
ar
X

iv
:1

50
3.

04
38

0v
1

 [
cs

.S
C

]
 1

5
M

ar
 2

01
5

A Triangular Decomposition Algorithm for Differential

Polynomial Systems with Elementary Computation

Complexity

Wei Zhu and Xiao-Shan Gao

KLMM, Academy of Mathematics and Systems Science

Chinese Academy of Sciences, Beijing 100190, China

Abstract

In this paper, a new triangular decomposition algorithm is proposed for ordinary differ-
ential polynomial systems, which has triple exponential computational complexity. The
key idea is to eliminate one algebraic variable from a set of polynomials in one step using
the theory of multivariate resultant. This seems to be the first differential triangular
decomposition algorithm with elementary computation complexity.

Keywords. Triangular decomposition, regular triangular set, saturated triangular set,
differential polynomial system.

1 Introduction

A basic problem in computer algebra is to properly represent the solutions for a set of
algebraic or differential equations and the triangular set is one of the basic ways to do that.
Let f1 . . . , fs be polynomials in variables x1, . . . , xn. Then it is possible to compute triangular
sets T1, . . . ,Tr such that

Zero(f1 . . . , fs) = ∪ri=1Zero(sat(Ti))

where sat(Ti) is the saturation ideal to be defined in section 2 of this paper. Since each Ti is
in triangular form, many properties of its solution set can be easily deduced. Triangular de-
compositions also lead to many important applications such as automated theorem proving,
kinematic analysis of robotics, computer vision, stability analysis of molecular systems, etc.

The concept of triangular set was introduced by Ritt [16] in the 1950s and was revived in
the 1980s by Wu [20] in his work of automated geometry theorem proving. One of the major
advantage of the triangular decomposition method is that it can be used to give complete
methods for the radical ideal membership problem of differential and difference polynomial
ideals, while the well known Gröbner basis method does not suit for this purpose. By now,
various kinds of triangular decomposition algorithms have been proposed for polynomial
systems [1, 17, 18, 20], differential polynomial systems [2, 3, 5, 13, 19], difference polynomial
systems [9], polynomial systems over finite fields [8, 12, 15], and semi-algebraic sets [4].

The computational complexity analysis for triangular decomposition algorithms is quite
difficult and only very limited results are known. For polynomial systems, Gallo and Mishra
gave a single exponential algorithm to compute the characteristic set for a finitely gener-
ated ideal [6] and Szanto gave a randomized single exponential algorithm to compute the

1

http://arxiv.org/abs/1503.04380v1

triangular decomposition [17]. The complexity analysis of the commonly used triangular
decomposition algorithms is not given yet. However, it is shown that if solutions in Z2

are considered, then the commonly used triangular decomposition algorithm can be made
single exponential and practically very efficient [8]. For differential polynomial systems,
it is generally believed that the commonly used triangular decomposition algorithms have
non-elementary computational complexity [10].

In this paper, new triangular decomposition algorithms are proposed for polynomial
and differential polynomial systems. The key idea is to eliminate one algebraic variable
from a set of polynomials in one step using the theory of multivariate resultant. This
method was introduced by Yu Grigor’ev to give a quantifier elimination algorithm with
nice computational complexity [11]. In this paper, by adapting this elimination method, we
give triangular decomposition algorithms for polynomial and ordinary differential polynomial
systems. In the case of polynomial systems, the algorithm gives an unmixed decomposition
and has double exponential complexity. In the case of differential polynomial systems, the
algorithm gives an unmixed radical decomposition and has triple exponential complexity.
This seems to be the first differential triangular decomposition algorithm with elementary
computation complexity.

The rest of this paper is organized as follows. In Section 2, we give a new triangular
decomposition algorithm for polynomial systems. In Section 3, we give a new triangular de-
composition algorithm for ordinary differential polynomial systems. In Section 4, a summary
is given.

2 Decomposition of algebraic polynomial system

In this section, we give an algorithm which for given polynomials h1, . . . , hk ∈ K[x1, . . . , xn],
gives the decomposition Zero(h1, . . . , hk) = ∪qZero(sat(Aq)), whereAq is a regular triangular
set for each q. Furthermore, the computational complexity of the algorithm is given.

2.1 Basic definition and property

Let K be a field of characteristic 0, and x1 < x2 < . . . < xn ordered variables. For every
i ∈ {1, . . . , n}, we define Ki = K[x1, . . . , xi] to be the ring of multivariate polynomials in the
variables x1, . . . , xi with coefficients in K. We write deg(f, xi) for the degree of f in xi, and
degxi1 ,xi2 ,...,xit

(f) for the degree of f as the multivariate polynomial in xi1 , xi2 , . . . , xit . We

call the leading variable of f , denoted by lv(f), the greatest variable v ∈ {x1, . . . , xn} such
that deg(f, v) > 0.

Assuming lv(f) = xi, we call i the class of f , denoted by cls(f). Regarding f as a
univariate polynomial in Ki−1[xi], we can write f = cxdi + r. We call d = deg(f, xi) the
leading degree of f , denoted by ldeg(f), and c the initial of f , denoted by ini(f) or If .

For Let P be a polynomial set and D a polynomial in Kn. For an algebraic closed
extension field E of K, let

Zero(P/D) = {η ∈ E
n | ∀P ∈ P, P (η) = 0 ∧D(η) 6= 0}.

A subset T of Kn is called a triangular set if no element of T lies in K and for P,Q ∈ T
with P 6= Q we have lv(P) 6= lv(Q).

Let T = {T1, . . . , Tr} be a triangular set. We always assume lv(T1) < lv(T2) < · · · <
lv(Tr). We can rename the variables as u1, . . . , uq, y1, . . . , yr such that q+r = n and lv(Ti) =

2

yi. ThenT has the following form:

T =

T1(u1, . . . , uq, y1)
T2(u1, . . . , uq, y1, y2)
. . .
Tr(u1, . . . , uq, y1, . . . , yr)

(1)

We call u = {u1, . . . , uq} the parameter set of T , and write IT = IT1 . . . ITr . For a triangular
set T , the saturation ideal of T is defined to be

sat(T) = {f ∈ Kn | ∃d ∈ N
+, s.t. IdT f ∈ (T)}

where (T) is the ideal generated by T .
A triangular set T = [T1, . . . , Tr] of form (1) is called regular, if for each 1 ≤ i ≤ r,

(T1, . . . , Ti−1, ini(Ti))
⋂

K[u] 6= {0} where (T1, . . . , Ti−1, ini(Ti)) is the ideal generated by
T1, . . . , Ti−1, ini(Ti) and u is the parameter set of T .

Lemma 2.1 [7] For a triangular set T , we have:

√
sat(T) =

t⋂

i=1

sat(Ti)

where Ti are regular triangular sets having the same parameter set as T , and sat(Ti) is a
prime ideal. That is, sat(T) is an unmixed ideal.

Lemma 2.2 Let T = {T1, . . . , Tr} be a regular triangular set, u its parameter set, yi the
leading variable of Ti, P a polynomial in K[u, y1, . . . , yr]. Then (P,T)

⋂
K[u] 6= {0} if P is

not identically zero on all irreducible components of Zero(sat(T))

Proof: According to Lemma 2.1,
√

sat(T) =
t⋂
i=1

sat(Gi). Since P is not identically zero on

all irreducible component of Zero(sat(T)), we have P /∈ sat(Gi) for each i. Since sat(Gi) is
prime, so (P,Gi)

⋂
K(u) 6= {0} for each i. Suppose that Gi = (Gi,1, . . . , Gi,r) , then we have

the following equalities:

S1,1G1,1 + · · · + S1,rG1,r = A1P + h1(u)

S2,1G2,1 + · · · + S2,rG2,r = A2P + h2(u)

· · ·

St,1Gt,1 + · · ·+ St,rGt,r = AtP + ht(u).

Multiply all the equalities. Since the left hand side of the i-th equality belongs to sat(Gi),
the product of them belongs to

√
sat(T). The product of the right hand side is of the form

AP + h for h = h1h2 · · · ht. Then we have h ∈ (P,
√

sat(T))
⋂

K[u] 6= {0}. Therefore,
there exists an integer d1 such that (h)d1 ∈ (f, sat(T)). There exists an integer d2 s.t.
(ini(T1) . . . ini(Tr))

d2(h)d1 ∈ (P,T). Since T is regular, we have (ini(Ti),T)
⋂

K[u] 6= {0},
and then the following equality

(ini(T1) . . . ini(Tr))
d2F0 = g(u) + F1T1 + . . .+ FrTr

where g 6= 0 and g ∈ K[u]. Hence, (h)d1g ∈ (P,T) and (P,T)
⋂

K[u] 6= {0}. �

As a consequence of Lemma 2.2, we have:

3

Corollary 2.3 A triangular set T = {T1, . . . , Tr} is regular if for each 2 ≤ i ≤ r, ini(Ti) is
not identically zero on all irreducible components of sat(T1, . . . , Ti−1).

Lemma 2.4 Let T = {T1, . . . , Tr} be a regular triangular set with parameter set u. If
M ∈ K[u] , then Zero(T /IT) = Zero(T /MIT), where S is the Zariski closure of S.

Proof: We first prove the lemma when sat(T) is prime. Introduce a new variable z and let
I = IT . We have

Zero(T /MI) = Zero(T ,MIz − 1) ∩ E
n.

So for any f ∈ I(Zero(T /MI)) (I(V) is the ideal of polynomials which vanish on V), f ∈√
(T ,MIz − 1). Let z = 1

MI
, then there exists an integer d such that (MIf)d ∈ (T),

so we have (Mf)d ∈ sat(T). Since sat(T) is prime and M ∈ K[u] so not in sat(T), we
have f ∈ sat(T). So we have Zero(T /MI) ⊃ Zero(sat(T)) = Zero(T /I). It is obvious
Zero(T1, . . . , Tr/MI) ⊂ Zero(T /I), so we have Zero(T /MI) = Zero(T /I). Now assuming

sat(T) is not prime. According to Theorem 1.3 in [7], we have Zero(T /I) =
t⋃
i=1

Zero(Gi/Ii),

where Gi is a regular triangular set having the same parameter set with T and sat(Gi) is
prime for each i. Then we have

Zero(T /MI) =
t⋃
i=1

Zero(Gi/IiM) =
t⋃
i=1

Zero(Gi/Ii) = Zero(T /I)

and the lemma is proved. �

Lemma 2.5 Let T = {T1, . . . , Tr} be a regular triangular set. If M is not identically zero
on all irreducible components of sat(T), then Zero(sat(T)) = Zero(T /IT) = Zero(T /MIT),
where S is the Zariski closure of S.

Proof: It is well known that Zero(sat(T)) = Zero(T /IT). We have Zero(T /IT) ⊃ Zero(T /MIT),
since Zero(T /IT) ⊃ Zero(T /MIT). Let u be the parameter set of T , since M is not
identically zero on all irreducible components of T , according to Lemma 2.2, we have
(M,T)

⋂
K[u] 6= {0}. Suppose

AM +A1T1 + . . . +ArTr = H(u) (2)

Let ξ be a zero of Zero(T /HIT). Substitute ξ into (2), we have M(ξ) 6= 0, so ξ is also a
zero of Zero(T /IT) and we have Zero(T /MIT) ⊃ Zero(T /IT). Since H ∈ K[u], so according
to Lemma 2.4 we have Zero(T /HIT) = Zero(T /IT). Therefore, we have Zero(T /MIT) ⊃
Zero(T /HIT) = Zero(T /IT). This completes the proof. �

2.2 A quasi GCD algorithm

We need to use lemma 1 of [11], which is modified slightly to the following form.

Lemma 2.6 [11] There is an algorithm which for given polynomials hi =
∑
hi,jY

j ∈ Kn[Y],
degx1,...,xn,Y (hi) < d, i = 0, 1, . . . , k, yields such two families of polynomials gq,t ∈ Kn,Ψq ∈
Kn[Y] for 1 ≤ q ≤ N1, 0 ≤ t ≤ N2 such that

Zero(h1, . . . , hk/h0) =

N1⋃

q=1

Zero(Ψq, gq,1, . . . , gq,N2/gq,0)

⋃
Zero({hi,j , i = 0, . . . , k, j = 0, . . . , d− 1}/h0).

4

Furthermore, we have the following properties.
(1). deg(Ψq, Y) > 0, ini(Ψq) | gq,0.
(2). degx1,...,xn,Y (Ψq),degx1,...,xn(gq,t) ≤ P(d);N1, N2 ≤ kP(dn) where P(k) means a poly-

nomial in k.
(3). The running time of the algorithm can be bounded by a polynomial in k and dn.

Now we describe the main steps of this algorithm without proof. One can refer to [11]
for more details. Without loss of generality, we assume that degY (hi) > 0 for 0 ≤ i ≤ k.

Since degx1,...,xn,Y (hi) < d, we have hi =
d−1∑
j=0

hi,jY
j. Let h̃i,j =

j∑
β=0

hi,βY
β and

Ui,j = Zero(h1,d−1, . . . , h1,0, h2,d−1, . . . , h2,0, . . . , hi,d−1, . . . , hi,j+1/hi,j)

for 1 ≤ i ≤ k, 0 ≤ j ≤ d− 1. Let H = {h1, . . . , hk},

Hi,j = {h̃i,j , hi+1, . . . , hk} (3)

Hk+1 = {hi,j , ∀ 1 ≤ i ≤ k and j}.

Then we have Zero(H/h0) = Zero(Hk+1/h0)
⋃
(

⋃
1≤i≤k,0≤j≤d−1

Zero(Hi,j/h0) ∩ Ui,j).

Now we turn to the system Hi,j and introduce new variables Y0, Y1 to make polynomials
in (3) homogeneous in Y, Y0, Y1. Let

hi = Y j
0 h̃i,j(x1, . . . , xn,

Y

Y0
)

hl = Y
ldeg(hl)
0 hl(x1, . . . , xn,

Y

Y0
), i+ 1 ≤ l ≤ k

h0 = Y
ldeg(h0)+1
0 (

Y1
Y0
h0(x1, . . . , xn,

Y

Y0
)− 1)

Then h0, hi, . . . , hk are homogeneous polynomials in Y, Y0, Y1. The solutions of the following
homogenous system correspond bijectively to that of (3) except (1 : 0 : 0).

hi = hi+1 = . . . = hk = h0. (4)

Here h0, hi, . . . , hk are considered as polynomials in Y, Y0, Y1.
Introduce new variables U0, U, U1 and let hk+1 = Y0U0 + Y U + Y1U1. We rearrange the

polynomials h0, hi, . . . , hk w.r.t the degree in Y, Y0, Y1 as g0, . . . , gk−i+2 and γ0 ≥ γ1 ≥ . . . ≥
γk−i+2 where degY,Y0,Y1(gs) = γs for 0 ≤ s ≤ k − i + 2. Since degY,Y0,Y1(hk+1) = 1, we can
assume that gk−i+2 is hk+1. Let

D = (
∑

1≤l≤min{2,k−i+1}

(γl − 1)) + γ0.

We construct the Macaulay matrix A as the representation of the linear map

A : H0 ⊕ . . .⊕Hk−i+2 → H

whereHl (respectively H) is the linear space of homogenous polynomials in Y, Y0, Y1 of degree
D − γl (respectively D) for 0 ≤ l ≤ k − i+ 2, and

A(f0, . . . , fk−i+2) = f0g0 + · · ·+ fk−i+2gk−i+2

5

The matrix A is of size C2
D+2 ×

k−i+2∑
l=0

C2
D−γl+2 and can be represented in a form A =

(A(num), A(for)), where the elements of the submatrix A(num) do not contain U,U0, U1. Ac-
tually, A(num) is the submatrix of A which corresponds to the basis of H0, . . . ,Hk−i+1 while
A(for) corresponds to the basis of Hk−i+2.

About the polynomial system (4), we have the following lemma:

Lemma 2.7 [11] The rank of the matrix A of the polynomial system (4) is r = C2
D+2. Let

∆ be a nonsingular r× r submatrix of A containing rank(A(num)) columns in A(num). Then

det(∆) = c

D1∏

i=1

Li, where Li = ξi,0U0 + ξiU + ξi,1U1 and c is a constant

where (ξi,0 : ξi : ξi,1) is a solution of (4) and the number of occurrences of ξi,0U0+ξiU+ξi,1U1

in the product coincides with the multiplicity of the solution (ξi,0 : ξi : ξi,1) of (4).

To find the ∆ in Lemma 2.7, we use a variant of Gaussian algorithm which will compute
a series of

Ws = {x ∈ K
n : P1 = . . . = Ps−1 = 0, Ps 6= 0} (5)

where P1, . . . , Ps are polynomials in x, U, U0, U1 and linearly independent. For x ∈ Ws∩Ui,j,
the determinant

∆s =

D2∑

i=0

E(i)
s UD2−i

0 (6)

is what we want. For more details about the variant Gaussian algorithm, one can refer to
[11].

Now we introduce the following quasiprojective varieties

W(l)
s = {x ∈ Ws : E

(0)
s = . . . = E(l−1)

s = 0, E(l)
s 6= 0} (7)

where E
(0)
s , . . . , E

(l−1)
s are polynomials in x, U, U1. In [11], it is proved that if we substitute

U1 = 0, U = −1, U0 = Y into ∆s

E
(l)
s

, and denote the polynomial as Ψs, then for each point

x ∈ W
(l)
s ∩ Ui,j, the solution of Ψs as a polynomial in Y is the solution of the polynomial

system (3). Since the quasiprojective varieties W
(l)
s ∩ Ui,j can be divided into a series of

polynomial systems Vt = Zero(gt,1, . . . , gt,N2/gt,0), we have

Zero(Hi,j) ∩ Ui,j =
⋃

t

Zero(Ψt, gt,1, . . . , gt,N2/gt,0).

If Ψt = 1, we can delete that component and finally obtain the decomposition in Lemma 2.6.
Now we write this procedure as an algorithm to be used in the rest of the paper.

6

Algorithm 1 — Quasi GCD Algorithm

Input: {{h1, . . . , hk}, h0, Y } where h0, h1, . . . , hk ∈ Kn[Y] and hi =
∑
hi,jY

j for i =
1, . . . , k, j = 0, . . . , d− 1.

Output: D = {T0, . . . ,TN1}, where T0 = {{}, {hi,j , 1 ≤ i ≤ k, 0 ≤ j < d}, {h0}}, Tq =
{{Ψq}, {gq,1, . . . , gq,N2}, {gq,0}}(1 ≤ q ≤ N1), such that

Zero(h1, . . . , hk/h0) =

N1⋃

q=0

Zero(Ψq, gq,1, . . . , gq,N2/gq,0)

where Ψ0 = 0, deg(Ψq, Y) > 0, and deg(gq,i, Y) = 0 for 1 ≤ q ≤ N1, 0 ≤ i ≤ N2.

Example 2.8 We use a simple example to explain the algorithm. Let the original polyno-
mial system be {Y 2 + Y/Y }. First, we introduce a new variable Y1 and get an equivalence
system {Y 2 + Y, Y1Y − 1}. Second, we introduce a new variable Y0 to make it homogeneous
{Y 2 + Y Y0, Y1Y − Y 2

0 }. Finally, we introduce U,U0, U1 and add Y U + Y0U0 + Y1U1 to the
homogeneous system. The matrix A corresponding to the homogeneous system is

A =

1 0 0 0 0 0 U 0 0 0 0 0
0 0 0 0 −1 0 0 U0 0 0 0 0
0 0 0 0 0 0 0 0 U1 0 0 0
0 1 0 −1 0 0 0 U 0 U0 0 0
0 0 0 0 0 1 0 0 U 0 U1 0
0 0 0 0 0 0 0 0 U0 0 0 U1

1 1 0 0 0 0 U0 0 0 U 0 0
0 0 1 1 0 0 U1 0 0 0 U 0
0 0 0 0 0 −1 0 U1 0 0 0 U0

0 0 1 0 1 0 0 0 0 U1 U0 U

A(num) is the submatrix of A formed by the first 6 columns, rank(A(num)) = 6. According
to Lemma 2.7, we must choose the first 6 columns and by calculating we find the submatrix
formed by the first 9 columns and the last column is nonsingular, which is

∆ =

1 0 0 0 0 0 U 0 0 0
0 0 0 0 −1 0 0 U0 0 0
0 0 0 0 0 0 0 0 U1 0
0 1 0 −1 0 0 0 U 0 0
0 0 0 0 0 1 0 0 U 0
0 0 0 0 0 0 0 0 U0 U1

1 1 0 0 0 0 U0 0 0 0
0 0 1 1 0 0 U1 0 0 0
0 0 0 0 0 −1 0 U1 0 U0

0 0 1 0 1 0 0 0 0 U

det(∆) = −U3
1 (U − U0 + U1). Substituting U1 = 0, U = −1, U0 = Y to U − U0 + U1, we

obtain the polynomial −1− Y and Zero(Y 2 + Y/Y) = Zero(Y + 1)

The components of Lemma 2.6 may be empty, as shown by the following example.

7

Example 2.9 Let h1 = xy + 1, h2 = x, and take y as the maximal variable. According to
Lemma 2.6, it can be divided into two components Zero(1, x) and Zero(xy+1, x/x). We can
delete the first component. However, we cannot delete the second component Zero(xy+1, x/x)
which is empty. The second component will be deleted in our main algorithm later when we
continue our procedure to Zero(x/x).

2.3 The decomposition algorithm

We now give the main result about polynomial systems.

Theorem 2.10 For a given polynomial system H = {h1, . . . , hk} ∈ Kn, deg(hi) < d for
1 ≤ i ≤ k, there is an algorithm to compute regular triangular sets Aq = [Ψq,1, . . . ,Ψq,lq]
which have the following properties:

1. Zero(H) = ∪Nq=1Zero(sat(Aq)) is an unmixed decomposition.

2. The degrees of Ψq,1, . . . ,Ψq,lq are less than dc
n
, N ≤ kndnc

n+2
, where c is a constant.

3. The running time of the algorithm can be bounded by a polynomial in kn and dnc
n+2

.

Using the algorithm described below, we can calculate the regular triangular sets Aq

which satisfy the properties in Theorem 2.10.

Algorithm 2 — Algebraic Triangular Decomposition

Input: {h1, . . . , hk}, where h1, . . . , hk ∈ K[x1, . . . , xn].

Output: R, which is the set of (Aq,Dq) and Aq = {Ψq,1, . . .Ψq,lq}. Ψq,i,Dq ∈ Kn for
1 ≤ q ≤ N, 1 ≤ i ≤ lq such that Aq are regular triangular sets, ini(Ψq,i) 6= 0 on
any element of Zero(Aq/Dq), and Zero(h1, . . . , hk) = ∪qZero(sat(Aq)).

1.

Let T = {{}, {h1, . . . , hk}, {}}, S = {T }, R = {}.
2. If S = ∅ output R, else let T = {F,P,N} ∈ S, and S = S \ {T }.
3. If |F| > k, go to step 2.
4. If P = ∅, add (F,

∏
p∈N p) to R and go to step 2.

5. Let xγ = maxh∈P lv(h), P̃ = {h ∈ P | lv(h) = xγ}, P = P \ P̃.

6. Let Ñ = {f ∈ N | lv(f) ≤ xγ}, H =
∏

f∈Ñ

f .

7. Apply Algorithm 1 to {P̃,H, xγ}, and let the output be D.
8. If D = ∅, go to step 2, else let T1 = {W,U,V = {v}} ∈ D, D = D \ {T1}.
9. Let U = U ∪ P, xη = maxf∈U lv(f).
10. If lv(v) ≤ xη or U = ∅, add {F ∪W,U,N ∪ V} to S.
11. If lv(v) > xη, write v = Σlαx

α as a multivariate polynomial in x = (xη, . . . , xγ) with
coefficients in K[x1, . . . , xη−1]. Add {F ∪W,U,N ∪ V ∪ {lα}} to S for each α. Go to step 8.

Example 2.11 A simple example is used to explain the algorithm. Let f = xyz + 1, g =
x2 + x, x < y < z. In step 5, xγ = z and P̃ = {f}. In step 7, applying Algorithm 1 to P̃,
the output is D1 = {T1} where T1 = {{xyz +1}, {}, {xy}}. In step 9, we have U = {x2 + x},
xη = x. Since lv(xy) = y > x, we execute step 11 and add {{xyz + 1}, {x2 + x}, {xy, x}}
to S and go to step 2. Now we have T = {F,P,N}, where F = {xyz + 1}, P = {x2 + x},
N = {xy, x}. In step 5, we have xγ = x, P̃ = {x2 + x}. In step 6, we have Ñ = {x},
H = x. Applying Algorithm 1 to {P̃,H, x}, the output is {{x + 1}, {}, {}}. In step 10, we

8

add {{xyz+1, x+1}, {}, {xy}} to S. In step 4, since P = ∅, we add {{xyz+1, x+1}, {xy}}
to R and output R. Finally we have

Zero(xyz + 1, x2 + x) = Zero(xyz + 1, x+ 1/xy) = Zero(sat(xyz + 1, x+ 1)).

The purpose of step 11 is to add x to N. Otherwise, we will apply Algorithm 1 to {{x2 +
x}, xy, x}, which does not satisfy the input condition of Algorithm 1 since x < y.

Before proving Theorem 2.10, we first prove several lemmas.

Lemma 2.12 Algorithm 2 terminates and each Aq is a triangular set.

Proof: By Lemma 2.6, after step 7, for any {W,U,V} ∈ D, we have lv(p) < xγ for any
p ∈ U. In other words, for any new {F,P,N} added to S in steps 10 and 11, the class of
the polynomials in P will be decreased at least by one. Therefore, the algorithm terminates.
Also, W is either empty or W = {p} and lv(p) = xγ , which means Aq is a triangular set for
each q. �

Lemma 2.13 Omitting Step 3, Zero(h1, . . . , hk) = ∪Nq=1Zero(Aq/Dq), and ini(Ψq,i) 6= 0 on
any element of Zero(Aq/Dq).

Proof: To show Zero(h1, . . . , hk) =
⋃
q
Zero(Aq/Dq), it suffices to show that the equality

Zero(h1, . . . , hk) = ∪{F,P,N}∈SZero(F ∪ P/
∏

p∈N

p) (8)

always holds in the algorithm, and when P = ∅ the algorithm returns the requires equa-
tion. S is modified in steps 7, 10 and 11. In step 7, by Lemma 2.6, Zero(P̃/H) =
∪{W,U,{v}}∈DZero({W ∪ U/v). Clearly, after applying Algorithm 1, (8) remains valid when

P̃ and Ñ are properly replaced as in steps 10 and 11. In step 1, a special substitution is
performed. Let v = Σlαx

α. Then Zero(/v) is replaced by ∪αZero(/lαv). Since Zero(/v) =
∪αZero(/lαv), (8) is still valid after step 11.

Now suppose (Ψ1, . . . ,Ψt/M) is one component of the output. From the procedure of
the algorithm, we know that this component is obtained in the following manner:

Zero(f0,1, . . . , f0,k(0)/M0) → Zero(Ψ1, f1,1, . . . , f1,k(1)/M1)

→ Zero(Ψ1,Ψ2, f2,1, . . . , f2,k(2)/M1M2) (9)

→ . . .

→ Zero(Ψ1,Ψ2, . . . ,Ψt/M1 . . .Mt)

and M =M1 . . .Mt. Note that after applying Algorithm 1, Zero(Ψ1, f1,1, . . . , f1,k(1)/T1) is a
component of Zero(f0,1, . . . , f0,k(0))/M0). If lv(v) ≤ xη in step 10, M1 = T1. Otherwise, M1

is the multiplication of T1 and a coefficient lα of T1 as shown in step 11. The component
Zero(Ψ2, f2,1, . . . , f2,k(2)/M2) is obtained similarly from Zero(f2,1, . . . , f2,k(2)/S2), where S2 is
the maximal factor of M1 satisfying lv(S2) ≤ lv(f2,j) for all j. Continuing this procedure,
we will obtain (9). It is obvious that

Zero(f0,1, . . . , f0,k(0)/M0) ⊃ Zero(Ψ1, f1,1, . . . , f1,k(1)/M1)

⊃ Zero(Ψ1,Ψ2, f2,1, . . . , f2,k(2)/M1M2) (10)

⊃ . . .

⊃ Zero(Ψ1,Ψ2, . . . ,Ψt/M1 . . .Mt)

9

According to (1) of Lemma 2.6, we have ini(Ψi) | Mi, so ini(Ψi) 6= 0 on any element of
Zero(Ψ1, . . . ,Ψt/M). �

Lemma 2.14 The triangular sets Aq = {Ψq,1, . . .Ψq,lq} are regular and Zero(Aq/Dq) =
Zero(sat(Aq)).

Proof: Let Zero(Ψ1, . . . ,Ψt/M) be a component of the output. According to the proof of
Lemma 2.13, this component comes from procedure (9). Now we assume that lv(Ψ1) =
xk1 ,M1 ∈ Kk1−1, lv(Ψ2) = xk2 ,M2 ∈ Kk2−1, . . ., lv(Ψt) = xkt ,Mt ∈ Kkt−1.

According to Lemma 2.3, to show that Aq is regular, it suffices to prove that ini(Ψi) is not
always zero on any irreducible component of sat(Ψi+1, . . . ,Ψt) for 1 ≤ i ≤ t− 1. We prove
this by induction. First, supposing ini(Ψt−1) is zero on an irreducible component of sat(Ψt).
Zero(Ψt/Mt) is a component of Zero(ft−1,1, . . . , ft−1,k(t−1)/St−1) after applying Algorithm 1,

where St−1 is a factor of Mt−1. Obviously, Zero(Ψt/Mt) is not empty and Zero(Ψt/Mt) =
Zero(Ψt/ini(Ψt)) = Zero(sat(Ψt)) since lv(Mt) < lv(Ψt). Since ini(Ψt−1) is always zero
on an irreducible component of sat(Ψt), there exists an ηkt = (ξ1, . . . , ξkt) in Zero(Ψt/Mt)
such that ini(Ψt−1)(ηkt) = 0. Since Zero(ft−1,1, . . . , ft−1,k(t−1)/St−1) ⊃ Zero(Ψt/Mt), ηkt ∈
Zero(ft−1,1, . . . , ft−1,k(t−1)/St−1). If Zero(Ψt/Mt) is obtained from step 10, then η = ηkt
is also in Zero(ft−1,1, . . . , ft−1,k(t−1)/Mt−1). Otherwise, Zero(Ψt/Mt) is obtained from step
11, ηkt can be extended to a zero η = ηkt−1−1 of Zero(ft−1,1, . . . , ft−1,k(t−1)/Mt−1), since
St−1 is a coefficient of Mt−1. So in each case M(t−1)(η)6= 0, but we have ini(Ψt−1)|Mt−1, a
contradiction. We have proved {Ψt−1,Ψt} is regular. We can prove in the same way that
Mt−1 is not always zero on any irreducible component of sat(Ψt). According to Lemma 2.5,
we have Zero(Ψt−1,Ψt/ini(Ψt)ini(Ψt−1)) = Zero(Ψt,Ψt−1/Mt−1Mt). The induction step can
be proved similarly. �

Lemma 2.15 In Algorithm 2, the degree of the polynomials Ψq,1, . . . ,Ψq,lq are less than dc
n

and N ≤ kndnc
n+2

, where c is a constant. The running time of the algorithm can be bounded
by a polynomial in kn and dnc

n+2
.

Proof: According to Lemma 2.6, for given polynomials h1, . . . , hk ∈ Kn with deg(hi) < d,
after applying Algorithm 1, we obtain no more than kdcn components, each component has
no more than kdcn polynomials, the degrees of polynomials in these components are less
than dc, and the running time of the algorithm can be bounded by a polynomial in k, dn.
After applying Algorithm 1, the most complicated situation is that the maximal leading
variable of the polynomials gq,t is xn−1. Applying Algorithm 1 to these components, each

component will be split to at most kdcndc
2(n−1) ≤ kdc

3n components, each component has at
most kdcndc

2(n−1) ≤ kdc
3n polynomials, and the degree of each polynomial is less than dc

2
.

This procedure will terminate in at most n steps. In step n, each component will be split
to at most kdc

n+1n components, each component has at most kdc
n+1n polynomials, and each

polynomial has degree less than dc
n
. Then in total, there are at most kndc

n+2n components,
and the degree of the polynomials can be bounded by dc

n
. The running time of Algorithm

2 can be bounded by a polynomial in kn, dc
n+2n. �

Proof of Theorem 2.10. Omitting Step 3, the correctness of the theorem follows from
Lemmas 2.12, 2.13, 2.14, and 2.15. It suffices to show that with step 3, the theorem is also
correct. Suppose Ãk, k = 1, . . . , N0 are the extra regular triangular sets obtained by omitting

10

Step 3 and Al, l = 1, . . . , N are those obtained with Step 3. Then

Zero(h1, . . . , hk) = ∪Nl=1Zero(sat(Al))
⋃

∪N0
k=1Zero(sat(Ãk)).

From the condition |F| > k in Step 3, we have |Ãk| > k. By the dimension theorem proved
in [7], dim(Zero(sat(Ãk))) < n − k. While by the affine dimension theorem [14, p. 48], any
component of Zero(h1, . . . , hk) is of dimension no less than n − k. Thus, Zero(sat(Ãk)) are
redundant in the decomposition and can be deleted. �

3 Decomposition of ordinary differential polynomial systems

In this section, a decomposition algorithm for ordinary differential polynomial systems will
be given, which has an elementary worst case complexity bound.

3.1 Basic definition and property

Let K be a field of characteristic zero in which an operation of differentiation is performable
such that for any a, b ∈ K,

(a+ b)′ = a′ + b′, (ab)′ = ab′ + ba′.

Then we call K a differential field. Let y1, . . . , yn be differential indeterminates. We write

the j-th derivative of yi as y
(j)
i . Let K{y1, . . . , yn} = K[y

(j)
i , i = 1, . . . , n; j ∈ N] be the ring

of differential polynomials in y1, . . . , yn.
Let f be a differential polynomial in K{y1, . . . , yn}. The class of f denoted by cls(f),

is the greatest p such that some y
(j)
p is present in f . If f ∈ K, then cls(f) = 0. The order

of f w.r.t yi, denoted by ord(f, yi), is the greatest j such that y
(j)
i appears effectively in f .

We write ord(f) = max1≤i≤n ord(f, yi). If cls(f) = i and ord(f, yi) = j then we call y
(j)
i

the leader of f , and we write it as ld(f) = y
(j)
i . We define y

(j)
i = ld(f) > ld(g) = y

(β)
α if

i > α or i = α, j > β. We can write f as a univariant polynomial in its leader such that

f = ad(y
(j)
i)d+ . . .+ a0, and we call ad the initial of f , which is denoted by If . We call ∂f

∂y
(j)
i

the separant of f , which is denoted by Sf . For f, g ∈ K{y1, . . . , yn}, we say f is of higher
rank than g, if one of the following conditions is satisfied

1. cls(f) > cls(g).
2. cls(f) = cls(g) = p and ord(f, yp) > ord(g, yp).

3. cls(f) = cls(g) = p, ord(f, yp) = ord(g, yp) = j, and deg(f, y
(j)
p) > deg(g, y

(j)
p).

Let cls(g) = p > 0. We say f is reduced w.r.t g, if ord(f, yp) < ord(g, yp) or ord(f, yp) =

ord(g, yp) = j, and deg(f, y
(j)
p) < deg(g, y

(j)
p).

For f1, . . . , fk ∈ K{y1, . . . , yn}, we use [f1, . . . , fk] to denote the differential ideal gener-
ated by f1, . . . , fk, which is the linear combination of f1, . . . , fk and their derivatives.

A set T := {T1, . . . , Tr} of differential polynomials in K{y1, . . . , yn} is called a triangular
set, if cls(Ti) 6= cls(Tj) for i 6= j. Assuming that cls(T1) < · · · < cls(Tr), we rename the

variables as u1, . . . , ut, y1, . . . , yr such that r + t = n and ld(Ti) = y
(γi)
i . A differential

polynomial f ∈ K{u1, . . . , ut, y1, . . . , yr} is said to be invertible w.r.t T if [f, T1, . . . , Tr] ∩
K{u1, . . . , ut} 6= {0}. T is called regular if ITi are invertible w.r.t to Ti−1 for 0 ≤ i ≤ r. T is
called saturated if T is regular and STi are invertible w.r.t to Ti for 1 ≤ i ≤ r.

11

Let T := {T1, . . . , Tr} be a triangular set. Denote IT = IT1 · · · ITr and ST = ST1 · · ·STr .
Then the saturation ideal of T is

dsat(T) = {f ∈ K{y1, . . . , yn} | ∃d ∈ N, s.t. (IT ST)
df ∈ [T1, . . . , Tr]}.

It is known that if T is saturated, then dsat(T) is an unmixed radical differential ideal [2, 3].

Lemma 3.1 Let T := {T1, . . . , Tr} be a triangular set in K{y1, . . . , yn}. Then T is saturated
if ITi and STi are not identically zero on all irreducible components of dsat(Ti−1) and dsat(Ti),
for 1 ≤ i ≤ r, respectively.

Proof: This lemma can be proved similar to Lemma 2.3. �

Lemma 3.2 Let T := {T1, . . . , Tr} be a saturated triangular set in K{y1, . . . , yn}. If M ∈
K{y1, . . . , yn} is not identically zero on all irreducible components of dsat(T), then we have
Zero(T /IT ST) = Zero(T /MIT ST) = Zero(dsat(T)).

Proof: This lemma can be proved similar to Lemma 2.4. �

3.2 A squarefree quai GCD algorithm

In order to decompose differential polynomial systems, we need to modify Lemma 2.6. In
Lemma 2.6, for given polynomials h0, h1, . . . , hk ∈ K[x1, . . . , xn, Y], deg(hi) < d, we can write

hi(i > 0) as hi =
d−1∑
j=0

hi,jY
j , and divide the whole space as Kn =

⋃
i,j

Ui,j
⋃
{x ∈ K

n |hi,j(x) =

0,∀ 1 ≤ i ≤ k and 0 ≤ j ≤ d− 1}, where

Ui,j = Zero(h1,d−1, . . . , h1,0, h2,d−1, . . . , h2,0, . . . , hi,d−1, . . . , hi,j+1/hi,j)

for 1 ≤ i ≤ k, 0 ≤ j ≤ d − 1. We write h̃i,j =
∑

0≤β≤j

hi,βY
β. Then on Ui,j, the original

polynomial system becomes

h̃i,j = hi+1 = . . . = hk = 0;h0 6= 0. (11)

We add a step here to divide (11) into the following polynomial systems:

h̃i,j = hi+1 = . . . = hk = 0, h0
∂h̃i,j
∂Y

6= 0

h̃i,j = hi+1 = . . . = hk =
∂h̃i,j
∂Y

= 0, h0
∂2h̃i,j
∂Y 2

6= 0 (12)

. . .

h̃i,j = hi+1 = . . . = hk =
∂h̃i,j
∂Y

= . . . =
∂j−1h̃i,j
∂Y j−1

= 0, h0 6= 0.

Since
∂j h̃i,j
∂Y j = hi,j , and hi,j 6= 0 on Ui,j, we actually have

∂j h̃i,j
∂Y j 6= 0. Then the zero set of (11)

equals to the union of the zero sets of (12). Now we continues to introduce new variables as
in Lemma 2.6 to make the polynomial systems homogenous. After this modification, Lemma
2.6 becomes the following form.

12

Lemma 3.3 Given polynomials h0, h1, . . . , hk ∈ Kn[Y], deg(hi) < d, and hi =
∑d−1

j=0 hi,jY
j

for 0 ≤ i ≤ k, we may compute gq,t ∈ Kn, Ψq ∈ Kn[Y] \Kn for 1 ≤ q ≤ N1, 0 ≤ t ≤ N2 such
that:

Zero(h1, . . . , hk/h0) =

N1⋃

q=1

Zero(Ψq, gq,1, . . . , gq,N2/gq,0)∪Zero({hi,j , 1 ≤ i ≤ k, 0 ≤ j < d}/h0)

which has the following properties:
1. We have ini(Ψq) | gq,0, and Sψq

6= 0 on any element of Zero(Ψq, gq,1, . . . , gq,N2/gq,0).
2. degX1,...,Xn,Y (Ψq), degX1,...,Xn

(gq,t) ≤ P(d);N1, N2 ≤ kP(dn).
3. The running time of the algorithm can be bounded by a polynomial in k, dn.

Proof: For property 1, we need only to prove that Sψq
6= 0 on any element of Zero(Ψq, gq,1, . . . ,

gq,N2). Since we divide (11) into the union of (12), each component of the output, for example
(Ψ1, g1, . . . , gN2/g0), comes from one of (12). Without loss of generality, suppose it is the
first one in (12). Then we have

Zero(h̃i,j , hi+1, . . . , hk/h0
∂h̃i,j
∂Y

) ⊃ Zero(Ψ1, g1, . . . , gN2/g0).

If SΨ1 vanishes on (ξ1, . . . , ξn, η) ∈ Zero(Ψ1, g1, . . . , gN2/g0), then η must be a multiple root
of Ψ1 when substituting (x1, . . . , xn) by (ξ1, . . . , ξn). According to Lemma 2.7, η is also
a multiple root of the homogeneous equation system of (12) after introduce new variables

Y1, Y0, which means
∂h̃i,j
∂Y

(ξ1, . . . , ξn, η) = 0, a contradiction. Property 1 has been proved.
Property 2 comes from Lemma 2.6. We now prove property 3. According to the procedure

of this algorithm, the origin system has been divided into no more than kd subsystems Hi,j

in (3). For each Hi,j, we divide it into no more than d subsystems in (12), and each system
has no more than k + d polynomials, and the degree of these polynomials are bounded by
2d. The related matrix A has C2

D+2 rows, where

D = (
∑

1≤l≤min{2,k−i+1}

(γl − 1)) + γ0 ≤ 6d.

The degree of the elements in A are bounded by 2d, so the degree of Ps in (5) and ∆s in
(6) are bounded by 2dC2

D+2 ≤ d(6d+1)(6d+2). Since Ps are linearly independent, we have

s ≤ (d(6d+1)(6d+2))n). For each Ws in (5), we divided it into W
(l)
s in (7) and l is no more

than the degree of ∆. So in total, we have kd2(d(6d + 1)(6d + 2))(n+1)) components and
N1 ≤ kP(dn). According to the above proof, it is obvious that the degree of each polynomial
in these components is no more than the degree of Ps and ∆, so is bounded by P(d). The
polynomials gq,t come from three parts. The first part is the polynomials in Ui,j and whose
number is bounded by kd; the second part is the coefficient of Ps when taken as polynomials
in U,U0, U1 and so the number is bounded by (d(6d + 1)(6d + 2))2n); the third part is the

coefficients of E
(i)
s and so the number is bounded by (d(6d + 1)(6d + 2))n+1). Therefore,

N2 ≤ kP(dn). �

Now we write this theorem as an algorithm. We only give the input and output of this
algorithm, since the procedure of this algorithm has been described above.

13

Algorithm 3 — Squarefree Quasi GCD

Input: {{h1, . . . , hk}, {h0}, {x1, . . . , xn}, Y } where h0, h1, . . . , hk ∈ K[x1, . . . , xn, Y],
deg(hi) < d.

Output: D = {T0, . . . ,TN1}, where T0 = {{}, {hi,j , 1 ≤ i ≤ k, 0 ≤ j ≤ d − 1}, {h0}},
Tq = {{Ψq}, {gq,1, . . . , gq,N2}, {gq,0}}(1 ≤ q ≤ N1), which satisfy the conditions
in Lemma 3.3.

3.3 The algorithm

We now give the main result for differential polynomial systems.

Theorem 3.4 Let h1, . . . , hk ∈ K{y1, . . . , yn}, where deg(hi) < d and ord(hi) < R for
1 ≤ i ≤ k. There is an algorithm to compute saturated triangular sets Aq := Ψq,1, . . . ,Ψq,lq

which have the following properties:
1. Zero(h1, . . . , hk) = ∪Nq=1Zero(sat(Aq)).

2. We have deg(Ψq,i) ≤ dc
2nR

, ord(Ψq,i) ≤ 2nR, and N < k2
nRdc

2nRRn.

3. The running time of this algorithm can be bounded by a polynomial in k2
nRdc

2nRRn.

We will give an algorithm to produce those saturated triangular sets in the theorem.
Before giving the main algorithm, two sub-algorithms will be given. The first one is the
partial remainder [2, 11].

Algorithm 4 — DPM Algorithm

Input: {{g0}, {f1, . . . , fk}, {f0}}, where g0, f0, . . . , fk ∈ K{y1, . . . , yn}, ord(fi, yα) ≤ r

for 0 ≤ i ≤ k, and ld(g0) = y
(r−t)
α , t ≥ 1.

Output: {{g0, f̃1, . . . , f̃k}, {f̃0Sg0}} where ord(f̃i, yα) ≤ r − t for 0 ≤ i ≤ k such that
Zero(g0, f1, . . . , fk/f0Sg0) = Zero(g0, f̃1, . . . , f̃k/f̃0Sg0).

1. For i = 0, . . . , k,
1.1. f̃i = fi.
1.2. If ord(f̃i, yα) ≤ r − t, goto step 1.

1.3. Let ord(f̃i, yα) = ri and g
(ri−r+t)
0 = Sg0y

(ri)
α −Hri .

1.4. Replace y
(ri)
α in f̃i by

Hri

Sg0
and multiply by (Sg0)

deg(f̃i,y
(ri)
α), and let f̃i be the new

differential polynomial. Goto step 1.2.
2. Output {{g0, f̃1, . . . , f̃k}, {f̃0Sg0}}.

Lemma 3.5 [11] Use the notations in Algorithm 4 and assume deg(fj) < d,deg(g0) < d,
ord(fi, yγ) < R for 0 ≤ i ≤ k, 1 ≤ γ ≤ n. Then, we have the following bounds: ord(f̃j, yγ) ≤
R+ t,deg(f̃j) ≤ P(d, t) for any 0 ≤ j ≤ k, 1 ≤ γ ≤ n.

Next, we describe a splitting subroutine from [11]. Let g ∈ K{y1, . . . , yn}. For α ∈

{1, . . . , n}, let ord(g, yα) = r, g =
∑

a ga(yαy
(1)
α . . . y

(r)
α)a, a = (a0, a1, . . . , ar), (yαy

(1)
α . . .

y
(r)
α)a = ya0α . . . (y

(r)
α)ar . Denote coeff(g, yα) to be set of gi,α. For G ⊂ K{y1, . . . , yn}, denote

coeff(G, yα) = ∪g∈G coeff(g, yα).

We have the following split algorithm.

14

Algorithm 5 — SPLIT Algorithm

Input: {G, yα}, where G = {g1, . . . , gl} ⊂ K{y1, . . . , yn}.

Output: D = {T0, . . . ,TN} where T0 = (coeff(G, yα), ∅), Ti = ({hi,1, . . . , hi,li}, {
∂hi,1

∂y
(γi)
α

})

such that ord(hi,1, yα) = γi ≥ 0 and

Zero(g1, . . . , gl) = ∪Ni=1Zero(hi,1, . . . , hi,li/
∂hi,1

∂y
(γi)
α

) ∪ Zero(coeff(G, yα)). (13)

1. Let S = {{g1, . . . , gl}}, D = ∅.
2. If S = ∅, return D; else let F ∈ S and S = S \ {F}.
3. If ∀f ∈ F, ord(f, yα) = 0, then add (F, ∅) to D. Go to step 2.

4. Let f ∈ F such that ord(f, yα) = t ≥ 0, deg(f, y
(t)
α) = d. Set F = F \ {f}.

5. Let f =
∑d

j=0 ld(y
(t)
α)d and fi =

∂if

∂(y
(t)
α)i

, i = 1, . . . , d.

6. Let D = D
⋃
{({f} ∪ F, {f1}), ({f1, f} ∪ F, {f2}), . . . , ({fd−1, . . . , f} ∪ F, {fd})}, and S =

S
⋃
{F ∪ {l0, l1, . . . , ld}}. Go to step 2.

Note that the order and degree of the difference polynomials in the output are smaller
than or equal to that of gi in the input. We now give the decomposition algorithm.

Algorithm 6 — Differential Triangular Decomposition

Input: {h1, . . . , hk} ∈ K{y1, . . . , yn}.

Output: {Aq,Dq}, 1 = 1, . . . , N , where Aq = {Ψq,1, . . .Ψq,lq} satisfies the conditions in
Theorem 3.4.

1. Let T = {{}, {h1, . . . hk}, {}}, S = {T }, R = {}.
2. If S = ∅, output R, else let T = {F,P,N} ∈ S and S = S \ {T }.
3. If P = ∅, add (F,

∏
p∈N p) to R and go to step 2.

4. Let y
(γ)
α = maxh∈P ld(h), P̃ = {h ∈ P | ld(h) = y

(γ)
α }, P = P \ P̃.

5. Let Ñ = {f ∈ N | ld(f) ≤ y
(γ)
α }, H =

∏
f∈Ñ

f .

6. Apply Algorithm 3 to {P̃,H, vars(P̃ ∪ {H}) \ {y
(γ)
α }, y

(γ)
α }, the output is D.

7. If D = ∅, go to step 2, else for T1 = {W = {ψ},U,V = {v}} ∈ D, D = D\{T1}, U = U∪P.
8. If U = ∅, add {F ∪W,U,N ∪ V} to R and go to step 7.
9. Apply Algorithm 5 to {U, yα}, the output is D1.
10. If D1 = ∅, go to step 7, else let C = (Γ,Θ) ∈ D1 and D1 = D1 \ {C}.
11. If Θ 6= ∅, assume Θ = { ∂g

∂y
(l)
α

}. Applying Algorithm 4 to {{g},W ∪ (Γ \ {g}),V}, the

output is {W̃, Ṽ}. Add {F, W̃,N ∪ Ṽ} to S. Goto step 10.

12. If Θ = ∅, let y
(r)
ǫ = maxh∈Γ ld(h), y

(t)
β = ld(v).

13. If y
(r)
ǫ ≤ y

(t)
β add {F ∪W,Γ,V ∪ N} to S. Goto step 10.

14. Let x = {y
(e)
γ |deg(v, y

(e)
γ) > 0 and y

(e)
γ > y

(r)
ǫ } and write v as a multivariate polynomial

in x: v = Σlθx
θ. Add {F ∪W,Γ,N ∪ V ∪ {lθ}} to S for each θ. Go to step 10.

We use two examples to illustrate Algorithm 6.

15

Example 3.6 Note that Algorithm 6 can also be used to algebraic polynomial systems and
return a radical decomposition. Let f = xy2 with x < y. Using Algorithm 2 to f , we
obtain two components {x} and {y2}, where the second one is not radical. In step 6 of
Algorithm 6, when applying Algorithm 3 to {{f}, {}, y}, the system {f = 0} is first split into
{xy2 = 0, 2xy 6= 0), {xy2 = 2xy = 0, x 6= 0), and {x = 0} and then returns ∅, {{y}, {}, {x}},
and {{}, {x}, {}}. Finally, we obtain the decomposition Zero(f) = Zero(x) ∪ Zero(y).

Example 3.7 Let f = y′2 − xy2, x < y. In step 4, we have y
(γ)
α = y′, P̃ = {f}. In Step

5, N = ∅ and H = 1. In Step 6, Algorithm 3 is applied to {P̃,H, y′}. P̃ is first split into
two components {y′2 − xy2 = 0, 2y′ 6= 0} and {y′2 − xy2 = 2y′ = 0}. The output of the first
component is {{y′2 − 4xy}, {}, {xy2}} and the output of the second one is {{y′}, {xy2}, {}}.

In Step 8, C0 = {{y′2 − xy2}, {}, {xy2}} will be put into S and eventually be added to R.
In Step 9, we will handle {{y′}, {xy2}, {}}. Applying Algorithm 5 to U = {xy2} and

yα = y, the output D1 consists of C1 = ({xy2}, {2xy}), C2 = ({xy2, 2xy}, {2x}), and C3 =
({2x}, {}).

C1 is handled in Step 11. Algorithm 4 is applied to {{xy2}, {y′}, {2xy}} and returns
{{xy2, x′y2}, {2xy}}. Finally, C4 = {{}, {xy2, x′y2}, {2xy}} is added to S.

C2 is handled in Step 11. Algorithm 4 is applied to {{2xy}, {y′, xy2}, {2x}} and returns
{{2xy, 2x′y, xy2}, {2x}}. Finally, C5 = {{}, {2xy, xy2, 2xy, x′y}, {2x}} is added to S.

C3 is handled in Steps 12 and 13. C6 = {{y′}, {2x}, {}} is added to S.
For C4, in Step 6, Algorithm 3 is applied to {{xy2, x′y2}, 1, {2xy}} and returns the empty

set. We omit the computing procedures for C5 and C6. The algorithm give the decomposition
Zero(f) = Zero(sat(f)) ∪ Zero(y′, x) ∪ Zero(y).

Now we prove Theorem 3.4 with the following lemmas.

Lemma 3.8 Algorithm 6 terminates, Zero(h1, . . . , hk) = ∪qZero(Aq/Dq), and IΨq,i
, SΨq,i

6=
0 on any element of Zero(Aq/Dq).

Proof: The algorithm has three loops, starting at Step 2, Step 7, and Step 10, respectively.
We need only to show that the loop starting at Step 2 will terminate. Let {F1,P1,N1} be a
component added to S in this loop and yδc = maxp∈P1 ld(p). Then, we have either yδc < yγα
which means that the algorithm terminates.

Zero(h1, . . . , hk) =
⋃
q
Zero(Ψq,1, . . .Ψq,lq/Dq) can be proved similar to Lemma 2.13. In

the proof, we also need the equalities in Lemma 3.3, Lemma 3.5, and (13).
We now show that Aq is a triangular set. It suffices to show that for any {F,P,N} ∈ S,

maxp∈P cls(p) < maxq∈F cls(q). New polynomials are added to F in Steps 8, 13, and 14. In
Step 8, since U = ∅, this is indeed the case. In Steps 13 and 14, we have Θ = ∅ which
means that yα and its derivatives do not appear in Γ. Hence maxp∈Γ cls(p) < α and Aq is a
triangular set for any q.

Finally, if (Ψ1, . . . ,Ψt/M) is one component of the output, then according to the algo-
rithm it comes from a procedure like (9) and (10). In the algebraic case, from one step to
the next step in (9), Algorithm 1 is used one time. In the differential case, from one step to
the next step in (9), Algorithm 3 is used many times. For instance, the procedure to obtain

16

Ψ1 is as follows:

Zero(f0,1, . . . , f0,k(0)/M0) → Zero(ψ1, h1,1, . . . , h1,t(1)/M1)

→ Zero(g1,0, . . . , g1,l(1)/S1M1)

→ Zero(ψ2, h2,1, . . . , h2,t(2)/M2S1M1)

→ . . . (14)

→ Zero(gs,0, . . . , gs,l(s)/Ms+1 · · ·S1M1)

→ Zero(ψs+1, hs+1,1, . . . , hs+1,t(s+1)/Ss+1Ms+1 · · · S1M1)

where Ψ1 = ψs+1 and {hs+1,1, . . . , hs+1,t(s+1)} = {f1,1, . . . , f1,k(1)} in (9). (ψ1, h1,1, . . . ,
h1,t(1)/M1) is a component of (f0,1, . . . , f0,k(0)/M0) after using Algorithm 3, so Iψ1 |M1 and
Sψ1 6= 0 on any element of Zero(ψ1, h1,1, . . . , h1,k(1)/M1) by Lemma 3.3. (g1,0, . . . , g1,l(1)/S1M1)
is a component obtained from (ψ1, h1,1, . . . , h1,k(1)/M1) by Algorithms 5 and 6 in Steps 9 and
11. So we have Zero(g1,0, . . . , g1,l(1)/S1M1) ⊂ Zero(ψ1, h1,1, . . . , h1,k(1)/M1). The procedure
is repeated until cls(ψs+1) > cls(gs+1,j) for all j and Ψ1 is obtained. Then, we have

Zero(f0,1, . . . , f0,k(0)/M0) ⊇ Zero(ψ1, h1,1, . . . , h1,t(1)/M1)

⊇ Zero(g1,0, . . . , g1,l(1)/S1M1)

⊇ . . . (15)

⊇ Zero(gs,0, . . . , gs,l(s)/Ss · · ·S1M1)

⊇ Zero(ψs+1, hs+1,1, . . . , hs+1,t(s+1)/Ms+1 · · · S1M1)

By Lemma 3.3, IΨ1 |Ms+1 and SΨ1 6= 0 on any element of Zero(ψs+1, hs+1,1, . . . , hs+1,t(s+1)/Ms+1

· · ·S1M1). The lemma is proved. �

Lemma 3.9 In Algorithm 6, Aq := Ψq,1, . . .Ψq,lq are saturated triangular sets and

Zero(dsat(Aq)) = Zero(Ψq,1, . . .Ψq,lq/Dq).

Proof: Using Lemmas 3.1 and 3.2 instead of Lemmas 2.3 and 2.4, the proof of this lemma is
the same with that of Lemma 2.14. �

The following lemma gives the complexity part of Theorem 3.4.

Lemma 3.10 In Algorithm 6, the degree of Ψq,i is less than dc
2nR

, the order of Ψq,i is

less than 2nR, N < k2
nRdc

2nRRn. The running time of this algorithm can be bounded by a

polynomial in k2
nRdc

2nRRn.

Proof: For given differential polynomials h1, . . . , hk ∈ K{y1, . . . , yn}, since ord(hi, yj) < R for
1 ≤ i ≤ k, 1 ≤ j ≤ n, there are at most Rn variables when applying Algorithm 3. Consider

the most complicated case where y
(R−1)
n is the maximal leader. After applying Lemma

3.3 to h1, . . . , hk, there are at most kdcRn components, each component has at most kdcRn

differential polynomials, and the degree of each polynomial is no more than dc. After applying
Algorithm 5, each component will be split into at most dcR components, and each component
has at most kdcRn+cR polynomials. After applying Lemma 3.5, the number of the components
and the number of polynomials in each component do not change, and the degrees of the
polynomials are less than d2c. The most complicated case occurs when the order of yn
decreases by one and the maximal leader becomes y

(R−2)
n . Continuing this procedure until

17

the main variable becomes yn−1. There are no more than kRdc
RRn components in total, each

component has no more than kdc
RRn polynomials, the degree of these polynomials are less

than dc
R
, and the order of these polynomials are less than 2R. Repeating this procedure

to y1, . . . , yn−1, finally we obtain no more than k2
nRdc

2nRRn components, the degree of the

polynomials are bounded by dc
2nR

, and the order of these polynomials are less than 2nR.�

4 Summary

Two triangular decomposition algorithms are given in this paper. For a set of polynomials
F = {f1, . . . , fs} in K[x1, . . . , xn], we can compute regular triangular sets T1, . . . ,Tr such that
Zero(F) = ∪iZero(sat(Ti)) which gives an unmixed decomposition for the solution set of F =
0. We also show that the complexity of the algorithm is double exponential in n. For a set
of ordinary differential polynomials F = {f1, . . . , fs} in K{y1, . . . , yn}, we can give a similar
decomposition Zero(F) = ∪iZero(dsat(Ti)), where dsat(Ti) are radical differential ideals and
the complexity is triple exponential. This seems to be the first triangular decomposition
algorithm for differential polynomial systems with elementary computation complexity.

References

[1] P. Aubry, D. Lazard, M.M. Maza. On the Theories of Triangular Sets. J. Symb. Comput.,
28, 105-124, 1999.

[2] F. Boulier, D. Lazard, F. Ollivier, and M. Petitiot. Representation for the Radical of a
Finitely Generated Differential Ideal. Proc. of ISSAC’95, 158-166, ACM Press, 1995.

[3] D. Bouziane, A. Kandri Rody, and H. Maârouf. Unmixed-dimensional Decomposition
of a Finitely Generated Perfect Differential Ideal. J. Symb. Comput., 31, 631-649, 2001.

[4] C. Chen, J.H. Davenport, J.P. May, M.M. Maza, B. Xia, R. Xiao. Triangular Decompo-
sition of Semi-algebraic Systems. Proc. ISSAC 2010, 187-194, ACM Press, New York,
2010.

[5] S.C. Chou and X.S. Gao. Automated Reasoning in Differential Geometry and Mechan-
ics Using the Characteristic Set Method, Part I. An Improved Version of Ritt-Wu’s
Decomposition Algorithm. Journal of Automated Reasoning, 10, 161-172, 1993.

[6] G. Gallo and B. Mishra. Efficient Algorithms and Bounds for Wu-Ritt Characteristic
Sets. Progress in Mathematics, 94, 119-142, Birkhauser, 1991.

[7] X.S. Gao and S.C. Chou. On the Dimension of an Arbitrary Ascending Chain. Chinese
Sci. Bull., 38, 799-804, 1993.

[8] X.S. Gao and Z. Huang. Characteristic Set Algorithms for Equation Solving in Finite
Fields. J. Symb. Comput., 47, 655-679, 2012.

[9] X.S. Gao, Y. Luo, and C. Yuan. A Characteristic Set Method for Difference Polynomial
Systems. J. Symb. Comput., 44(3), 242-260, 2009.

[10] O. Golubitsky, M. Kondratieva, A. Ovchinnikov, A. Szanto. A Bound for Orders in
Differential Nullstellensatz. Journal of Algebra, 322(11),3852-3877, 2009.

18

[11] D.Y. Grigor’ev. Complexity of Quantifier Elimination in the Theory of Ordinary Dif-
ferential Equations. Lecture Notes in Computer Science, 176, 17-31, 1984.

[12] Z. Huang. Parametric Equation solving and Qiantifier Elimination in Finite Fields with
Characteristic Set method. Journal of Systems Science and Complexity, 25(4), 778-791,
2012.

[13] E. Hubert. Factorization-free Decomposition Algorithms in Differetntial Algebra. J.
Symb. Comput., 29(4-5), 641-662, 2000.

[14] R. Hartshorne. Algebraic Geometry. Springer-Verlag, 1977.

[15] X. Li, C. Mou, D. Wang. Decomposing Polynomial Sets into Somple Sets over FInite
Fields: the Zero-Dimensional Case. Computer and Mathematics with Applications, 60,
2983-2997, 2010.

[16] J.F. Ritt. Differential Algebra. American Mathematical Society, Colloquium Publica-
tions, vol 33, 1950.

[17] A. Szanto. Computation with Polynomial Systems. Doctoral Dissertation, Cornell Uni-
versity, 1999.

[18] D.M. Wang. An Elimination Method for Polynomial Systems. J. Symb. Comput., 16,
83-114, 1993.

[19] W.T. Wu. A Constructive Theorey of Differential Algebraic Geometry. Lect. Notes in
Math., No. 1255, 173-189, Springer, 1987.

[20] W.T. Wu. Basic Principle of Mechanical Theorem Proving in Geometries. Science Press,
Beijing, 1984. English translation, Springer, Wien, 1994.

19

	1 Introduction
	2 Decomposition of algebraic polynomial system
	2.1 Basic definition and property
	2.2 A quasi GCD algorithm
	2.3 The decomposition algorithm

	3 Decomposition of ordinary differential polynomial systems
	3.1 Basic definition and property
	3.2 A squarefree quai GCD algorithm
	3.3 The algorithm

	4 Summary

