Skip to main content
Log in

Modeling and finite-time tracking control for mobile manipulators with affine and holonomic constraints

  • Published:
Journal of Systems Science and Complexity Aims and scope Submit manuscript

Abstract

This paper focuses on the problem of modeling and finite-time tracking control for mobile manipulators with affine and holonomic constraints. A reduced dynamic model is obtained by appropriately processing affine and holonomic constraints, respectively. Then finite-time tracking controllers are designed to ensure that output tracking errors of closed-loop system converge to zero in finite time while the constraint force remains bounded. Finally, detailed simulation results are provided to confirm the effectiveness of the control strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yang J, Li S H, and Yu X H, Sliding-mode control for systems with mismatched uncertainties via a disturbance observer, IEEE Transactions on Industrial Electronics, 2013, 60(1): 160–169.

    Article  Google Scholar 

  2. Zhang B L, Han Q L, and Zhang X M, Sliding mode control with mixed current and delayed states for offshore steel jacket platforms, IEEE Transactions on Control Systems Technology, 2014, 22(5): 1769–1783.

    Article  Google Scholar 

  3. Liu R J and Li S H, Optimal integral sliding mode control scheme based on pseudo spectral method for robotic manipulators, International Journal of Control, 2014, 87(6): 1131–1140.

    Article  MathSciNet  MATH  Google Scholar 

  4. Liu R J and Li S H, Suboptimal integral sliding mode controller design for a class of affine systems, Journal of Optimization Theory and Applications, 2014, 161(3): 877–904.

    Article  MathSciNet  MATH  Google Scholar 

  5. Man Z H and Yu X H, Terminal sliding mode control of MIMO linear systems, IEEE Transactions on Circuits and Systems Circuits and Systems I: Fundamental Theory and Applications, 1997, 44(11): 1065–1070.

    Article  MathSciNet  Google Scholar 

  6. Wu Y Q, Yu X H, and Man Z H, Terminal sliding mode control design for uncertain dynamic systems, Systems and Control Letters, 1998, 34(5): 281–287.

    Article  MathSciNet  MATH  Google Scholar 

  7. Wu Y Q, Wang B, and Zong G D, Finite-time tracking controller design for nonholonomic systems with extended chained form, IEEE Transactions on Circuits and Systems II: Express Briefs, 2005, 50(11): 798–802.

    Google Scholar 

  8. Xiao L and Zhang Y N, A new performance index for the repetitive motion of mobile manipulators, IEEE Transactions on Cybernetics, 2014, 44(2): 280–292.

    Article  Google Scholar 

  9. Kang Y, Li Z J, and Dong Y F, Markovian-based fault-tolerant control for wheeled mobile manipulators, IEEE Transactions on Control Systems Technology, 2012, 20(1): 266–276.

    Google Scholar 

  10. Wang X Y, Sun X J, Li S H, et al., Output feedback domination approach for finite-time force control of an electrohydraulic actuator, IET Control Theory and Application, 2012, 6(7): 921–934.

    Article  MathSciNet  Google Scholar 

  11. Galicki M, Finite-time control of robotic manipulators, Automatica, 2015, 51(1): 49–54.

    Article  MathSciNet  MATH  Google Scholar 

  12. Dong W J, On trajectory and force tracking control of constrained mobile manipulators with parameter uncertainty, Automatica, 2002, 38(9): 1475–1484.

    Article  MathSciNet  MATH  Google Scholar 

  13. Li Z J, Ge S S, and Ming A G, Adaptive robust motion/force control of holonomic-constrained nonholonomic mobile manipulators, IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2007, 37(3): 607–616.

    Article  Google Scholar 

  14. Li Z J, Ge S S, and Adams M, Adaptive robust output-feedback motion/force control of electrically driven nonholonomic mobile manipulators, IEEE Transactions on Control Systems Technology, 2008, 16(6): 1308–1315.

    Article  Google Scholar 

  15. Li Z J, Ge S S, Adams M, et al., Robust adaptive control of uncertain force/motion constrained nonholonomic mobile manipulators, Automatica, 2008, 44(3): 776–784.

    Article  MathSciNet  Google Scholar 

  16. Lin S and Goldenberg A A, Neural-network control of mobile manipulators, IEEE Transactions on Neural Networks, 2001, 12(5): 1121–1133.

    Article  Google Scholar 

  17. Kai T, Kimura H, and Hara S, Nonlinear control analysis on nonholonomic dynamic systems with affine constraints, 44th IEEE Conference on Decision and Control, 2005, 1459–1464.

    Google Scholar 

  18. Kai T, Mathematical modelling and theoretical analysis of nonholonomic kinematic systems with a class of rheonomous affine constraints, Applied Mathematical Modelling, 2012, 36(7): 3189–3200.

    Article  MathSciNet  MATH  Google Scholar 

  19. Nersesov S G, Nataraj C, and Avis J M, Design of finite-time stabilizing controllers for nonlinear dynamical systems, International Journal of Robust and Nonlinear Control, 2009, 19(8): 900–918.

    Article  MathSciNet  MATH  Google Scholar 

  20. Ghasemi M, Nersesovn S, and Clayton G, Finite-time tracking using sliding mode control, Journal of the Franklin Institute, 2014, 351(5): 2966–2990.

    Article  MathSciNet  Google Scholar 

  21. Nersesova S G and Haddad W M, Finite-time stabilization of nonlinear impulsive dynamical systems, Nonlinear Analysis: Hybrid Systems, 2008, 2(3): 832–845.

    MathSciNet  Google Scholar 

  22. Sun W and Wu Y Q, Adaptive motion/force tracking control for a class of mobile manipulators, Asian Journal of Control, 2014, 17(6): 2409–2416.

    Article  MathSciNet  Google Scholar 

  23. Mcclamroch N H and Wang D, Feedback stabilization and tracking of constrained robots, IEEE Transactions on Automatic Control, 1988, 33(5): 419–426.

    Article  MathSciNet  MATH  Google Scholar 

  24. Su C Y and Stepanenko Y, Robust motion/force control of mechanical systems with classical nonholonomic constraints, IEEE Transactions on Automatic Control, 1994, 39(3): 609–614.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Sun.

Additional information

This work was supported by the National Natural Science Foundation of China under Grant Nos. 61273091 and 61573177, and the Project of Taishan Scholar of Shandong Province.

This paper was recommended for publication by Editor JIANG Zhongping.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, W., Wu, Y. Modeling and finite-time tracking control for mobile manipulators with affine and holonomic constraints. J Syst Sci Complex 29, 589–601 (2016). https://doi.org/10.1007/s11424-016-4183-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11424-016-4183-8

Keywords

Navigation