Skip to main content

Advertisement

Log in

H control for nonlinear stochastic Markov systems with time-delay and multiplicative noise

  • Published:
Journal of Systems Science and Complexity Aims and scope Submit manuscript

Abstract

This paper is concerned with the H control problem for a class of nonlinear stochastic Markov jump systems with time-delay and system state-, control input- and external disturbancedependent noise. Firstly, by solving a set of Hamilton-Jacobi inequalities (HJIs), the exponential mean square H controller design of delayed nonlinear stochastic Markov systems is presented. Secondly, by using fuzzy T-S model approach, the H controller can be designed via solving a set of linear matrix inequalities (LMIs) instead of HJIs. Finally, two numerical examples are provided to show the effectiveness of the proposed design methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Pertersen I R, Ugrinovskii V A, and Savkin A V, Robust Control Design Using H-Methods, Springer, Berlin, 2012.

    Google Scholar 

  2. Zames G, Feedback and optimal sensitivity: Model reference trans-formations, multiplicative seminorms, and approximate inverses, IEEE Transactions on Automatic Control, 1981, 26(2): 301–320.

    Article  MathSciNet  MATH  Google Scholar 

  3. Hinrichsen D and Pritchard A J, Stochastic H, SIAM Journal on Control and Optimization, 1998, 36(5): 1540–1538.

    Article  MATH  Google Scholar 

  4. Zhang W and Chen B S, State feedback H control for a class of nonlinear stochastic systems, SIAM Journal on Control and Optimization, 2006, 44(6): 1973–1991.

    Article  MathSciNet  MATH  Google Scholar 

  5. Zhang W, Chen B S, and Tseng C S, Robust H filtering for non-linear stochastic systems, IEEE Transactions on Signal Processing, 2005, 53(2): 589–598.

    Article  MathSciNet  MATH  Google Scholar 

  6. Dong H, Wang Z, Alsaadid F E, et al., Event-triggered robust distributed state estimation for sensor networks with state-dependent noises, International Journal of General Systems, 2014, 44(2): 254–266.

    Article  MathSciNet  Google Scholar 

  7. Dong H, Wang Z, Ding S X, et al., Finite-horizon reliable control with randomly occurring uncertainties and nonlinearities subject to output quantization, Automatica, 2015, 52: 355–362.

    Article  MathSciNet  MATH  Google Scholar 

  8. Mao X and Yuan C, Stochastic Differential Equations with Markovian Switching, Imperial College Press, London, 2006.

    Book  MATH  Google Scholar 

  9. Dragan V, Morozan T, and Stoica A M, Mathematical Methods in Robust Control of Discrete-Time Linear Stochastic Systems, Springer, New York, 2010.

    Book  MATH  Google Scholar 

  10. Li Z Y, Zhou B, Wang Y, et al., On eigenvalue sets and convergence rate of Itô stochastic systems with Markovian switching, IEEE Transactions on Automatic Control, 2011, 56(5): 1118–1124.

    Article  MathSciNet  MATH  Google Scholar 

  11. Sheng L, Gao M, and Zhang W, Spectral characterisation for stability and stabilisition of linear stochastic systems with Markovian switching and its applications, IET Control Theory and Applications, 2013, 7(5): 730–737.

    Article  MathSciNet  Google Scholar 

  12. Kang Y, Zhai D H, Liu G P, et al., Stability analysis of a class of hybrid stochastic retarded systems under asynchronous switching, IEEE Transactions on Automatic Control, 2014, 59(6): 1511–1523.

    Article  MathSciNet  MATH  Google Scholar 

  13. Shen L, Sun J, and Wu Q, Observability and detectability of discrete-time stochastic systems with Markovian jump, Systems and Control Letters, 2013, 62(1): 37–42.

    Article  MathSciNet  MATH  Google Scholar 

  14. Sheng L, Zhang W, and Gao M, Relationship between Nash equilibrium strategies and H2/H control of stochastic Markov jump systems with multiplicative noises, IEEE Transactions on Automatic Control, 2014, 59(9): 2592–2597.

    Article  MathSciNet  MATH  Google Scholar 

  15. Lin Z, Lin Y, and Zhang W, A unified design for state and output feedback H control of nonlinear stochastic Markovian jump systems with state and disturbance-dependent noise, Automatica, 2009, 45(12): 2955–2962.

    Article  MathSciNet  MATH  Google Scholar 

  16. Richard J P, Time-delay systems: An overview of some recent advances and open problems, Automatica, 2003, 39(10): 1667–1694.

    Article  MathSciNet  MATH  Google Scholar 

  17. Mao X, LaSalle-type theorems for stochastic differential delay equations, Journal of Mathematical Analysis and Applications, 1999, 236(2): 350–369.

    Article  MathSciNet  MATH  Google Scholar 

  18. Zhu Q and Song B, Exponential stability of impulsive nonlinear stochastic differential equations with mixed delays, Nonlinear Analysis: Real World Applications, 2011, 12(5): 2851–2860.

    Article  MathSciNet  MATH  Google Scholar 

  19. Basin M and Rodkina A, On delay-dependent stability for a class of nonlinear stochastic systems with multiple state delays, Nonlinear Analysis: Theory, Methods and Applications, 2008, 68(8): 2147–2157.

    Article  MathSciNet  MATH  Google Scholar 

  20. Yu Y, Dong H, Wang Z, et al., Design of non-fragile state estimators for discrete time-delayed neural networks with parameter uncertainties, Neurocomputing, 2016, 182: 18–24.

    Article  Google Scholar 

  21. Hou N, Dong H, Wang Z, et al., Non-fragile state estimation for discrete Markovian jumping neural networks, Neurocomputing, 2016, 179: 238–245.

    Article  Google Scholar 

  22. Zhang L, Zhu Y, and Zheng W X, Energy-to-peak state estimation for Markov jump RNNs with time-varying delays via nonsynchronous filter with nonstationary mode transitions, IEEE Transactions on Neural Networks and Learning Systems, 2015, 26(10): 2346–2356.

    Article  MathSciNet  Google Scholar 

  23. Zhang L, Zhu Y, Shi P, et al., Resilient asynchronous H filtering for Markov jump neural networks with unideal measurements and multiplicative noises, IEEE Transactions on Cybernetics, 2015, 45(12): 2840–2852.

    Article  Google Scholar 

  24. Zhang L, Leng Y, and Colaneri P, Stability and stabilization of discrete-time semi-Markov jump linear systems via semi-Markov kernel approach, IEEE Transactions on Automatic Control, 2016, 61(2): 503–508.

    MathSciNet  MATH  Google Scholar 

  25. Zhang W, Zhang H, and Chen B S, Stochastic H2/H control with (x, u, v)-dependent noise: Finite horizon case, Automatica, 2006, 42(11): 1891–1898.

    Article  MathSciNet  MATH  Google Scholar 

  26. Zhang W and Feng G, Nonlinear stochastic H2/H control with (x, u, v)-dependent noise: Infinite horizon case, IEEE Transactions on Automatic Control, 2008, 53(5): 1323–1328.

    Article  MathSciNet  MATH  Google Scholar 

  27. Zhang W, Chen B S, Tang H, et al., Some remarks on general nonlinear stochastic H control with state, control, and disturbance-dependent noise, IEEE Transactions on Automatic Control, 2014, 59(1): 237–242.

    Article  MathSciNet  MATH  Google Scholar 

  28. Sheng L, Zhu M, Zhang W, et al., Nonlinear stochastic H control with Markov jumps and (x, u, v)-dependent noise: Finite and infinite horizon cases, Mathematical Problems in Engineering, 2016, 2014(10): 1–10.

    Google Scholar 

  29. Mao W H, Deng F, and Wan A, Robust H2/H global linearization filter design for nonlinear stochastic time-varying delay systems, Science China — Information Sciences, 2016, 59(3): 1–17.

    Google Scholar 

  30. Chen B S, Chen W H, and Wu H L, Robust H2/H global linearization filter design for nonlinear stochastic systems, IEEE Transactions on Circuits and Systems. I: Regular Papers, 2009, 56(7): 1441–1454.

    Article  MathSciNet  Google Scholar 

  31. Tanaka K and Wang H O, Fuzzy Control Systems Design and Analysis: An LMI Approach, Wiley, New York, 2001.

    Book  Google Scholar 

  32. Tuan H, Apkarian P, Narikiyo T, et al., Parameterized linear matrix inequality techniques in fuzzy control system design, IEEE Transactions on Fuzzy Systems, 2001, 9(2): 324–332.

    Article  Google Scholar 

  33. Applebaum D and Siakalli M, Asymptotic stability of stochastic differential equations driven by Lêvy noise, Journal of Applied Probability, 2009, 46(4): 1116–1129.

    Article  MathSciNet  MATH  Google Scholar 

  34. Zhu Q, Asymptotic stability in the pth moment for stochastic differential equations with Lêvy noise, Journal of Mathematical Analysis and Applications, 2014, 416(1): 126–142.

    Article  MathSciNet  MATH  Google Scholar 

  35. Higham D J, An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM Review, 2001, 43(3): 525–546.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiteng Pan, Yan Li or Weihai Zhang.

Additional information

This work was supported by the National Natural Science Foundation of China under Grant Nos. 61573227, 61633014, the Natural Science Foundation of Shandong Province of China under Grant No. 2013ZRE28089, the Research Fund for the Taishan Scholar Project of Shandong Province of China, SDUST Research Fund under Grant No. 2015TDJH105 and State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources under Grant No. LAPS16011.

This paper was recommended for publication by Editor SUN Jian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Pan, Z., Li, Y. et al. H control for nonlinear stochastic Markov systems with time-delay and multiplicative noise. J Syst Sci Complex 30, 1293–1315 (2017). https://doi.org/10.1007/s11424-017-6003-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11424-017-6003-1

Keywords

Navigation