 180 2.8687 0.8892

IO-TIWDC 1 region 6 0.7101 0.3398

4 regions 24 0.7723 0.3714

30 regions 180 0.9584 0.4217

IOO-TIWDC 1 region 6 0.5737 0.2825

4 regions 24 0.6510 0.3201

30 regions 180 0.8013 0.3716

SRBL 1 region 6 0.3445 0.1693

4 regions 24 0.3642 0.2007

30 regions 180 0.8659 0.3454

SRFL 1 region 6 0.4970 0.2411

4 regions 24 0.5053 0.2784

30 regions 180 0.9422 0.4195

In Table 2, we can see that the dissimilarity of the three different levels of regional DIWDCs,
IO-TIWDCs, IOO-TIWDCs and their SRBLs and SRFLs, whether coefficients of variation or
Gini coefficients, became larger with the addition of more regions. Though this conclusion is
based on an empirical analysis calculation, the result indicates that additional cross-sectional
data would likely appear with additional regions. More of a region’s own characteristics re-
garding industrial wastewater discharge and fixed-asset occupancy would be reflected through
these cross-sectional data when a single region is divided into more specific regions, thus the
dissimilarity of the relevant coefficients and linkages in the multi-regional IOO analysis would
become larger. Therefore, when more regions are included in the multi-regional IOO analy-
sis, additional different targeted policy suggestions would be provided which are based on the
dissimilarity of the cross-sectional data.

5 Conclusions

Traditional IO analysis primarily examines economic flow. Professor Chen introduced oc-
cupancy of economic stock to IO analysis and proposed an IOO analysis in the 1980s, but
IOO analysis focuses on a single region for a long time. This paper took Chinese industrial
wastewater discharge as an example and completed IOO analysis in multiple regions. Then,
the DIWDCs, IO-TIWDCs, IOO-TIWDCs, and backward and forward linkages of fixed-asset
occupancy were calculated for industrial sectors in a single region, 4 regions and 30 regions of
China using data from 2007.
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The main objectives of this study were: (i) To develop multi-regional IOO theories and
methods based on single-region IOO theories and methods, and (ii) to show the pattern of
industrial wastewater discharge coefficients of Chinese provincial industrial sectors and their
implicit industrial linkages and spatial associations in 2007. In addition to considering industrial
linkages and spatial associations for single regional discharge reductions, additional regions
with more regional dissimilarities must be considered to develop suitable policies for regional
sustainable development, which must reject a “one size fits all” approach. Environmental
pollution is not only related to economic flow, including one-time raw material inputs, but is also
related to economic stocks including gradual inputs that degrade over time, such as occupancy of
fixed-assets. We have carried out a multi-regional IOO analysis of Chinese industrial wastewater
discharge based on the theoretical integration of an environmental protection IO model, a multi-
regional IO model, and a non-competitive imports IO model, which help calculate industrial
wastewater discharge accurately.

The results obtained (DIWDCs, IO-TIWDCs and IOO-TIWDCs) from multi-regional Chi-
nese industrial sectors indicate that most of the Eastern regional provincial industrial sectors
have lower DIWDCs, IO-TIWDCs, IOO-TIWDCs than the countrywide industrial sector did
in 2007. The high DIWDCs, IO-TIWDCs and IOO-TIWDCs mainly arose in the Central and
Western regional provincial industrial sectors. Furthermore, the Chinese provincial industrial
sector that had the highest or lowest DIWDCs in all four regions showed similar trends in
IO-TIWDCs and IOO-TIWDCs in the four regions. IOO-TIWDC was higher than IO-TIWDC
due to introduced depreciation of fixed-asset occupancy.

We further investigated the backward and forward linkages of fixed-asset occupancy in indus-
trial sectors in multiple regions. Strong single-regional backward linkages and forward linkages
of fixed-asset occupancy in industrial sectors mainly occurred in the Central and Western re-
gions. Strong inter-regional backward and forward linkages of fixed-asset occupancy in the
industrial sectors were observed, as well as bilateral regional linkages between the Eastern re-
gion and the other three regions, similar to the observed Central-Northeastern regional bilateral
linkages. Because this study is based on a Chinese multi-regional input-output table, more dis-
similarity in these cross-sectional data (including coefficients and linkages) would emerge if the
regions were divided more in the IO analysis. Therefore, if specific, targeted policy suggestions
must be provided, specific divided regions should be used in the multi-region IO analysis.

We proposed an extended multi-regional IOO method and applied it to measure Chinese
industrial wastewater discharge in 2007. This method has obvious advantages over traditional
IO models, and could potentially deal with multi-regional occupancy problems. However, there
was only the supporting data of fixed-asset occupancy in our empirical work, and additional
data, such as land occupancy in different regions and sectors, was lacking. We believe that
our research method can be used by analysts who wish to study regional industrial wastewater
discharge more accurately. Our hope is that, with increasing use of multi-regional IOO analysis
as conducted in this article, some occupancy problems, such as education occupancy, land
occupancy, mineral occupancy, and so on, will be given further attention.
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