Skip to main content
Log in

Pricing credit derivatives under fractional stochastic interest rate models with jumps

  • Published:
Journal of Systems Science and Complexity Aims and scope Submit manuscript

Abstract

Based on the reduced-form approach, this paper investigates the pricing problems of default-risk bonds and credit default swaps (CDSs) for a fractional stochastic interest rate model with jump under the framework of primary-secondary. Using properties of the quasi-martingale with respect to the fractional Brownian motion and the jump technique in Park (2008), the authors first derive the explicit pricing formula of defaultable bonds. Then, based on the newly obtained pricing formula of defaultable bonds, the CDS is priced by the arbitrage-free principle. This paper presents an extension of the primary-secondary framework in Jarrow and Yu (2001).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Black F and Scholes M, The pricing of options and corporate liabilities, Journal of Political Economy, 1973, 81(3): 637–654.

    Article  MathSciNet  MATH  Google Scholar 

  2. Merton R, On the pricing of corporate debt: The risk structure of interest rates, The Journal of Finance, 1974, 29(2): 449–470.

    Google Scholar 

  3. Black F and Cox J, Valuing corporate securities: Some effects of bond indenture provisions, The Journal of Finance, 1976, 31(2): 351–367.

    Article  Google Scholar 

  4. Geske R, The valuation of corporate liabilities as compound options, The Journal of Financial and Quantitative Analysis, 1977, 12(4): 541–552.

    Article  Google Scholar 

  5. Duffie D and Lando D, Term structures of credit spreads with incomplete accounting information, Econometrica, 2001, 69(3): 633–664.

    Article  MathSciNet  MATH  Google Scholar 

  6. Artzner P and Delbaen F, Default risk insurance and incomplete markets, Mathematical Finance, 1995, 5(3): 187–195.

    Article  MATH  Google Scholar 

  7. Jarrow R and Turnbull S, Pricing derivatives on financial securities subject to default risk, The Journal of Finance, 1995, 50(1): 53–85.

    Article  Google Scholar 

  8. Duffie D and Singleton K J, Modeling term structures of defaultable bonds, Review of Financial Studies, 1999, 12(4): 687–720.

    Article  Google Scholar 

  9. Jarrow R A and Yu F, Counterparty risk and the pricing of defaultable securities, The Journal of Finance, 2001, 56(5): 1765–1799.

    Article  Google Scholar 

  10. Leung S Y and Kwork Y K, Credit default swap valuation with counterparty risk, The Kyoto Economic Review, 2005, 74(1): 25–45.

    Google Scholar 

  11. Hao R L, Liu Y H, and Wang S B, Pricing credit default swap under fractional Vasicek interest rate model, Journal of Mathematical Finance, 2014, 4(1): 10–20.

    Article  Google Scholar 

  12. Vasicek O, An equilibrium characterization of the term structure of interest rates, Journal of Financial Economics, 1977, 5(2): 177–188.

    Article  Google Scholar 

  13. Cox J C, Ingersoll J E, and Ross S A, A theory of the term structure of interest rates, Econometrica, 1985, 53(2): 385–408.

    Article  MathSciNet  MATH  Google Scholar 

  14. Ahn C M and Thompson H E, Jump-diffusion processes and the term structure of interest rates, The Journal of Finance, 1988, 43(1): 155–174.

    Article  MathSciNet  Google Scholar 

  15. Naik V and Lee M, General equilibrium pricing of options on the market portfolio with discontinuous returns, The Review of Financial Studies, 1990, 3(4): 493–521.

    Article  Google Scholar 

  16. Zhou C S, The term structure of credit spreads with jump risk, Journal of Banking Finance, 2001, 25(11): 2015–2040.

    Article  Google Scholar 

  17. Das S R, The surprise element: Jumps in interest rates, Journal of Econometrics, 2002, 106(1): 27–65.

    Article  MathSciNet  MATH  Google Scholar 

  18. Baz J and Das S R, Analytical approximations of the term structure for jump-diffusion processes: A numerical analysis, The Journal of Fixed Income, 1996, 6(1): 78–86.

    Article  Google Scholar 

  19. James J and Webber N, Interest Rate Modelling, John Wiley & Sons, New York, 2000.

    MATH  Google Scholar 

  20. Shea G S, Uncertainty and implied variance bounds in long memory models of the interest rate term structure, Empirical Economics, 1991, 3(16): 287–312.

    Article  Google Scholar 

  21. Backus D K and Zin S E, Long-memory inflation uncertainty: Evidence from the term structure of interest rates, Journal of Money, Credit and Banking, 1993, 25(3): 681–700.

    Article  Google Scholar 

  22. Booth G G and Tse Y M, Long memory in interest rate futures markets: A fractional cointegration analysis, Journal of Futures Markets, 1995, 15(5): 573–584.

    Article  Google Scholar 

  23. Tsay W J, Long memory story of the real interest rate, Economics Letters, 2000, 67(3): 325–330.

    Article  MathSciNet  MATH  Google Scholar 

  24. Cajueiro D O and Tabak B M, Time-varying long-range dependence in US interest rates, Chaos, Solitons and Fractals, 2007, 34: 360–367.

    Article  MATH  Google Scholar 

  25. Cajueiro D O and Tabak B M, Long-range dependence in interest rates and monetary policy, Physics Letters A, 2008, 372: 181–184.

    Article  Google Scholar 

  26. Taqqu M S, Teverovsky V, and Willinger W, Estimators for long-range dependence: An empirical study, Fractals: Complex Geometry, Patterns, and Scaling in Nature and Society, 1995, 3(4): 785–798.

    Article  MATH  Google Scholar 

  27. Hu Y and Øksendal B, Fractional white noise calculus and application to finance, Infinite Dimensional Analysis, Quantum Probability and Related Topics, 2003, 6(1): 1–32.

    Article  MathSciNet  MATH  Google Scholar 

  28. Shiryaev A N, Essentials of Stochastic Finance, Facts, Model, Theory, World Scientific, Singapore, 1999.

    Book  MATH  Google Scholar 

  29. Mishura Y, Stochastic Calculus for Fractional Brownian Motion and Related Processes, Springer-Verlag, New York, 2008.

    Book  MATH  Google Scholar 

  30. Misiran M, Hu C, Lu Z, et al., Optimal filtering of linear system driven by fractional Brownian motion, Dynamic Systems and Applications, 2010, 19(3): 495–514.

    MathSciNet  MATH  Google Scholar 

  31. Mandelbrot B B and Van Ness J W, Fractional Brownian motions, fractional noises and applications, SIAM Review, 1968, 10(4): 422–437.

    Article  MathSciNet  MATH  Google Scholar 

  32. Mandelbrot B B and Wallis J R, Computer experiments with fractional Gaussian noises, Water Resources Research, 1969, 5(1): 228–267.

    Article  Google Scholar 

  33. Tsybakov B and Georganas N, Self-similar processes in communication networks, IEEE Transactions on Information Theory, 1998, 5(44): 1713–1725.

    Article  MathSciNet  MATH  Google Scholar 

  34. Sottinen T, Fractional Brownian motion, random walks and binary market models, Finance and Stochastics, 2001, 5(3): 343–355.

    Article  MathSciNet  MATH  Google Scholar 

  35. Misiran M, Zudi L, Teo K L, et al., Estimating dynamic geometric fractional Brownian motion and its application to long-memory option pricing, Dynamic Systems and Applications, 2012, 21(1): 49–66.

    MathSciNet  MATH  Google Scholar 

  36. He X J and Chen W, The pricing of credit default swaps under a generalized mixed fractional Brownian motion, Physica A: Statistical Mechanics and Its Applications, 2014, 404: 26–33.

    Article  MathSciNet  Google Scholar 

  37. Huang W L, Tao X X, and Li S H, Pricing formulae for European options under the fractional Vasicek interest rate model, Acta Mathematica Sinica (Chinese Series), 2012, 55(2): 219–230.

    MathSciNet  MATH  Google Scholar 

  38. Park H S, The survival probability of mortality intensity with jump-diffusion, Journal of the Korean Statistical Society, 2008, 37(4): 355–363.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiuchun Bi.

Additional information

This research was supported by the National Natural Science Foundation of China under Grant Nos. 11401556, 61304065 and 11471304, and the Fundamental Research Funds for the Central Universities under Grant No. WK 2040000012.

This paper was recommended for publication by Editor WANG Shouyang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Bi, X., Li, R. et al. Pricing credit derivatives under fractional stochastic interest rate models with jumps. J Syst Sci Complex 30, 645–659 (2017). https://doi.org/10.1007/s11424-017-5126-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11424-017-5126-8

Keywords

Navigation